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Indoor scene recognition is a challenging open prob-
lem in high level vision. Most scene recognition models
that work well for outdoor scenes perform poorly in the
indoor domain. The main difficulty is that while some in-
door scenes (e.g. corridors) can be well characterized by |
global spatial properties, others (e.g, bookstores) argdre 10l
characterized by the objects they contain. More generally, 0
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information. In this paper we propose a prototype based @ g § 3 - g ~ o £ B

model that can successfully combine both sources of infor- © = o =
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mation. To test our approach we created a dataset of 67
indoor scenes categories (the largest available) coveang
wide range of domains. The results show that our approach recognition task. Both set of features have a strong cdivel@

can significantly outperform a state of the art classifier for , - performance across the 15 scene categories. Average-per
the task. mance for the different features are: Gist: 78,Pyramid match-
ing: 73.4%, bag of words64.1%, and color pixels (SSDR0.6%.
In all cases we use an SVM.

Figure 1. Comparison of Spatial Sift and Gist features foteme

1. Introduction

There are a number of approaches devoted to scene There is some previous work devoted to the task of in-
recognition that have been shown to be particulary successdoor scene recognition (e.g., [15, 16]), but to the best of
ful in recognizing outdoor scenes. However, when theseour knowledge none of them have dealt with the general
approaches are tested on indoor scene categories thesresuleroblem of recognizing a wide range of indoor scenes cat-
drop dramatically for most common indoor scenes. Fig. 1 egories. We believe that there are two main reasons for the
shows results of a variety of state of the art scene recog-slow progress in this area. The first reason is the lack of
nition algorithms applied to a dataset of fifteen scene cate-a large testbed of indoor scenes in which to train and test
gories [9, 3, 7]. Common to all the approaches compared indifferent aplproaches. With thIS.In mind vye.created a new
this graph is their lower performance on indoor categories dataset for indoor scene recognition consisting of 67 ene
(RAW: 26.5%, Gist: 62.9%, Sift: 61.9%) in comparison  (the largest available) covering a wide range of domains in-
with the performance achieved on the outdoor categoriescluding: leisure, working place, home, stores and public
(RAW: 32.6%, Gist: 78.1%, Sift: 79.1%). * spaces scene categories.

The second reason is that in order to improve indoor

INote that the performances differ from the ones reported@jnThe scene recognition performance we need to deve|op image
difference is that here we have cropped all the images toumrs@nd with representations specificallv tailored for this task. Thénma
256 x 256 pixels. The original dataset has images of different re&nis p . p y X

difficulty is that while most outdoor scenes can be well char-

and aspect ratios that correlate with the categories prayidon-visual - ] - >
discriminant cues. acterized by global image properties this is not true of all
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Figure 2. Summary of the 67 indoor scene categories usedristady. To facilitate seeing the variety of different scexagegories
considered here we have organized them into 5 big scene grolipe database contains 15620 images. All images have anormni
resolution of 200 pixels in the smallest axis.
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indoor scenes. Some indoor scenes (e.g. corridors) can intrast, our dataset contains a large number of indoor scene

deed be characterized by global spatial properties but®the categories. The images in the dataset were collected from

(e.g bookstores) are better characterized by the objesys th different sources: online image search tools (Google and

contain. For most indoor scenes there is a wide range ofAltavista), online photo sharing sites (Flickr) and the La-

both local and global discriminative information that need belMe dataset. Fig. 2 shows the 67 scene categories used in

to be leveraged to solve the recognition task. this study. The database contains 15620 images. All images
In this paper we propose a scene recognition modelhave a minimum resolution of 200 pixels in the smallest

specifically tailored to the task of indoor scene recognitio  axis.

The main idea is to use image prototypes to define a map- This dataset poses a challenging classification problem.

ping between images and scene labels that can capture thAs an illustration of the in-class variability in the datgse

fact that images containing similar objects must have sim- fig. 3 shows average images for some indoor classes. Note

ilar scene labels and that some objects are more importanthat these averages have very few distinctive attributes in

than others in defining a scene’s identity. comparison with average images for the fifteen scene cate-
Our work is related to work on learning distance func- gories dataset and Caltech 101 [10]. These averages suggest

tions [4, 6, 8] for visual recognition. Both methods learn that indoor scene classification might be a hard task.

to combine local or elementary distance functions. The are

two main differences between their approach an ours. First,

their method learns a weighted combination of elementary

distance functions for each training sample by minimizing  We will start by describing our scene model and the set of

a ranking objective function. Differently, our method lear  features used in the rest of the paper to compute similaritie

a weighted combination of elementary distance functions petween two scenes.

for a set of prototypes by directly minimizing a classifica-

tion objgctive. S_econd, Wh_ile they concent_raf[ed on objectg 9. Prototypesand ROI

recognition and image retrieval our focus is indoor scene

recognition. As discussed in the previous section, indoor scene cat-
This paper makes two contributions, first we provide a egories exhibit large amounts of in-class appearance vari-

unique large and diverse database for indoor scene recogability. Our goal will be to find a set of prototypes that best

nition. This database consists of 67 indoor categories cov-describes each class. This notion of scene prototypes has

ering a wide range of domains. Second, we introduce abeen used in previous works [11, 17].

model for indoor scene recognition that learns scene proto- In this paper, each scene prototype will be defined by a

types similar to start-constellation models and that caa su model similar to a constellation model. The main difference

3. Scene prototypes and ROl s

cessfully combine local and global image information. with an object model is that the root node is not allowed to
move. The parts (regions of interest, ROI) are allowed to
2. Indoor database move on a small window and their displacements are inde-

pendent of each other. Each prototype(with k£ = 1...p)
In this section we describe the dataset of indoor scenewill be composed ofn,, ROIs that we will denote bysy;.
categories. Most current papers on scene recognition focus-ig.4 shows an example of a prototype and a set of candi-
on a reduced set of indoor and outdoor categories. In con-date ROIs.
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To represent each ROI we will use a spatial pyramid of
visual words. The visual words are obtained as in [14]:
we create vector quantized Sift descriptors by applying K-
_ means to a random subset of images (following [7] we used
_meeting room 200 clusters, i.e. visual words). Fig. 4.b shows the visual
| - words (the color of each pixel represents the visual word

» to which it was assigned). Each ROl is decomposed into a

2x2 grid and histograms of visual words are computed for

each window [7, 1, 12]. Distances between two regions are
Figure 3. Average images for a sample of the indoor scene cate cOmputed using histogram intersection as in [7].
gories. Most images within each category average to a umifor Histograms of visual words can be computed efficiently
field due to the large variability within each scene catedtinis using integral images, this results in an algorithm whose
is in contrast with Caltech 101 or the 15 scene categoriezsdat ~ computational cost is independent of window size. The de-
[9, 3, 7]. The bottom 8 averages correspond to the few categior  tection a ROl on a new image is performed by searching
that have more regularity among examplars. around a small spatial window and also across a few scale
changes (Fig. 4.c). We assume that if two images are sim-
ilar their respective ROIs will be roughly aligned (i.e. in

totvbe. we asked a human annotator to seament the ob'ectSim"ar spatial locations). Therefore, we only need to per-
ype, We as 9 : St rm the search around a small window relative to the orig-
contained in it. Annotators s_egn?ented prototype images forinaI location. Fig. 5 shows three ROIs and its detections on
each scene category resulting in a total of 2000 manuallynew images. For each RO, the figure shows best and worst
segmented images. We used those segmentations to propose ) L . :
. matches in the dataset. The figure illustrates the variety of
a set of candidate ROIs (we_ selecte_d 10 for each prototypeROIS that we will consider: some correspond to well de-
that occupy at leastl of the image s_ae). . fined objects (e.g., bed, lamp), regions (e.g., floor, wathwi
We will also show results where instead of using human aintings) or less distinctive local features (e.g., a oy
annotators to generate the candidate ROls, we used a se '

tati laorith | icul d didat 1 floor tile). The next section will describe the learning al-
gg? ? lon aigon mlt tr'] parb|tcu_ arawe_ pro UCE ca? '12 € gorithm used to select the most informative prototypes and
s from a segmentation obtained using graph-cuts [13]. ROIs for each scene category.

corridor ‘computer room airport inside

In order to define a set of candidate ROIs for a given pro-

3.2. Image descriptors 4. M odd

In order to describe the prototypes and the ROIs we will .
use two sets of features that represent the state of the art orlw1 1. Model Formulation

the task of scene recognition. In scene classification our goal is to learn a mapping
We will have one descriptor that will represent the root from imagest to scene labelg. For simplicity, in this sec-
node of the prototype imagé&) globally. For this we will tion we assume a binary classification setting. That is, each

use the Gist descriptor using the code available online [9].y; € {1, —1} is a binary label indicating whether an image
This results in a vector of 384 dimensions describing the belongs to a given scene category or not. To model the mul-
entire image. Comparison between two Gist descriptors isticlass case we use the standard approach of training one-
computed using Euclidean distance. versus-all classifiers for each scene; at test, we predict th



ular, for the scene classification problem we would like to
learn a mapping that can capture the fact that images con-
taining similar objects must have similar scene labels and
that some objects are more important than others in defin-
ing a scene’s identity. For example, we would like to learn
that an image of a library must contain books and shelves
but might or might not contain tables.

In order to define a useful mapping that can capture the
essence of a scene we are going tosisklore specifically,
for each prototyp&}, we define a set of features functions:

fij() = mind(ty;, x) 1)

Each of these features represents the distance between a
prototype ROIl¢,; and its most similar segment in (see
section 3 for more details of how these features are com-
puted). For some scene categories globalimage information
can be very important, for this reason we will also include a
global featurey, (x) which is computed as the2 norm be-
tween the Gist representation of imag@nd the Gist rep-
resentation of prototypk. We can then combine all these
feature functions to define a global mapping:

Best matches

P
W) = Y Brexp™ 2=t wfu(0 - eaa) - (g)
k=1

Worst

In the above formulatio and A are the two parame-
ter sets of our model. Intuitively, eagh. represents how
three images correspond to the query patterns. For eaclejrieg relevant the sir_nil_arity to a prototypieis for p!'edicting the
algorithm tries to detect the selected region on the queggam scene. label. Slmlllarly, ead,r’“j captures the importance of
The next three rows show the top three matches for each region @ Particular ROl inside a given prototype. We can now use

The last row shows the three worst matching regions. the mapping: to define the standard regularized classifica-
tion objective:

Figure 5. Example of detection of similar image patches. tbpe

scene label for which the corresponding classifier is most .

confident. However, we would like to note that our model _ 2 2

can be easily adapted to an explicit multiclass trainingtstr Lg,» = Z Hh(wa), yi) + GolIBII + Gl ®)
egy.

As a form of supervision we are given a training set  The left term of equation 3 measures the error that the
D = {(x1,11), (z2,92) - .. (zn,yn)} Of n pairs of labeled  classifier incurs on training examplésin terms of a loss
images and a se§ = {71,7>...,7,} of p segmented functionl. In this paper we use the hinge loss, given by
images which we call prototypes. Each prototyfie = I(h(z),y) = max(0,1 — yh(x)) but other losses such as
{t1,t2,...,tm, } has been segmented inte, ROIs by a logistic loss could be used instead. The right hand terms
human annotator. Each ROI corresponds to some object irof Equation 3 are regularization terms and the constapts
the scene, but we do not know their labels. Our goal is to and(; dictate the amount of regularization in the model.

i=1

useD andS to learn a mapping : X — R. For binary Finally, we introduce non-negativity constraints on the
classification, we would take the prediction of an imade Since eaclfy; is a distance between image ROIs, these con-
besign(h(x)); in the multiclass setting, we will use directly  straints ensure that their linear combination is also aajlob
h(z) to compare it against other class predictions. distance between a prototype and an image. This eases the

As in most supervised learning settings choosing an ap-interpretability of the results. Note that this global diste
propriate mapping : X — R becomes critical. In partic- is used to induce a similarity measure in the classifier



4.2. Learning 30%

In this section we describe how to estimate the model pa-
rameters(3*, \*} = argming ,~,L(3,\) from a training
setD. The result of the learning stage will be the selection
of the relevant prototypes for each class and the ROI that
should be used for each prototype.

We use an alternating optimization strategy, which con-
sists of a series of iterations that optimize one set of pa-
rameters given fixed values for the others. Initially the pa-
rameters are set to random values, and the process iterates 1 st SUM ROI ROI ROI+Gist  ROI+Gist
between flxmgﬁ and minimizingL with respect to\ and Segmentation  Annotation Segmentation Annotation
fixing A and minimizingL with respect tos. ] ) o

We use a gradient-based method for each optimization',:'gure 6. Multllclass average precision performance forbihse-
step. Since our objective is non-differentiable because of'ne @nd four different versions of our model.
the hinge loss, we use a sub-gradient of the objective, which
we compute as follows: scores into a single prediction by taking the scene labél wit

Given parameter values, et be the set of indices of  maximum confidence score. Other approaches are possible
examples inD that attain non-zero loss. Also, to simplify  for combining the predictions of the different classifiers.

25%

20%|

Average Precision

notation assume that parameley and featurefy, corre- We start by describing the four different variations of our
spond toA,c and g respectively. The subgradient with  model that were tested on these experiments. In a first set-
respect to3 is given by: ting we used the ROIs obtained from the manually anno-

tated images and restricted the model to use local informa-

. tion only by removing they (z) features (ROl Annotation).
8L —Z~k>\k‘fk‘(lﬂ') 1 .
P E Y exp - =1 kI kI +§Ob5k In a a second setting we allowed the model to use both lo-
k i€A cal and global features (ROI+Gist Annotation). In a third

setting we utilized the ROIs obtained by running a segmen-
tation algorithm and restricted the model to use local in-
formation only (ROl Segmentation). Finally, in the fourth
setting we used the ROIs obtained from the automatic seg-
mentation but allowed the model to exploit both local and
global features (ROI+Gist Segmentation). All these models

To enforce the non-negativity constraints on theve  Were trained with 331 prototypes.
combine sub-gradient steps with projections to the pasitiv. =~ We also compared our approach with a state of the art
octant. In practice we observed that this is a simple and model for this task. For this we trained an SVM with a Gist
efficient method to solve the constrained optimization step representation and an RBF kernel (Gist SVM). In principle
other features could have been used for this baseline but as
5. Experiments it was shown in Fig. 1 Gist is one of the most competitive
representations for this task.
In this section we present experiments for indoor scene  To train all the models we used 80 images of each class
recognition performed on the dataset described in sectionfor training and 20 images for testing. To train a one versus

2. We show that the model and representation proposedll classifier for categord we samplen positive examples
in this paper give significant improvement over a state of and3n negative examples.

the art model for this task. We also perform experiments

using different versions of our model and compare manual 6. Results

segmentations to segmentations obtained by running a seg-

mentation algorithm. Figure 6 shows the average multiclass accuracy for the
In all cases the performance metric is the standard av-five models: Gist SVM, ROl Segmentation, ROl Annota-

erage multiclass prediction accuracy. This is calculated a tion, ROI+Gist Segmentation and ROI+Gist Annotation.

the mean over the diagonal values of the confusion matrix. =~ As we can see from this figure combining local and

An advantage of this metric with respect to plain multiclass global information leads to better performance. This sug-

accuracy is that it is less sensitive to unbalanced distribu gests that both local and global information are useful for

tions of classes. For all experiments we trained a one versughe indoor scene recognition task. Notice also that using

all classifier for each of the 67 scenes and combined theirautomatic segmentations instead of manual segmentations

and the subgradient with respectXtds given by:

oL ey 1
Nn > yiBi S (i) exp 2y M s l)‘i‘icl/\kj
7 ieA
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Figure 7. The 67 indoor categories sorted by multiclassamesr

precision (training with 80 images per class and test is @on20
images per class).

causes only a small drop in performance.

challenging task due to the large variability across differ
ent exemplars within each class. This is not the case with
many outdoor scene categories (e.g., beach, street, plaza,
parking lot, field, etc.) which are easier to discriminatd an
several image descriptors have been shown to perform very
well at that task. Outdoor scene recognition, despite being
a challenging task has reached a degree of maturity that has
allowed the emergence of several applications in computer
vision (e.g. [16]) and computer graphics (e.g. [5]). How-
ever, most of those works have avoided dealing with indoor
scenes as performances generally drop dramatically.

The goal of this paper is to attract attention to the com-
puter vision community working on scene recognition to
this important class of scenes for which current algorithms
seem to perform poorly. In this paper we have proposed
a representation able to outperform representations that a

Figure 7 shows the sorted accuracies for each class fofne cyrrent state of the art on scene categorization. How-

the ROI+Gist-Segmentation model. Interestingly, five ef th
categories (greenhouse, computer-room, inside-busi- corr
dor and pool-inside) for which we observed some global
regularity (see 3) are ranked among the top half best per-
forming categories. But among this top half we also find
four categories (buffet, bathroom, concert hall, kitchiem)
which we observed no global regularity. Figure 8 shows

ever, the performances presented in this paper are close to
the performance of the first attempts on Caltech 101 [2].
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ranked images for a random subset of scene categories for
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