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Abstract

There has been a growing interest in exploiting con-

textual information in addition to local features to detect

and localize multiple object categories in an image. Con-

text models can efficiently rule out some unlikely combina-

tions or locations of objects and guide detectors to produce

a semantically coherent interpretation of a scene. How-

ever, the performance benefit from using context models has

been limited because most of these methods were tested on

datasets with only a few object categories, in which most

images contain only one or two object categories. In this

paper, we introduce a new dataset with images that contain

many instances of different object categories and propose

an efficient model that captures the contextual information

among more than a hundred of object categories. We show

that our context model can be applied to scene understand-

ing tasks that local detectors alone cannot solve.

1. Introduction

Standard single-object detectors [3, 5] focus on locally

identifying a particular object category. In order to detect

multiple object categories in an image, we need to run a

separate detector for each object category at every spatial lo-

cation and scale. Since each detector works independently

from others, the outcome of these detectors may be seman-

tically incorrect.

Even if we have perfect local detectors that correctly

identify all object instances in an image, some tasks in scene

understanding require an explicit context model, and cannot

be solved with local detectors alone. An example of this is

detecting unexpected objects that are out of their normal

context. Figure 1 shows one example of images in which

an object is out of context. These scenes attract a human’s

attention since they don’t occur often in daily settings. Un-

derstanding how objects relate to each other is important to

answer queries such as find some funny pictures or where

can I leave the keys so that I can find them later?

A simple form of contextual information is a co-

occurrence frequency of a pair of objects. Rabinovich et

al. [19] use local detectors to first assign an object label to
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a) Input b) Raw detector outputs

c) Context model output d) Most unexpected object

Figure 1. Detecting objects in and out of context. a) Input image,

b) Output of 107 class detectors. With so many classes many false

alarms appear on the image providing a useless scene interpreta-

tion. c) Output of our context model. d) Most unexpected object

in the image. This output can not be produced by object detectors

alone, even if they are perfect. Detecting out of context objects

requires modeling what the expected scene configurations are.

each image segment, and adjusts these labels using a condi-

tional random field. [7] and [8] extend this approach to en-

code spatial relationships between a pair of objects. In [7],

spatial relationships are quantized to four prototypical rela-

tionships - above, below, inside and around, whereas in [8]

a non-parametric map of spatial priors are learned for each

pair of objects. Torralba et al. [24] combine boosting and

CRF’s to first detect easy objects (e.g., a monitor) and pass

the contextual information to detect other more difficult ob-

jects (e.g., a keyboard). [25] uses both image patches and

their probability maps estimated from classifiers to learn a

contextual model, and iteratively refines the classification

results by propagating the contextual information. [4] com-

bines individual classifiers by using spatial interactions be-

tween object detections in a discriminative manner.

Contextual information may be obtained from coarser,

global features as well. Torralba [23] demonstrates that a

global image feature called a “gist” can predict the presence
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or absence of objects and their locations without running an

object detector. [16] extend this approach to combine patch-

based local features and the gist feature. Heitz and Koller

[11] combine a sliding window method and unsupervised

image region clustering to leverage “stuff” such as the sea,

the sky, or a road to improve object detection. [10] intro-

duces a cascaded classification model, which links scene

categorization, multi-class image segmentation, object de-

tection, and 3D reconstruction.

Hierarchical models can incorporate both local and

global images features. [9] uses multiscale conditional ran-

dom fields to combine local classifiers with regional and

global features. Sudderth et al. [22] model the hierarchy of

scenes, objects and parts using hierarchical Dirichlet pro-

cesses, which encourage scenes to share objects, objects to

share parts, and parts to share features. Parikh and Chen

[17] learn a hierarchy of objects in an unsupervised man-

ner, under the assumption that each object appears exactly

once in all images. Hierarchical models are also common

within grammar models for scenes [18, 14] and they have

been shown to be very flexible to represent complex re-

lationships. Bayesian hierarchical models also provide a

powerful mechanism to build generative scene models [15].

In this work, we model object co-occurrences and spa-

tial relationships using a tree graphical model. We combine

this prior model of object relationships with local detector

outputs and global image features to detect and localize all

instances of multiple object categories in an image. Enforc-

ing tree-structured dependencies among objects allows us

to learn our model for more than a hundred of object cate-

gories and apply it to images efficiently. Even though we do

not explicitly impose a hierarchical structure in our learning

procedure, the tree organizes objects in a natural hierarchy.

In order to exploit contextual information, it is important

to have many different object categories present simultane-

ously in an image, with a large range of difficulties (from

large to small objects). Here we introduce a new dataset

(SUN 09), with more than 200 object categories in a wide

range of scene categories, which is suitable for contextual

information.

2. A new dataset for context based recognition

We introduce a new dataset (SUN 09) suitable for lever-

aging the contextual information. The dataset contains

12,000 annotated images covering a large number of scene

categories (indoor and outdoors) with more than 200 object

categories and 152,000 annotated object instances. SUN 09

has been annotated using LabelMe [21] by a single annota-

tor and verified for consistency.

Figure 2 shows statistics of out dataset and compares

them with PASCAL 07. The PASCAL dataset provides an

excellent framework for evaluating object detection algo-

rithms. However, this dataset, as shown in Figure 2, is not
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Figure 2. Comparison PASCAL 07 and our dataset (SUN 09). a)

Histogram of number of object categories present in each image.

b) Distribution of training and test samples per each object cate-

gory. c) 4 examples from the set of typical PASCAL images. A

typical pascal image contains two instances of a single object cat-

egory, and objects occupy 20% of the image. d) 4 examples from

the set of typical SUN images. A typical SUN image has 7 object

categories (with around 14 total annotated objects) and occupy a

wide range of sizes (average 5%).

suitable to test context-based object recognition algorithms.

The PASCAL dataset contains 20 object classes, but more

than 50% of the images contain only a single object class.
MSRC [26] provides more co-ocurring objects but it only

contains 23 object classes. Contextual information is most

useful when many object categories are present simultane-

ously in an image, with some object instances that are easy

to detect (i.e. large objects) and some instances that are hard

to detect (i.e. small objects). The average PASCAL bound-

ing box occupies 20% of the image. On the other hand, in
our dataset, the average object size is 5% of the image size,
and a typical image contains 7 different object categories.

Figure 2.(c,d) show typical images from each dataset.

3. Tree-structured contextual model

We use a tree graphical model to learn dependencies

among object categories. [19] uses a fully-connected CRF

to model object dependencies, which is computationally ex-

pensive for modeling relationships among many object cat-

egories. [16] models dependencies among objects using

scene-object relationships, and assumes that objects are in-

dependent conditioned on the scene type, which may ignore

direct dependencies among objects. Our tree provides a

richer representation of object dependencies and enables ef-

ficient inference and learning algorithms. In this section, we



describe a prior model that captures co-occurrence statistics

and spatial relationships among objects, and explain how

global image features and local detector outputs can be in-

tegrated into the framework as measurements.

3.1. Prior model

3.1.1 Co-occurrences prior

A simple yet effective contextual information is the co-

occurence of object pairs. We encode the co-occurrence

statistics using a binary tree model. Each node bi in a tree

represents whether the corresponding object i is present or
not in an image. The joint probability of all binary variables

are factored according to the tree structure:

p(b) = p(broot)
∏

i

p(bi|bpa(i)) (1)

where pa(i) is the parent of node i. Note that the parent-
child pairs may have either positive (e.g., floor and wall

co-occur often) or negative (e.g., floor never appears with

sky) relationships.

3.1.2 Spatial prior

Spatial location representation Objects often appear at

specific relative positions to one another. For example, a

computer screen, a keyboard, and a mouse generally appear

in a fixed arrangement. We capture such spatial relation-

ships by adding location variables to the tree model. Let

ℓx, ℓy be the x,y coordinate of the center of the bounding

box, and ℓw, ℓh be the width and height of the box. We as-

sume that the image height is normalized to one, and that

ℓx = 0, ℓy = 0 is the center of the image. The expected dis-
tance between centers of objects depends on the size of the

objects - if a keyboard and a mouse are small, the distance

between the centers should be small as well. Constellation

model [6] achieves scale invariance by transforming the po-

sition information to a scale invariant space. Hoiem et al.

[13] relate scale changes to an explicit 3D information. We

take Hoeim et.al ’s approach and apply the following coor-

dinate transformations to represent object locations in the

3D-world coordinate:

Lx =
ℓx

ℓh

Hi, Ly =
ℓy

ℓh

Hi, Lz =
f

ℓh

Hi (2)

where f is the distance from observer to the image plane,
which we set to 1, and Lz is the distance between the ob-

server and the object. Hi is the physical height of an object

i, which is assumed to be constant. These constants could
be inferred from the annotated data using the algorithm in

[12]. Instead, we model the object sizes by manually en-

coding real object sizes (e.g., person = 1.7m, car = 1.5m).

We assume that all objects have fixed aspect ratios.
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Figure 3. (Left) Prior model relating object presence variables bi’s

and location variables Li. (Right) Measurement model for object

i. The gist descriptor g represents global image features, and local

detector provides candidate window locationsWik and scores sik.

cik indicates whether the window is a correct detection or not.

Prior on spatial locations The x-coordinates of objects

varies considerably from one image to another, and is un-

informative in general [23]. Thus, we ignore Lx and only

consider Ly and Lz to capture vertical location and scale re-

lationships. We assume that Ly’s and Lz’s are independent,

i.e., the vertical location of an object is independent from

its distances from the image plane. While we model Ly as

jointly Gaussian, we model Lz as a log-normal distribution

since it is always positive and is more heavily distributed

around small values. We can redefine a location variable

for object category i as Li = (Ly, log Lz) and model Li’s

as jointly Gaussian. If there are multiple instances of object

category i in an image, Li represents the median location of

all instances.

We assume that when conditioned on the presence vari-

able b, the dependency structure of the Li’s has the same

tree structure as our binary tree:

p(L|b) = p(Lroot|broot)
∏

i

p(Li|Lpa(i), bi, bpa(i)), (3)

where each edge potential p(Li|Lpa(i), bi, bpa(i)) encodes
the distribution of a child location conditioned on its parent

location and the presence/absence of both child and parent

objects. We use three different Gaussian distributions to de-

fine p(Li|Lpa(i), bi, bpa(i)) for each parent-child pair. When
both child and parent objects are present (bi = 1, bpa(i) =
1), the expected location of the child object i is determined
by the location of its parent Lpa(i). When the object is

present but its parent object is not (bi = 1, bpa(i) = 0),
then Li is independent from Lpa(i). When an object is not

present (bi = 0), we assume that its location is indepen-
dent from all other object locations and let Li represent the

average location of the object i across all images.
Figure 3 shows the graphical model of the presence vari-

able b and the location variable L. Combining (1) and (3),
the joint distribution of all binary and Gaussian variables

can be represented as follows:

p(b, L) =p(b)p(L|b) = p(broot)p(Lroot) (4)

×
∏

i

p(bi|bpa(i))p(Li|Lpa(i), bi, bpa(i)).



If we combine bi and Li as a single variable Oi, we observe

that p(O) also has a tree structure. Even though the full
graphical model with respect to b and L is not a tree, the
dependency between objects forms a tree structure. In the

rest of the paper, we refer to this model as a prior tree model,

assuming that each node in the tree corresponds to Oi.

3.2. Measurement model

3.2.1 Incorporating global image features

In addition to incorporating relationships among objects,

we introduce gist [23] as a measurement for each presence

variable bi, to incorporate global image features into our

model. Since the gist is a high-dimensional vector, we use

logistic regression to fit p(bi|g) [16], from which we es-
timate the likelihoods p(g|bi) indirectly using p(g|bi) =
p(bi|g)p(g)/p(bi) to avoid overfitting.

3.2.2 Integrating local detector outputs

In order to detect and localize object instances in an image,

we first apply off-the-shelf single-object detectors and ob-

tain a set of candidate windows for each object category.

Let i denote an object category and k index candidate win-
dows generated by baseline detectors. Each detector output

provides a score sik and a bounding box, to which we ap-

ply the coordinate transformation in (2) to get the location

variable Wik = (Ly, log Lz). We assign a binary variable
cik to each window to represent whether it is a correct de-

tection (cik = 1) or a false positive (cik = 0). Figure 3
shows the measurement model for object i to integrate gist
and baseline detector outputs into our prior model, where

we used plate notations to represent Ki different candidate

windows.

We sort the baseline scores for each object category and

assign candidate window index k so that sik is the k-th high-

est score for category i. The probability of correct detection
p(cik = 1|bi = 1) is trained from the training set. If object
i is not present, then all the candidate windows are false
positives: p(cik = 1|bi = 0) = 0.

The distribution of scores depends on whether the win-

dow is a correct detection or a false positive. We could

fit a truncated Gaussian distribution for p(sik|cik = 0)
and for p(sik|cik = 1). Estimating parameters can be
unreliable if there are only few samples with the correct

detection. To address this issue, we use logistic regres-

sion to train p(cik|sik) and compute the likelihood using
p(sik|cik) = p(cik|sik)p(sik)/p(cik).

If a candidate window is a correct detection of object i
(cik = 1), then its location Wik is a Gaussian vector with

mean Li, the expected location of object i:

p(Wik|cik = 1, Li) = N (Wik;Li,Λi) (5)

where Λi is the covariance around the predicted location

[16]. If the window is a false positive (cik = 0), Wik is

independent from Li and has a uniform distribution.

4. Alternating inference on trees

Given the gist g, candidate window locations W ≡
{Wik} and their scores s ≡ {sik}, we infer the presence
of objects b ≡ {bi}, the correct detections c ≡ {cik}, and
expected locations of all objects L ≡ {Li}, by solving the
following optimization problem:

b̂, ĉ, L̂ = argmax
b,c,L

p(b, c, L|g,W, s) (6)

Although our overall model is a tree if we consider bi and

Li as a single node, the exact inference is complicated since

there are both binary and Gaussian variables in the model.

For efficient inference, we leverage the tree structures em-

bedded in the prior model. Specifically, conditioned on b
and c, the location variables L forms a Gaussian tree. On
the other hand, conditioned on L, the presence variables b
and the correct detection variables c together form a binary
tree. For each of these trees, there exists efficient inference

algorithms [1]. Therefore, we infer b, c and L in an alternat-
ing manner.

In our first iteration, we ignore the location information

W , and sample1 b and c conditioned only on the gist g
and the candidate windows scores s: b̂, ĉ ∼ p(b, c|s, g).
Conditioned on these samples, we infer the expected lo-

cations of objects L̂ = argmaxL p(L|b̂, ĉ,W ) using be-
lief propagation on the resulting Gaussian tree. Then con-

ditioned on the estimate of locations L̂, we re-sample b
and c conditioned also on the window locations: b̂, ĉ ∼
p(b, c|s, g, L̂,W ), which is equivalent to sampling from a
binary tree with node and edge potentials modified by the

likelihoods p(L̂,W |b, c). In this step, we encourage pairs
of objects or windows in likely spatial arrangements to be

present in the image.

We iterate between sampling on the binary tree and infer-

ence on the Gaussian tree, and select samples b̂ and ĉ with
the highest likelihood. We use 4 different starting samples

each with 3 iterations in our experiments. Our inference

procedure is efficient even for models with hundreds of ob-

jects categories and thousands of candidate windows. For

the SUN dataset, it takes about 0.5 second in MATLAB to

produce estimates from one image.

5. Learning

We learn the dependency structure among objects from

a set of fully labeled images. The Chow-Liu algorithm [2]

1We can also compute the MAP estimates of these binary variables

efficiently, but starting from the MAP estimates and iterating between the

binary and Gaussian trees typically leads to a local maximum that is close

to the initial MAP estimates.



is a simple and efficient way to learn a tree structure that

maximizes the likelihood of the data: the algorithm first

computes empirical mutual information of all pairs of vari-

ables using their sample values. Then, it finds the maximum

weight spanning tree with edge weights equal to the mutual

information. We learn the tree structure using the samples

of bi’s in a set of labeled images. We pick a root node arbi-

trarily once a tree structure is learned. Even with more than

100 objects and thousands of training images, a tree model
can be learned in a few seconds in MATLAB.

Figure 7 shows a tree structure learned from the SUN

09 dataset. We selected sky to be the root of the tree. It

is interesting to note that even though the Chow-Liu algo-

rithm is simply selecting strong pairwise dependencies, our

tree organizes objects in a natural hierarchy. For example, a

subtree rooted at building has many objects that appear

in street scenes, and the subtree rooted at sink contains ob-

jects that commonly appear in a kitchen. Thus, many non-

leaf nodes act as if they are representing coarser scale meta-

objects or scene categories. In other words, the learned tree

captures the inherent hierarchy among objects and scenes,

resulting in significant improvements in object recognition

and scene understanding as demonstrated in Section 6.

6. Results

6.1. Recognition performance on PASCAL 07

Context learned from training images We train the con-

text model on 4367 images from the training set. Figure 4.a

shows the tree learned for this dataset. The model correctly

captures important contextual relationships among objects

(co-ocurrences and relative spatial locations). Figure 4.b

shows a few samples from the joint model of 3D locations,

illustrating the relative spatial relationship among objects.

Our model correctly learns that most training images con-

tain one or few objects, and that the spatial information em-

bedded in PASCAL 07 data is limited.

Object recognition performance Table 1 provides the

average precision-recall (APR) for the object localization

task, and compares the results with one of the state of the

art models at this task that also incorporates contextual in-

formation [4]. For the baseline detector, we use the detec-

tor in [5], which is based on the mixture of multiscale de-

formable part model. There is a slight advantage in incor-

porating context, but not a huge improvement. As discussed

in Section 2, this dataset contains very little contextual in-

formation among objects and the performance benefit from

incorporating the contextual information is small. We show

in the next section that the contextual information does im-

prove the performance significantly when we use the new

dataset SUN 09. One thing to note is that the best achievable

performance is limited by the recall of the detector since

context models are only used to enhance the scores of the
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Figure 4. a) Model learned from PASCAL 07. Red edges corre-

spond to negative correlations between classes. The thickness of

each edge represents the strength of the link. b) 3D samples gen-

erated from the context model.

bounding boxes (or segments) proposed by a detector.

Figure 5.a compares the performance of our context

model to that of the baseline detector for the localization

task (i.e., detecting the correct bounding box). We look at N

most confident detections in each image and check whether

they are all correct. For the baseline detector, we use a lo-

gistic regression to compute the probability of correct detec-

tion based on the detector score. For the context model, we

compute the probability of correct detection given gist and

detector outputs (i.e. p(cik = 1|s, g,W )) using the efficient
inference algorithm described in Section 4. The numbers on

top of the bars indicate the number of images that contain

at least N ground-truth object instances.

Figure 5.b compares the baseline and the context model

for the presence predication task (i.e., is the object present

in the scene?). We compute the probability of each object

category being present in the image, and check whether the

top N object categories are all correct. The most confident

detection for each object category is used for the baseline

detector. For the context model, we compute the proba-

bility of each object class being present in the image (i.e.

p(bi = 1|s, g,W )). The numbers on top of the bars indi-
cate the number of images that contain at least N different

ground-truth object categories. Note that the number of im-

ages drops significantly as N gets larger since most images

in PASCAL contain only one or two object categories.

6.2. Recognition performance on SUN 09 dataset

We divide the SUN 09 dataset into two sets of equal

sizes, one for training and the other for testing. Each set

has the same number of images per scene category. In order

to have enough training samples for the baseline detectors

[5], we annotated an additional set of 26,000 objects using

Amazon Mechanical Turk. This set consists of images with

a single annotated object, and it was used only for training
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Baseline

in [4]

aeroplane 28.12 31.30 32.05 27.80 28.80 50.88

bicycle 51.52 50.79 50.56 55.90 56.20 58.76

bird 1.93 0.75 0.89 1.40 3.20 27.45

boat 13.85 15.06 14.90 14.60 14.20 28.14

bottle 23.44 25.58 25.28 25.70 29.40 40.51

bus 38.87 35.83 36.98 38.10 38.70 47.89

car 47.01 46.74 46.74 47.00 48.70 65.95

cat 14.73 16.72 18.93 15.10 12.40 48.60

chair 16.01 17.91 18.12 16.30 16.00 49.08

cow 18.24 18.07 18.22 16.70 17.70 36.89

diningtable 21.01 23.18 22.93 22.80 24.00 30.58

dog 10.73 11.26 12.43 11.10 11.70 46.22

horse 43.22 45.32 47.29 43.80 45.00 69.54

motorbike 40.27 40.99 41.87 37.30 39.40 59.69

person 35.46 34.77 35.46 35.20 35.50 58.92

pottedplant 14.90 16.55 15.67 14.00 15.20 43.75

sheep 19.37 21.77 21.81 16.90 16.10 35.13

sofa 20.56 19.43 20.40 19.30 20.10 42.67

train 37.74 37.43 38.80 31.90 34.20 61.35

tvmonitor 37.00 34.27 35.75 37.30 35.40 54.87

AVERAGE 26.70 27.19 27.75 26.41 27.10 47.84

[4] BoundCategory Baseline Gist Context

Table 1. Average precision-recall. Baseline) baseline detector [5];

Gist) baseline and gist [20]; Context) our context model; [4]) re-

sults from [4] (the baseline in [4] is the same as our baseline, but

performances slightly differ); Bound) Maximal APR that can be

achieved given current max recall.

the baseline detector and not for learning the tree model.

In this experiment we use 107 object detectors. These

detectors span from regions (e.g., road, sky, buildings) to

well defined objects (e.g., car, sofa, refrigerator, sink, bowl,

bed) and highly deformable objects (e.g., river, towel, cur-

tain). The database contains 4317 test images. Objects have

a large range of difficulties due to variations in shape, but

also in sizes and frequencies. The distribution of objects in

the test set follows a power law (the number of instances for

object k is roughly 1/k) as shown in Figure 2.

Context learned from training images Figure 7 shows

the learned tree relating the 107 objects. A notable differ-

ence from the tree learned for PASCAL 07 (Figure 4) is that

the proportion of positive correlations is larger. In the tree

learned from PASCAL 07, 10 out of 19 edges, and 4 out
of the top 10 strongest edges have negative relationships.
In contrast, 25 out of 106 edges and 7 out of 53 (≈ 13%)
strongest edges in the SUN tree model have negative rela-

tionships. In PASCAL 07, most objects are related by re-
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Figure 5. Image annotation results for PASCAL 07 and SUN 09.

a-b) Percentage of images in which the top N most confident de-

tections are all correct. The numbers on top of the bars indicate

the number of images that contain at least N ground-truth object

instances. c-d) Percentage of images in which the top N most con-

fident object presence predictions are all correct. The numbers on

top of the bars indicate the number of images that contain at least

N different ground-truth object categories.
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Figure 6. Improvement of context model over the baseline. Object

categories are sorted by the improvement in the localization task.

pulsion because most images contain only few categories.

In SUN 09, there is a lot more opportunities to learn posi-

tive correlations between objects. From the learned tree, we

can see that some objects take the role of dividing the tree



car

bed

shoes

toilet

Figure 9. Four examples of objects out of context (wrong pose,

wrong scale, wrong scene wrong co-occurrence). The segments

show the objects selected by the contextual model (the input of the

system are the true segmentations and labels, and the model task

is to select which objects are out of context).

according to the scene category as described in Section 5.

For instance, floor separates indoor and outdoor objects.

Object recognition performance Despite the high vari-

ance in object appearances, the baseline detectors have a

reasonable performance. Figure 5.(b,d) show localization

and presence prediction results on SUN 09. Note that the

context model improve the image annotation results signifi-

cantly: as shown in Figure 5.d, among the 3757 images that

contain at least three different object categories, the three

most confident objects are all correct for 38% of images
(and only 15% without context).
Figure 6 show the improvement in average precision-

recall (APR) for each object category. Due to the large num-

ber of objects in our database, there are many objects that

benefit in different degrees from context. Six objects with

the largest improvement with context for the localization

task are floor (+11.88), refrigerator (+11.58), bed (+8.46),

seats(+7.34), monitor (+6.57), and road (+6.55). The over-

all localization APR averaged over all object categories is

7.06 for the baseline and 8.37 for the context model. Fig-

ure 8 shows some image annotation results. For each image,

only the six most confident detections are shown.

6.3. Detecting images out of context

Figure 9 shows some images with one or more objects in

an unusual setting such as scale, position, or scene. Objects

that are out-of-context generally have different appearances

or viewpoints from typical training examples, making local

detectors perform poorly. Even if we have perfect local de-

tectors, or ground-truth labels, we need contextual informa-

tion to identify out-of-context scenes, which is not available
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Figure 10. Performance on detecting objects out of context.

from local detector outputs.

In this section, we present preliminary results in de-

tecting objects out-of-context. For this task, we created a

database of 26 images with one or more objects that are out
of their normal context. In each test, we assume that we

have ground-truth object labels for all objects in the scene,

except for the one under the test. Among all objects present

in the image, we picked an object label with the lowest prob-

ability conditioned on all other (ground-truth) object labels

in the scene using our context model. Figure 9 shows some

examples where the context model correctly identifies ob-

jects that are the most unexpected object in the scene.

Figure 10 shows the number of images that at least one

out-of-context object was included in the top N unexpected

objects estimated by the context model. It is interesting to

note that using gist may hurt the performance of detecting

images out of context. This is due to the fact that those

objects may change global features of an image, biasing gist

to favor that object.

7. Conclusion

We present a new dataset and an efficient methodology

to model contextual information among over 100 object cat-

egories. The new dataset SUN 09 contains richer contextual

information compared to PASCAL 07, which was originally

designed for training object detectors. We demonstrate that

the contextual information learned from SUN 09 signifi-

cantly improves the accuracy of object recognition tasks,

and can even be used to identify out-of-context scenes. The

tree-based context model enables an efficient and coher-

ent modeling of regularities among object categories, and

can easily scale to capture dependencies of over 100 object

categories. Our experiments provide compelling evidence

that rich datasets and modeling frameworks that incorporate

contextual information can be more effective at a variety of

computer vision tasks such as object classification, object

detection, and scene understanding.
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