
INV ITED
P A P E R

LabelMe: Online Image
Annotation and Applications
By developing a publicly available tool that allows users to use the Internet to

quickly and easily annotate images, the authors were able to

collect many detailed image descriptions.

By Antonio Torralba, Bryan C. Russell, and Jenny Yuen

ABSTRACT | Central to the development of computer vision

systems is the collection and use of annotated images spanning

our visual world. Annotations may include information about

the identity, spatial extent, and viewpoint of the objects present

in a depicted scene. Such a database is useful for the training

and evaluation of computer vision systems. Motivated by the

availability of images on the Internet, we introduced a web-

based annotation tool that allows online users to label objects

and their spatial extent in images. To date, we have collected

over 400 000 annotations that span a variety of different scene

and object classes. In this paper, we show the contents of the

database, its growth over time, and statistics of its usage. In

addition, we explore and survey applications of the database in

the areas of computer vision and computer graphics. Particu-

larly, we show how to extract the real-world 3-D coordinates of

images in a variety of scenes using only the user-provided

object annotations. The output 3-D information is comparable

to the quality produced by a laser range scanner. We also

characterize the space of the images in the database by

analyzing 1) statistics of the co-occurrence of large objects in

the images and 2) the spatial layout of the labeled images.

KEYWORDS | Image database; image statistics; object detection;

object recognition; online annotation tool; video annotation; 3-D
I . INTRODUCTION

In the early days of computer vision research, the first

challenge a computer vision researcher would encounter

would be the difficult task of digitizing a photograph [25].

Fig. 1 shows the complete image collection used for the

study presented in [37] and illustrates the technical dif-

ficulties existing in the 1970s to capture digital images.
Even once with a picture in digital form, storing a large

number of pictures (say six) consumed most of the avail-

able computational resources.

Today, having access to large data sets is fundamental

for computer vision. Small data sets have the risk of over-

fitting by encouraging approaches that work only on a few

selected cases. Moreover, it is hard to evaluate progress in

the field with small data sets. This is specially relevant in

Manuscript received April 16, 2009; revised April 1, 2010; accepted May 1, 2010. Date of

publication June 10, 2010; date of current version July 21, 2010. This work was

supported by the National Science Foundation Career Award (IIS 0747120) and by a

National Defense Science and Engineering Graduate Fellowship.

A. Torralba and J. Yuen are with the Computer Science and Artificial Intelligence

Laboratory, Massachusetts Institute of Technology, Cambridge, MA 02139 USA

(e-mail: torralba@csail.mit.edu; jenny@csail.mit.edu).

B. C. Russell is with INRIA, WILLOW project-team, Laboratoire d’Informatique de

l’École Normale Supérieure (ENS/INRIA/CNRS UMR 8548), 75214 Paris, France

(e-mail: russell@di.ens.fr).

Digital Object Identifier: 10.1109/JPROC.2010.2050290

Fig. 1. The entire data set from an early vision paper [36]. The original

caption illustrates the technical difficulties of image digitization

in the 1970s: ‘‘(a) and (b) were taken with a considerably modified

Information International Incorporated Vidissector, and the rest were

taken with a Telemation TMC-2100 vidicon camera attached to a

Spatial Data Systems digitizer (Camera Eye 108)’’ [37].

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 14670018-9219/$26.00 �2010 IEEE

the case of object recognition, where it is important to test
the ability of a model to detect and recognize objects under

a variety of conditions (different backgrounds, illumina-

tions, occlusions, and poses). For this, we require access to

large collections of annotated images covering the vari-

ability of the visual world.

The availability of visual data has experienced a dra-

matic change in the last decade, especially via the

Internet, which has given researchers access to billions
of images and videos. While large volumes of pictures are

available, building a large data set of annotated images

with many objects still constitutes a costly and lengthy

endeavor. Traditionally, data sets are built by individual

research groups and are tailored to solve specific

problems. Therefore, many currently available data sets

used in computer vision only contain a small number of

object classes, and reliable detectors exist for a few of
them (e.g., human faces and cars [47], [54], [73], [74]).

Notable recent exceptions are the Caltech 101 data set

[14], with 101 object classes (later extended to 256 object

classes [18]), ImageNet [8], the PASCAL collection [11]

containing 20 object classes, the CBCL-street scenes

database [5], comprising eight object categories in street

scenes, and the database of scenes from the Lotus Hill

Research Institute [81]. For a review and discussion of
current data sets we refer to [41]. The goal of LabelMe is

to provide a large variety of images with many annotated

objects. Available data sets in computer vision have

focused on getting annotated data for a set of predefined

object categories [5], [11] or in collecting images of one or

few prominent objects [14], [18].

Creating a large number of annotations for thousands of

different object classes can become a time-consuming and
challenging process. To cope with the difficulty of creating

a large, annotated data set, there have been several works

that study methods for optimizing labeling tasks. For

example, given enough annotations for a particular object

class, one can train an algorithm to assist the labeling

process. The algorithm would detect and segment addi-

tional instances in new images and be followed by a user-

assisted validation stage [75]. An implementation of this
idea is the Seville project [1], where an incremental,

boosting-based detector was trained. The pipeline begins by

training a coarse object detector that is good enough to

simplify the collection of additional examples. Further-

more, the user provides feedback to the system by

indicating when an output bounding box is a correct

detection or a false alarm. Finally, the detector is retrained

with the enlarged data set. This process is repeated until
reaching the desired number of labeled images. Another

work for optimizing label propagation is [76], where a

learner is trained to balance the relative costs for obtaining

different levels of annotation detail, along with the reduc-

tion of uncertainty the annotation provides to the system. A

complementary line of research tries to avoid the need to

annotate images by developing unsupervised learning

algorithms [13], [15], [16], [49], [59], [65], [68], [79],
[80]. These works are characterized by creating learners to

recognize and distinguish object classes that can be trained

with unlabeled and unsegmented scenes. However, inde-

pendent of the methods for creating classifiers, ground

truth data are always implicitly necessary to validate

inferred annotations and to assign names to discovered

object categories.

Web-based annotation tools provide a means of
building large annotated data sets by relying on the

collaborative effort of a large population of users [51], [56],

[62], [64], [77]. Recently, such efforts have shown to be

successful. The Open Mind Initiative [64] aims to collect

large data sets from web users to develop intelligent

algorithms. More specifically, common sense facts are

recorded (e.g., red is a primary color), with over 700 000

facts recorded to date. This project seeks to extend their
data set with speech and handwriting data. Flickr [56] is a

commercial effort to provide an online image storage and

organization service. Users often provide textual tags as

captions for depicted objects in an image. Another way lots

of data have been collected is through an online game that

is played by many users. The ESP game [77] pairs two

random online users who view the same target image.

The goal is for them to try to ‘‘read each other’s mind’’
and agree on an appropriate name for the target image as

quickly as possible. This effort has collected over 10 million

image captions since 2003 for images randomly drawn

from the web. While the amount of collected data is

impressive, only caption data are acquired. Another game,

Peekaboom [78], has been created to provide location

information of objects. Recently, a number of collection

efforts have used online services such as Mechanical Turk
[62] to distribute the annotation task to a large population

of Internet users.

In 2005, we created LabelMe [51], an online

annotation tool that allows sharing and labeling of images

for computer vision research. The application exploits the

capacity of the web to concentrate the efforts of a large

population of users. The tool has been online since

August 2005 and has accumulated over 400 000 annotated
objects. The online tool provides functionalities for draw-

ing polygons to outline the spatial extent of object in

images, querying for object annotations, and browsing the

database (see Fig. 2).

In this paper, we describe the evolution of both

LabelMe and its annotation corpus. We demonstrate sta-

tistics validating the ease of use and impact our system has

had over the course of time. With the aid of collaborative
collection and labeling of scenes at a large scale, we

visualize a 2-D semantic layout of the labeled real-world

scenes. Finally, we demonstrate applications of our rich

database. For example, we developed a method to learn

concepts not explicitly annotated in scenes, such as sup-

port and part-of relationships, which allows us to infer 3-D

information of scenes.

Torralba et al. : LabelMe: Online Image Annotation and Applications

1468 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

II . WEB ANNOTATION AND
DATA STATISTICS

The following is a brief summary of the overall project

goals and main features that distinguishes the LabelMe

database from other databases.

• Designed for object class recognition as opposed to

instance recognition. To recognize an object class,
one needs multiple images of different instances of

the same class, as well as different viewing con-

ditions. Many databases, however, only contain

different instances in a canonical pose.

• Designed for learning about objects embedded in a

scene. Many databases consist of small cropped

images of object instances. These are suitable for

training patch-based object detectors (such as
sliding window classifiers), but cannot be used

for training detectors that exploit contextual cues.

• High-quality labeling. Many databases just provide

captions, which specify that the object is present

somewhere in the image. However, more detailed

information, such as bounding boxes, polygons, or

segmentation masks, is tremendously helpful.

• Many diverse object classes. Many databases only
contain a small number of classes, such as faces,

pedestrians, and cars (notable exceptions are the

Caltech 101, Caltech 256, and ImageNet databases).

• Many diverse images. For many applications, it is

useful to vary the scene type (e.g., nature, street,

and office scenes), distances (e.g., landscape and

closeup shots), degree of clutter, etc.

• Many noncopyrighted images. For the LabelMe
database, most of the images were taken by the

authors of this paper using a variety of handheld

digital cameras. Also, many images were contributed

by various researchers seeking to label their images.

• Open and dynamic. The LabelMe database is

designed to allow collected labels to be instantly

shared via the web and to grow over time.

In order to achieve these goals, we designed an online
Javascript drawing interface that works on many platforms,

is easy to use, and allows instant sharing of the collected

data. Fig. 2 shows a snapshot of the LabelMe online

annotation tool. The tool provides a simple drawing inter-

face that allows users to outline the silhouettes of the

objects present in each image. When the user opens the

application, a new image is displayed. The image is ran-

domly selected from a large collection of images available
in LabelMe. The user provides an annotation by clicking

along the boundary of an object to form a polygon. The

user closes the polygon by clicking on the initial point or

with a right click. After the polygon is closed, a popup

dialog box appears querying for the object name. Once the

name is introduced, the annotation is added to the data-

base and becomes available for immediate download for

research.

A. Data Set Evolution and Distribution of Objects
Fig. 3 plots the evolution of the data set since it went

online in 2005. Fig. 3(a) shows how the number of

annotated objects (one annotated object is composed of

the polygon outlining the object boundary and the object

name) has been growing. Notice the constant database

growth over time. Fig. 3(b) shows the number of images

with at least one object annotated. As users are not

required to fully annotate an image, different images have

varying numbers of annotated objects. As we try to build a
large data set, it will be common to have many images that

are only partially annotated. Therefore, developing algo-

rithms and training strategies that can cope with this issue

will allow the use of large data sets without having to make

the labor-intensive effort of careful image annotation.

Fig. 3(c) shows the evolution of the number of different

object descriptions present in the database. As users are

not restricted to only annotate a predefined set of classes,
the data set contains a rich set of object classes that

constantly grows as new objects are annotated every day.

This is an important difference between the LabelMe data

Fig. 3. Evolution of the data set since public launch of the annotation

tool in August 2005 through 2009. The horizontal axis denotes time

(each mark is the beginning of the year), and the vertical axis

represents: (a) number of annotated objects, (b) number of images

with at least one annotated object, and (c) number of unique object

descriptions.

Fig. 2. Snapshot of the online application for image annotation.

Torralba et al. : LabelMe: Online Image Annotation and Applications

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1469

set and other databases used as benchmarks for computer

vision algorithms. Interestingly, the number does not seem

to be saturating with time. This observation was made in
[63] and seems to indicate that the number of visual object

categories is large.

Fig. 4(b) shows examples of the most frequently

annotated object classes in our database, along with their

segmentation masks. Fig. 4(a) shows the distribution of

annotated object classes. The vertical axis denotes the

number of polygons assigned to a particular object class

and the horizontal axis corresponds to its rank in the list of
sorted objects according to the number of annotated

instances. For instance, the most frequent object class in

our data set is window, with 25 741 annotated instances,

followed by car, with 20 304 instances. The distribution of

object counts is heavy tailed. There are a few dozen object

classes with thousands of training samples and thousands

of object classes with just a handful of training samples

(i.e., rare objects are frequent). The distribution follows
Zipf’s law [83], which is a common distribution for ranked

data found also in the distribution of word counts in

language. The same distribution has also been found in

other image databases [63], [70].

The above observations suggest two interesting learn-

ing problems that depend on the number of available

training samples N.

• Learning from few training samples ðN ! 1Þ: this is
the limit when the number of training examples is

small. In this case, it is important to transfer knowl-

edge from other, more frequent, object categories.

This is a fundamental problem in learning theory and

artificial intelligence, with recent progress given by

[4], [12], [14], [29], [44], [45], [65], and [72].

• Learning with millions of samples ðN !1Þ: this is

the extreme where the number of training samples
is large. An example of the power of a brute force

method is the text-based Google search tool. The

user can formulate questions to the query engine

and get reasonable answers. The engine, instead of

understanding the question, is simply memorizing

billions of web pages and indexing those pages
using the keywords from the query. In Section III,

we discuss recent work in computer vision to

exploit millions of image examples.

Note, however, as illustrated in Fig. 4(a), that collected

benchmark data sets do not necessarily follow Zipf’s law.

When building a benchmark, it is common to have similar

amounts of training data for all object classes. This pro-

duces somewhat artificial distributions that might not
reflect the frequency in which objects are encountered in

the real world. The presence of the heavy tailed distri-

bution of object counts in the LabelMe data set is

important to encourage the development of algorithms

that can learn from few training samples by transferring

knowledge from other, more frequent, object categories

[4], [14], [44], [45], [65], [72].

B. Study of Online Labelers
An important consideration is the source of the

annotations. For example, are few or many online users

providing annotations? Ideally, we would collect high-
quality contributions from many different users since this

would make the database more robust to labeling bias. In

this section, we study the contributions made through the

online annotation tool by analyzing the online user activity

from July 7, 2008 through March 19, 2009.

Since the database grows when users provide new

annotations, one way of characterizing the online con-

tributions is by looking at the number of newly created
polygons that each user makes. To analyze the number of

new polygons that users created, we stored the actions of

an online user at a particular IP address. In Fig. 5(a), we

plot the total number of objects created by each IP address,

sorted in descending order (plotted on log–log axes). We

removed from consideration polygons that were deleted

during the labeling session, which often corresponded to

Fig. 4. (a) Distribution of annotated objects in the LabelMe collection and comparison with other data sets (plotted on log–log axes).

(b) Examples of the most frequent objects in LabelMe. The number in parenthesis denotes the number of annotated instances.

These numbers continue to evolve as more objects are annotated every day.

Torralba et al. : LabelMe: Online Image Annotation and Applications

1470 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

mistakes or from testing of the annotation tool. There were

in total 11 382 unique IP addresses that interacted with the

labeling tool. During this time, 86 828 new objects were

added to the database. Notice that over 200 different IP
addresses provided over 100 object labels. This suggests that

a diverse set of users are making significant contributions

through the annotation tool. Primarily, contributors tended

to come from research universities, with occasional con-

tributions from random visitors to the annotation tool.

Another interesting question is the amount of effort

online labelers spend annotating objects. To answer this,

we analyze the length of time it takes a user to label an
object. We count the time starting from when the user

clicks the first control point until the user closes the

polygon and finishes entering the object name. Fig. 5(b)

shows the distribution of the amount of time (in seconds) to

create an object. Notice that most objects are labeled in

under 30 s, with a mode of 10 s. Considering only anno-

tations taking less than 100 s to produce (to avoid outlier

annotations), the database contains 458.4 h (19.1 days) of
annotation time across all users during this time period. We

wish to note that this analysis does not include the amount

of time spent looking at the image or editing other

annotations.

We further look at the difficulty of labeling particular

object classes. In Table 1, we show the average time (in

seconds) to label an object for a particular class, along with

the total man hours devoted to labeling that object. We
exclude annotation times exceeding 100 s from our

analysis. Windows, which often require only four control

points, are easiest to label. Region-based objects, such as

sky and ground, are more difficult.

III . THE SPACE OF LabelMe IMAGES

A number of recent papers have used large data sets of images

in conjunction with nonparametric methods for computer

Fig. 5. (a) Number of new annotations provided by individual users of the online annotation tool from July 7, 2008 through March 19, 2009

(sorted in descending order, plotted on log–log axes). In total, 11 382 unique IP addresses interacted with the labeling tool, with over 200 different

IP addresses providing over 100 object labels. Notice that we get a diverse set of users who make significant contributions through the annotation

tool. (b) Distribution of the length of time it takes to label an object (in seconds). Notice that most objects are labeled in 30 s or less, with the mode

being 10 s. Excluding those annotations taking more than 100 s, a total of 458.4 h have been spent creating new annotations.

Table 1 Average Time to Label a Given Object Class, Along With the

Total Number of Hours Spent Labeling the Class. Notice That Certain

Object Classes Are Easier to Label (e.g., Windows), Which Require Fewer

Control Points. Others Are Harder (e.g., Road, Sky), Which Are Regions

and Require More Control Points

Torralba et al. : LabelMe: Online Image Annotation and Applications

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1471

vision [9], [34]–[36], [70] and graphics applications [20],
[58], [61]. The main observation is that when large amounts

of images are available, image indexing techniques can be

used to retrieve images with similar object arrangements as

the query image. This observation suggests a nonparametric

approach for scene understanding. With a large enough

database, we can find some images in the database that are

close to a query image, such as similar scenes with similar

objects arranged in similar spatial configurations. If the
images in the retrieval set are partially labeled, then we can

transfer the knowledge of the labeling to the query image.

In Section II, we studied the number of different object

categories available in the LabelMe data set and the dis-

tribution of annotated examples for each category. In this

section, we are interested in using the database to study

how many different scenes there are in LabelMe, and how

they are organized. We will also look into how many images
need to be annotated.

A. Distribution of Scene Types
In cognitive psychology, studies on scene perception

suggests that the gist of a scene might be composed of the

scene category and a list of four or five objects. In [69], it

was shown that observers can recognize images at low

resolution. In the extreme case where images have just
32 � 32 pixels, observers are able to recognize the scene

category, together with four to five objects, with an accu-

racy of 80%. Our goal now is to study how many con-

figurations of four objects are present in the LabelMe

database. This is similar to studies in language that build

probabilistic models of groups of n words.

Fig. 7 shows the distribution of n-grams obtained as

the n words that describe the n largest objects in each
image. These statistics are derived from the analysis of

12 201 scenes containing a total of 180 391 annotated

objects. For each image, we sort all the objects according to

the percentage of the image covered by each polygon. We

only consider the n largest objects. The figure shows the

distribution of scenes (n-grams) for n ¼ 1; 2; 4; 8. For all

the tested values of n, the distribution appears to follow a

power law [57]. As n increases, the number of different
scene configurations increases and only a small percentage

of scenes seem to co-occur often. In the case of n ¼ 4,

Fig. 7(b) shows some of the most frequent 4-grams, along

with an example image for each 4-gram. There are more

than 100 4-grams that appear ten times or more in the

database. Therefore, one can expect that, as the database

increases in size, the most common scenes will have many

instances. The heavy tail of the distribution also points to
the fact that, independent of how large the database is,

there will always be a large number of scene configurations

for which we will have only a handful of training examples.

B. The Space of Images
In the previous section, we discretized the space of

scenes by defining a scene as being a collection of n ¼ 4

large objects and ignoring their spatial organization. Here,
we will consider a description of all the objects in the

image that will also incorporate spatial information.

We first define a distance between annotations that

captures our notion of semantic distance between two

images. Ideally, two images are semantically similar if their

segmentations and object labels are interchangeable across

the two images. Our definition of semantic distance

between two images is based on the histogram of object
labels in the two images [71]. First, we assign each pixel to

a single object category. Then, we create the histogram of

the number of pixels that belong to each category. In order

to account for spatial information, we divide the image

into N � N nonoverlapping windows and we build the

object histogram for each window. Then, to measure the

distance between two images, we use spatial pyramid

matching [17], [32] over object labels. This process is
illustrated in Fig. 8. Matching of object label histograms

results in a simple similarity measure that takes into

account all the objects present in the image (and not just

the four largest ones), in addition to their spatial organi-

zation. The spatial pyramid matching allows for the com-

parison of images such that two images that have the same

object labels in similar spatial locations are rated as closer

than two images with the same objects but in different
spatial locations. Furthermore, this is rated closer than two

images with different object classes.

Fig. 6 shows a visualization of 12 201 images that are

fully annotated from the LabelMe data set. The images are

organized according to the similarity defined above. As a

consequence, two nearby images in this mosaic are likely

to contain the same object categories in similar spatial

configurations. Each tile shows the segmentation of an
image, with each object class having a unique color.1

There are a number of methods that can be used to

obtain a 2-D visualization of the space of images from the

matrix of semantic similarities defined above. For the

visualization of Fig. 6, we used kernelized sorting [42].

The advantage of this technique is that it allows specifying

the form of the output space (in this case, a rectangular

grid). Kernelized sorting will try to find the best corre-
spondence between the images and the locations in the

rectangular grid, while trying to preserve the same neigh-

borhood structure.

Although there are some easily identifiable clusters in

the space, most of the images in the LabelMe data set are

organized across a continuous space in which transitions

across images appear to be smooth. Most of the images in

the LabelMe data set are taken by photographers standing
on the ground, which helps to reduce the variability across

images. However, it might also introduce biases not found

in other photo collections, such as Flickr. The clusters that

are visible in Fig. 6 correspond to regions of the image

1An interactive version of the tool is available at: http://people.
csail.mit.edu/torralba/research/LabelMe/labelmeMap/.

Torralba et al. : LabelMe: Online Image Annotation and Applications

1472 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

space that are not appropriately sampled in the LabelMe
data set (e.g., a collection of flower photographs, pictures of

specific monuments, or a collection of pictures of

silverware). However, there is a large portion of the space

that has no clearly defined boundaries. For instance, we can

start on a picture of a busy downtown center and continue

moving in the space by reducing the size of the buildings

and adding more sky until we get a highway scene.

Furthermore, we can reduce the size of the road until the

picture becomes a field. Finally, we can add mountains in
the background until the scene becomes a mountainous

landscape. This transformation can take place by traversing

the space of images, as shown in the bottom of Fig. 6.

C. Recognition by Scene Alignment
As illustrated in Fig. 6, some regions of the scene space

seem to be covered by a large number of examples. The

goal now is, given a new image, to extract a set of image

Fig. 6. The images are arranged according to semantic similarity between images (nearby images will contain similar objects in

similar spatial configurations). Each thumbnail shows the object segments of each image, with the objects consistently colored across the

database. Although there are some easily identifiable clusters in the space, most of the images are organized across a continuous space in which

transitions across images are smooth.

Fig. 7. (a) Distribution of n-grams in LabelMe. Each n-gram corresponds to the list of n largest objects in each scene.

(b) Examples of scenes and 4-grams.

Torralba et al. : LabelMe: Online Image Annotation and Applications

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1473

features to locate the region of the space that is the closest,
at the semantic level, to the input image [20], [70], [71].

In the examples used here, we use the GIST descriptor

[40] to estimate the similarity between two images. To

compute the GIST descriptor, the image is first decom-

posed by a bank of multiscale-oriented filters (tuned to

six orientations and four scales). Then, the output

magnitude of each filter is averaged over 16 nonoverlapping

windows arranged on a 4 � 4 spatial grid. The resulting
image representation is a 512-dimensional feature vector.

The distance between two images is computed as the
Euclidean distance between GIST descriptors.

Fig. 9 shows examples of eight input images and their

nearest neighbors in the data set using the GIST descrip-

tor. For each panel, we show the query image (red box),

the eight nearest neighbors, the annotations of the neigh-

bors, and the location of the 1000 closest images among

the 12 201 images that compose this test set, as shown in

Fig. 6. When searching for pictures of specific places, such
as a picture of Notre Dame, if the database contains many

Fig. 8. (a) Procedure to estimate the semantic distance between pairs of images. For each image, we compute the histogram of object labels in

different nonoverlapping image windows. Then, we define the similarity between two images as the intersection between the two object

histograms. (b) Examples of similar images with this metric.

Torralba et al. : LabelMe: Online Image Annotation and Applications

1474 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

exemplars of that place, it is possible to get very tight

matches. However, in general, we will work at the category
level. We want to find images corresponding to visually

similar places (i.e., containing similar objects roughly with

the same spatial configuration) but that do not necessarily

correspond to the same world location or even the same

city. As shown in Fig. 9, for several of the input images, the

images in the database that have close visual similarity (as

captured by the GIST descriptor) also fall within a localized

region of the map organized by semantic distance (Fig. 6).
This property provides the basis for several approaches

for recognition that use the retrieved images to make

proposals about possible object categories that can be pre-

sent in the input image [20], [34], [35], [50], [70], [71]. To

illustrate the power of large scale databases, we evaluate

the following simple algorithm: given an image and an

annotated database, search for the image in the database

that is closest to the input image (using GIST to measure
image similarity). Then, output the annotation of the near-

est neighbor as a labeling of the input image. As a perfor-

mance metric, we use the percentage of pixels that are

correctly labeled. To test the algorithm, we will use as input

the set of 12 201 images used in Fig. 9. For this algorithm,

we can also provide an upper bound for the recognition

rate. Since the input image is also annotated, we can search

for the image in the database that has the largest number of
pixels with the same label as the input. As our goal is to

predict the labels of all the pixels of the input image using a

single nearest neighbor, this measure will give us an upper

bound to the performance. Notice how the bound increases

proportionally to the size of the database.
In Fig. 10, we demonstrate how the performance of

nearest neighbors improves as we enlarge the data set.

We also show how errors are distributed in the map of

Fig. 6. In order to test the dependency of the database

size, we randomly sampled our database of 12 201 images

to create four image databases of different sizes: 12, 122,

1220, and 12 201. For testing, we exclude the query

image from the database to avoid overfitting. Despite the
simplicity of the nearest neighbor algorithm, we observe

performance increases proportional to the database size,

as shown in Fig. 10(a).

The performance of this algorithm depends on the

sampling density of the image space. Therefore, one can

expect that the performance will vary depending on the

regions of the space. In this study, we can use the orga-

nization of scenes from Fig. 6 to visualize the distribution
of errors. Fig. 10(b) shows how the performance is dis-

tributed in the map of scenes as we change the size of the

database. As we can see, the performance appears to

smoothly vary across different regions of the image space.

This suggests that different regions of the space are harder

to recognize and require higher density of image samples.

Moreover, the distribution of performance is very similar

between the algorithm using GIST descriptors and the
upper bound for each image.

The region with highest performance corresponds to a

region of the space that contains many pictures of specific

Fig. 9. Examples of input images and their nearest neighbors in the data set using the GIST descriptor [40]. For each panel: (left) mosaic showing

the query image (red box) and its eight nearest neighbors; (middle) labeled objects within each image; and (right) the LabelMe map showing

the location of the 1000 closest images among the 12 201 images that compose this test set.

Torralba et al. : LabelMe: Online Image Annotation and Applications

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1475

monuments under similar viewpoints. In such a case, it is

possible to find very close matches, with the annotations

between the input and retrieved images being almost

identical. The worst performance is found in the indoor

scenes region, in part because there are fewer than

2000 indoor scenes out of the 12 201 images, but also due

to the large variability of visual appearances for indoor

scenes. Lower performances on indoor scenes are also
found with other data sets [43].

Fig. 10(a) also gives a hint to an important question:

How many more images do we need to label? The figure

shows the upper bound of the extrapolated performance as

we increase the database size (here we assume that, by

increasing the database size, we do not introduce new

kinds of scenes). As shown in the graph, performance

reaches 90% for a database of 8� 106 images. If we had
8� 106 images, then, on average, for an image we can find

another image that has 90% of the pixels labeled with the

same object category. Although increasing LabelMe will

require a significant labeling effort, this target database

size is feasible.

IV. BEYOND 2-D IMAGES

In this section, we present two extensions of LabelMe. The

first one shows how it is possible to infer knowledge not
explicitly present in LabelMe annotations. It uses object

annotations across the LabelMe database to build a model

of 3-D scenes. With this extra information, we are able to

recover the 3-D layout of the scene and learn about other

spatial properties of scenes in 3-D from 2-D images. A

second extension of LabelMe explores video annotation.

We describe challenges encountered in video annotation

and propose an annotation tool to aid the creation of
ground truth video data.

A. From Annotations to 3-D
In the previous section, we described the annotation

tool and analyzed the content of the database. In the online

annotation tool, we ask users to only provide outlines and

names for the objects present in each picture. However,

there are many other different types of information that

could be requested. In this section, we will show that

object outlines and names from a large number of images

are sufficient to infer many other types of information,

such as object-part hierarchies or reasoning about occlu-

sions, despite not being explicitly provided by the user.

Furthermore, we will discuss how to recover a full 3-D

description of the scene, as shown in Fig. 11. Our system
can reconstruct the 3-D structure of the scene, as well as

estimate the real-world distances between the different

depicted objects. As an added benefit, the quality of the

reconstruction tends to improve as the user improves the

annotation of the image.

A database of images and their 3-D description would be

useful for various tasks in computer vision. For example,

the information can be used to learn about how objects live
in the world and to train systems to detect objects. Tech-

niques for aligning images [20], [26], [50] may also benefit

from such data. The database can be used to validate algo-

rithms that output 3-D. Furthermore, image content can be

queried based on absolute attributes (e.g., tall, wide, nar-

row). We demonstrate how using the user annotations we

have so far collected from the LabelMe system, we can

complement our database depicting different scene and
object classes with information about their underlying real-

world 3-D coordinates. Previous work has explored ways of

associating 3-D information to images. For example, there

are existing databases captured with range scanners or

stereo cameras [52], [53]. However, these databases tend to

be small and constrained to specific locations due to the

lack of widespread use of such apparatuses.

Instead of manually gathering data with specialized
equipment, other approaches have looked at harnessing

the vast amount of images available on the Internet. For

example, recent work has looked at learning directly the

dependency of image brightness on depth from photo-

graphs registered with range data [53] or the orientation of

major scene components, such as walls or ground surfaces,

from a variety of image features [22]–[24]. Since only low-

and midlevel visual cues are used, these techniques tend to
have limited accuracy across a large number of scenes.

Fig. 10. (a) Recognition performance as a function of data set size. (b) Distribution of the recognition performance in the different regions of the

image space defined in Fig. 6.

Torralba et al. : LabelMe: Online Image Annotation and Applications

1476 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

Other work has looked at using large collections of images
from the same location to produce 3-D reconstructions

[61]. While this line of research is promising, at present,

producing 3-D reconstructions is limited to a small number

of sites in the world. Finally, there are other recent

relevant methods to recover geometric information for

images [9], [19], [21], [33], [38], [46], [58], [67], [82].

An alternative approach is to ask humans to explicitly

label 3-D information [7], [26], [39]. However, this
information can be difficult and unintuitive to provide.

Instead, we develop a method that does not require from

the user any knowledge about geometry, as all of the 3-D

information is automatically inferred from the annota-

tions. For instance, the method will know that a road is a

horizontal surface and that a car is supported by the road.

All of this information is learned by analyzing all the other

labels already present in the database.
At first glance, it may seem impossible to recover the

absolute 3-D coordinates of an imaged scene simply from

object labels alone. However, the object tags and polygons

provided by online labelers contain much implicit

information about the 3-D layout of the scene. For

example, information about which objects tend to be

attached to each other or support one another can be

extracted by analyzing the overlap between object
boundaries across the entire database of annotations.

These object relationships are important for recovering

3-D information and, more generally, may be useful for a

generic scene understanding system.

Our reconstructions are approximations to the real 3-D
structure as we make a number of strong simplifying

assumptions about the object geometries. Here we sum-

marize all the information that is needed by our system in

order to provide a 3-D reconstruction of the scene. Our

reconstructions are based on the following components,

which are inspired from early work in line-drawing anal-

ysis [2], [3], [6], [27], [66].

• Object types. We simplify the 3-D recovery prob-
lem by considering three simple geometric models

for the objects that compose each scene.

– Ground objects: we assume that ground

objects are horizontal surfaces (e.g., road,

sidewalk, grass, sea).

– Standing objects: we assume that standing

objects are modeled as a set of piecewise-

connected planes oriented orthogonally to the
ground plane (e.g., person, car, boat, table).

– Attached objects: we assume that attached

objects are part-of other objects (e.g., hand,

window, road marking), with their 3-D posi-

tion completely determined by their parent

object.

• Relations between objects: in addition to the

object types described above, we also consider two
types of relationships between pairs of objects.

– Supported-by relationship: we assume that

standing objects in the scene are supported by

a ground object, with the relationship extracted

Fig. 11. We can recover 3-D information from the user annotations. We show outputs for two input images. Top-left: Input image.

Top-right: User annotations provided for the image. Middle-left: Recovered polygon and edge types. Polygons are either ground (green),

standing (red), or attached (yellow). Edges are contact (white), occluded black, or attached (gray). Middle-right: Recovered depth map in

real-world coordinates (a color key, in log scale, appears on the right). Bottom: A visualization of the scene from a different viewpoint.

Torralba et al. : LabelMe: Online Image Annotation and Applications

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1477

at the category level. For instance, we expect
that sidewalks support people, fire hydrants,

and parking meters.

– Part-of relationship: attached objects are part-of

other objects, with the relationship extracted

at the category level. For instance, heads are

attached to people, windows are attached to

buildings, and manhole covers are attached to

roads.
In our model, we assume that a scene consists of a

number of objects that stand on the ground. This assump-

tion holds true for many different imaged scenes (e.g.,

streets, natural landscapes, lakes, indoors). In addition, we

assume that the horizon line is parallel to the horizontal

axis of the camera (this is true for most normal pictures).

There are two steps for obtaining the 3-D information:

1) the learning stage, where the system learns from all the
annotated objects in the database the relationships that

hold between all the object classes (part-of and supported-

by) and 2) the reconstruction stage, where, given an

annotated image and all the learned relationships, the

system builds a 3-D model for the input image.

We start by describing the learning stage to recover the

part-of and supported-by relationships that hold between

object classes. Fig. 12(a) shows automatically recovered
part-of relationships across the database. To decide when

an object category is part-of another, we evaluate the

frequency of high relative overlap between polygons of the

two categories. For instance, as windows are part of
buildings, whenever windows and buildings co-occur in a

scene, it is quite likely that the polygon defining a window

will completely lie inside the polygon defining the build-

ing. On the other hand, street lamps are not part of

buildings, so one would expect that the polygons do not

systematically overlap.

In a similar manner, we can reason about the supported-

by relationships. Objects that are supported by another
tend to have the bottom part of its polygon live inside the

supporting object. For instance, we can make a list of all

the object categories that overlap with the bottom part of

the polygon defined by all the street lamps in the database.

If the object is a supported object, we will see that this list

is relatively short. Fig. 12(b) shows automatically recov-

ered supported-by relationships across the database.

Once the learning is done and we have collected all the
co-occurrence statistics between object category pairs, we

can use the discovered relationships to recover 3-D models

of new images. Given an annotated image, we will use the

polygons and object names, along with the discovered

relationships, to decide the object types (standing, ground,

attached) for all of the annotations in the image. For this,

we extract the cues for the supported-by and part-of rela-

tionships (polygon overlap and distance to ground objects)
and use the recovered co-occurrence statistics to infer the

object types. We show the inferred polygon types in Fig. 11,

where standing objects are colored red, ground objects are

Fig. 12. Automatically recovered spatial relationships between objects from the LabelMe data set. The left-hand side of each pair depicts a

graph of the spatial relationship holding between object classes. The right-hand side shows examples of the spatial relationship.

(a) Attachment relationships for car. (b) Support relationships for table. Notice that the spatial relationship may form a hierarchy.

Torralba et al. : LabelMe: Online Image Annotation and Applications

1478 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

green, and attached objects are yellow. Notice that the
recovered object types agree well with the objects present

in the scene.

In addition to knowing the support relationship

between different object categories, it is also important to

know which part of the object makes contact with the

ground. For example, the contact points with the ground

plane for standing objects will provide information about

the relative distance of the object to the camera. For this,
we automatically label polygon edges into three types:

contact, attached, and occlusion. We assume that attached

and ground objects have all of their edges labeled as

attached. Standing objects can have contact or occlusion

edges. We extract the following cues for each polygon edge:

length, orientation, and distance to a support object. These

cues are used to infer whether the edge is a contact or an

occlusion edge. A generative model is used to classify the
edge type, with the model parameters trained on a held-out

training set. Fig. 11 shows the edges labeled into the

different types, with white lines corresponding to contact

edges, black lines corresponding to occlusion edges, and

gray lines corresponding to attached edges. By recovering

the polygon and edge types, we can already popup the scene

by placing standing objects on the ground objects and

letting attached objects remain on the objects they are
attached to, as illustrated in Fig. 11.

We wish to also extract absolute 3-D coordinates.

Important for this is to 1) produce 3-D coordinates such

that objects keep consistent heights across the database and

2) enforce constraints on the image imposed by the camera

through perspective projection. More specifically, as in

[28], we learn the distribution of object heights across the

database and the camera parameters corresponding to each
image in the database. This is achieved in an iterative

fashion by first estimating the camera parameters given the

current guesses of the heights of the objects in the image.

Then, the object heights are updated using the estimated

camera parameters. The entire process is seeded by pro-

viding the mean and variance of the height of the ‘‘person’’

object class. For the camera, we assume that it is held level

with the ground, with the parameters being the horizon
line (the image location of where the ground plane vanishes

to infinity), camera height from the ground, and focal

length. Once we recover the camera parameters for an

image, it is straightforward to obtain the 3-D information of

the scene. See [28] and [48] for more details.

We show output depth maps of our system in Fig. 11.

The distance (in meters) is given by the color key, which is

plotted in log scale. In addition, we can interact with the
scene by taking measurements of the scene components.

In Fig. 13, we show the height and the width of a depicted

car. We also show the distance between two points in the

scene. Notice that the measured points appear to be

consistent with the perceived distances.

We measured the accuracy of our system output depth

maps on a data set that simultaneously utilized both

camera and laser range scanner apparatuses [53]. The data

set was gathered on the Stanford University (Stanford, CA)

campus and primarily depicts outdoor scenes. We provided
dense object labels for 62 images in the data set, with each

image having 256 � 192 pixel resolution. The system

output was then compared with the output of the laser range

scanner using mean per-pixel relative error (i.e., absolute

difference between the two depth maps normalized by the

output of the laser range scanner). Due to noise in the range

data, we only considered ground truth and system output

depths in the 5–70-m range. To overcome bias in the data, we
performed cross validation, with training sets consisting of

20 images and validation sets consisting of 42 images, and

found linear regressors that minimized the mean per-pixel

relative error over the training sets.

Our system has relative error of 0.29 � 0.02, with

40% � 2% of the pixels used in the evaluation. As a

baseline, we compared against the harmonic mean of the

depth maps corresponding to the training images. For
each pixel, the harmonic mean is computed as d ¼ N=
ð
PN

i¼1ð1=diÞÞ where di is the depth value at the corres-

ponding pixel in the ith image in the training set. The

harmonic mean minimizes the squared relative errorPN
i¼1ððdi � dÞ2=diÞ across the training set. The baseline

has relative error of 0.33 � 0.04. Overall, we obtained

less noisy outputs than the laser range scanner and were

able to produce visually plausible output depths beyond
the 5–70-m range. Furthermore, we were able to overcome

errors resulting from the range scanner that were caused

by object reflection (e.g., mirrors, shiny surfaces) and

transparency (windows, tree leaves).

Because our system uses only user annotations, the

quality of the output is heavily dependant on the quality of

the labels. For example, consider Fig. 14, which shows

outputs for different labelings of the same scene. If few
objects are labeled, the output is less reliable since there

are few constraints for estimating the camera parameters.

Fig. 13. Snapshot of the 3-D measuring tool. Once we compute the

3-D coordinates for a depicted scene, we can make measurements of

scene components. Here, we show the height and the width of the car,

which is 13.68 m away from the camera center. We can also compute

the distance between any two points in the scene, such as the

selected points on the building and the truck.

Torralba et al. : LabelMe: Online Image Annotation and Applications

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1479

As more objects are labeled, the estimates improve. If a

user enters incorrect object tags, then this may result in

poor outputs. Moreover, the estimated 3-D coordinates can

be greatly affected by the placement of the control points.
This can have a noticeable effect on distant objects since

they occupy fewer pixels in the image and the change in

depth increases as one moves closer to the horizon line in

the image.

Another output of our system is a set of instructions for

building a ‘‘do-it-yourself popup book,’’ shown in Fig. 15.

This is automatically generated and allows the user to cut

and glue the picture (with all the objects’ perspective cor-
rected) in order to build a physical model of their picture.

B. Video Annotation
In the last decade, annotated images have played an

important role in the advancement of various areas in

computer vision. Image data sets have evolved from
containing few to thousands of categories thanks to large

collaborative efforts. The concept of annotating an image

to generate ground truth is not new. However, the

computational power gained by outsourcing this task and

sharing data freely has aided the development of algo-

rithms that take advantage of large image data sets. Despite

these advancements and the large volumes of video data

generated everyday from video surveillance, consumer
camcorders, and mobile devices, video data sets are not as

advanced as static image data sets. Annotated video can be

useful in the development of algorithms for motion

estimation and object, event, and action recognition.

Unlike image annotation, video annotation is not as

simple. Challenges include the massive additional work-

load that video frames generate, the annotation ambiguity

in situations like occlusion and out-of-frame objects, and
multiple choices in annotation granularity, among others.

There has been prior work on collecting and annotating

videos. The KHT (Kungliga Tekniska högskolan, The Royal

Institute of Technology) database has been widely used as a

video benchmark, and depicts closeup views of a number

of human action classes performed at different viewpoints

[55]. A similar database was collected containing various

sports actions [10]. While these databases offer a rich
vocabulary of actions, the number of object and action

Fig. 14. As the user adds more annotations, the quality of the

reconstruction improves. (a) Input image. (b) 3-D model after the user

annotated the road and the building. (c) Model obtained after adding

the car to the list of annotated objects. (d) Reconstructed model

when the labels are incorrectly introduced so that the building is

labeled as a road and vice versa.

Fig. 15. Automatically generated instructions for a ‘‘do-it-yourself

popup book’’ that can be constructed using paper, glue, and scissors.

Torralba et al. : LabelMe: Online Image Annotation and Applications

1480 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

classes and examples is small compared to their static
image counterparts.

There also has been recent work to scale up video

databases to contain a larger number of examples. The

TRECVID [60] project contains many hours of television

programs and is a widely used benchmark in the

information retrieval community. This database provides

tags of scenes, objects, and actions, which are used for

training and validation of retrieval tasks. Another example
is the database in [31], and later extended in [30], which

was collected from Hollywood movies. This database

contains up to hundreds of examples per action class, with

some actions being quite subtle (e.g., drinking and

smoking). However, there is little annotation of objects

and their spatial extent and the distribution of the data is

troublesome due to copyright issues.

We created an open database of videos where users can
upload, annotate, and download content efficiently. In

creating this application, some desired features include

speed, responsiveness, and intuitiveness. It is also important

to handle system failures, such as those related to camera

tracking and interpolation, so as not to dramatically hinder

the user experience. The consideration of these features is

vital to the development of our system as they constrain the

computer vision techniques that can be feasibly used. With
these ideas in consideration, we created LabelMe video, an

extension of LabelMe, to annotate and share videos.

The object annotation feature in LabelMe video is
similar to that of static LabelMe. An object annotation

consists of a name, a Boolean field determining if the object

is moving, and a text field answering the question what is it
doing? (if anything). The spatial extent of an object is

described by a polygon at each frame in the video. To

annotate an object, the user is asked to outline the bound-

ary of the object at the selected frame. Initially, the newly

introduced polygon is propagated across all frames in the
video. The user can inspect the annotation throughout the

video and adjust the polygon at other frames. The appli-

cation relies on interpolation algorithms to propagate

the polygon edits in-between key frames. This process is

repeated until the user is satisfied with the annotation

throughout the video. Fig. 16(a) shows an example video

with annotated objects at multiple key frames.

Users can also annotate events where one or more nouns
interact with each other. To enter an event, the user clicks on

the add event button, which prompts a panel where the user

is asked for a sentence description of the event (e.g., the dog is
chewing a bone). The event annotation tool renders a button

for each token in the sentence, which the user can click on

and link with one or more polygons in the video. Finally, the

user is asked to specify the time when the described event

occurs using a time slider. Once the event is annotated, the
user can browse through objects and events to visualize the

annotation details. Fig. 16(b) illustrates this feature.

Fig. 16. (a) A snapshot of our video annotation tool exemplifying densely annotated objects and some selected key frames. Static objects are

annotated in the same way as in LabelMe and moving objects require some minimal user intervention (manually edited frames are denoted by the

red squares in the video track). (b) Events can also be annotated by entering free-form sentences and associating text tokens to object

annotations.

Torralba et al. : LabelMe: Online Image Annotation and Applications

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1481

Today, as video cameras are ubiquitous, we expect a
considerable portion of videos to be captured by handheld

recorders. Even under shake-correction modes, static

objects in the real world might appear as motion in video.

Camera motion can make annotation tedious as simple

cloning of polygon locations across time might produce

misaligned polygons even for static objects depicted in the

scene. Our system consists of estimating camera motion as

a homographic transformation between each pair of
consecutive frames during an offline preprocessing stage.

The camera motion parameters are encoded, saved in our

servers, and downloaded by the web client when the user

loads a video to annotate. When the user finishes outlining

an object, the web client software propagates the location

of the polygon across the video by taking into account the

camera parameters. Therefore, if the object is static, the

annotation will move together with the camera and not
require further correction from the user. In this setup,

even with camera tracking failures, we observe that the

user can correct the annotation of the polygon and

continue annotating without generating uncorrectable

artifacts in the video or in the final annotation.

We have begun by contributing an initial database of

over 1500 videos and annotated over 1903 objects, spanning

over 238 object and 70 action classes. Fig. 16 shows a
screenshot of our labeling tool and a sample annotation for a

video. With an evolved data set, we expect to help develop

new algorithms for video understanding similar to the

contribution of LabelMe in the static image domain.

V. CONCLUSION

In this work, we developed a web-based annotation tool
that allows the labeling of objects and their location in

images. Through the tool, we have collected a large

annotated database of images spanning many different
scene and object classes. We have observed constant

growth of the database over time and, recently, significant

contributions from a variety of online users. The database

is intended as a resource for the computer vision and

computer graphics communities, with the images and

annotations immediately available for download. In

addition, search tools have been developed to interact

with the database online.
In creating this database, we also intended that its use

goes well beyond simply as a benchmark for computer

vision algorithms. In this work, we presented recent

results on directions towards this goal. Namely, we

investigated the nature of the space of the images in the

database and looked at how to recover additional

information not directly provided by the online users.

We demonstrated how to recover the 3-D description of an
image depicting a variety of scenes. Moreover, we showed

that the output quality is similar to the output produced by

a laser range scanner. We also analyzed the space of the

images and observed properties of the distribution of the

objects (e.g., Zipf’s and power laws for the distribution of

object labels present and scene n-grams, respectively).

In addition, there has been other recent work in

computer vision and computer graphics that has utilized
the database in creative ways. A recent trend has been to

find, given a query image, other images with objects in a

similar spatial configuration and to transfer the informa-

tion associated with the retrieved images onto the query

image. This has been used for intelligent insertion of

objects into a scene [28] or object recognition in scenes

[34], [50].

We believe that further creative uses of this database,
along with the extension into video, offer promising

directions for computer vision and computer graphics. h

REF ERENCE S

[1] Y. Abramson and Y. Freund, ‘‘Active learning
for visual object recognition,’’ Univ.
California, San Diego, CA, Tech. Rep., 2006.

[2] D. Ballard and C. Brown, Computer Vision.
Englewood Cliffs, NJ: Prentice-Hall, 1982.

[3] H. Barrow and J. Tenenbaum, ‘‘Recovering
intrinsic scene characteristics from images,’’
in Computer Vision Systems. New York:
Academic, 1978, pp. 3–26.

[4] E. Bart and S. Ullman, ‘‘Cross-generalization:
Learning novel classes from a single example
by feature replacement,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2005,
pp. 672–679.

[5] S. Bileschi, (2006). ‘‘CBCL streetscenes,’’
Tech. Rep. MIT Cntr. Biol. Comput. Learn.
(CBCL). [Online]. Available: http://cbcl.mit.
edu/software-datasets

[6] M. Clowes, ‘‘On seeing things,’’ Artif. Intell. J.,
vol. 2, no. 1, pp. 79–116, 1971.

[7] A. Criminisi, I. Reid, and A. Zisserman,
‘‘Single view metrology,’’ Int. J. Comput. Vis.,
vol. 40, no. 2, pp. 123–148, 2000.

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li,
and L. Fei-Fei, ‘‘ImageNet: A large-scale

hierarchical image database,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2009,
pp. 248–255.

[9] S. K. Divvala, A. A. Efros, and M. Hebert,
‘‘Can similar scenes help surface layout
estimation?’’ Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2008,
DOI: 10.1109/CVPRW.2008.4562951.

[10] A. Efros, A. Berg, G. Mori, and J. Malik,
‘‘Recognizing action at a distance,’’ in Proc.
IEEE Int. Conf. Comput. Vis., Nice, France,
2003, pp. 726–733.

[11] M. Everingham, A. Zisserman, C. Williams,
L. V. Gool, M. Allan, C. Bishop, O. Chapelle,
N. Dalal, T. Deselaers, G. Dorko, S. Duffner,
J. Eichhorn, J. Farquhar, M. Fritz, C. Garcia,
T. Griffiths, F. Jurie, D. Keysers, M. Koskela,
J. Laaksonen, D. Larlus, B. Leibe, H. Meng,
H. Ney, B. Schiele, C. Schmid, E. Seemann,
J. Shawe-Taylor, A. Storkey, S. Szedmak,
B. Triggs, I. Ulusoy, V. Viitaniemi, and
J. Zhang, ‘‘The 2005 pascal visual object
classes challenge,’’ in First PASCAL Challenges
Workshop. New York: Springer-Verlag,
2005.

[12] A. Farhadi, I. Endres, D. Hoiem, and
D. Forsyth, ‘‘Describing objects by their

attributes,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2009, pp. 1778–1785.

[13] L. Fei-Fei, R. Fergus, and P. Perona,
‘‘A Bayesian approach to unsupervised one-shot
learning of object categories,’’ in IEEE Int. Conf.
Comput. Vis., 2003, vol. 2, pp. 1134–1141.

[14] L. Fei-Fei, R. Fergus, and P. Perona, ‘‘Learning
generative visual models from few training
examples: An incremental Bayesian approach
tested on 101 object categories,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2004,
p. 178.

[15] R. Fergus, P. Perona, and A. Zisserman,
‘‘Object class recognition by unsupervised
scale-invariant learning,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2003, vol. 2,
pp. II-264–II-271.

[16] K. Grauman and T. Darrell, ‘‘Unsupervised
learning of categories from sets of partially
matching image features,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2006,
pp. 19–25.

[17] K. Grauman and T. Darrell, ‘‘Pyramid match
hashing: Sub-linear time indexing over
partial correspondences,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2007,
DOI: 10.1109/CVPR.2007.383225.

Torralba et al. : LabelMe: Online Image Annotation and Applications

1482 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

[18] G. Griffin, A. Holub, and P. Perona,
‘‘The Caltech-256,’’ California Inst. Technol.,
Pasadena, CA, Tech. Rep., 2006.

[19] A. Gupta and L. S. Davis, ‘‘Beyond nouns:
Exploiting prepositions and comparative
adjectives for learning visual classifiers,’’ in
Proc. Eur. Conf. Comput. Vis., 2008, pp. 16–29.

[20] J. Hays and A. A. Efros, ‘‘Scene completion
using millions of photographs,’’ ACM Trans.
Graphics, vol. 26, pp. 87–94, 2007.

[21] J. Hays and A. A. Efros, ‘‘IM2GPS: Estimating
geographic information from a single
image,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2008,
DOI: 10.1109/CVPR.2008.4587784.

[22] D. Hoiem, A. Efros, and M. Hebert,
‘‘Automatic photo pop-up,’’ in Proc. Annu.
Conf. Comput. Graph. Interactive Tech., 2005,
pp. 577–584.

[23] D. Hoiem, A. Efros, and M. Hebert,
‘‘Geometric context from a single image,’’ in
Proc. IEEE Int. Conf. Comput. Vis., 2005, vol. 1,
pp. 654–661.

[24] D. Hoiem, A. Stein, A. Efros, and M. Hebert,
‘‘Recovering occlusion boundaries
from a single image,’’ in Proc. IEEE Int.
Conf. Comput. Vis., 2007,
DOI: 10.1109/ICCV.2007.4408985.

[25] B. Horn, ‘‘The Image Dissector Eyes,’’
Massachusetts Inst. Technol., Cambridge,
MA, Tech. Rep., 1971, Project MAC,
Vision Flash 16.

[26] Y. Horry, K.-I. Anjyo, and K. Arai, ‘‘Tour into
the picture: Using a spidery mesh interface to
make animation from a single image,’’ in
Proc. Annu. Conf. Comput. Graph. Interactive
Tech., 1997, pp. 225–232.

[27] D. Huffman, ‘‘Realizable configurations of
lines in pictures of polyhedra,’’ Mach. Intell.,
vol. 8, pp. 493–509, 1977.

[28] J. F. Lalonde, D. Hoiem, A. Efros, J. Winn,
C. Rother, and A. Criminisi, ‘‘Photo clip art,’’
in Proc. Annu. Conf. Comput. Graph. Interactive
Tech., 2007, article 3.

[29] C. Lampert, H. Nickisch, and S. Harmeling,
‘‘Learning to detect unseen object classes
by between-class attribute transfer,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2009, pp. 951–958.

[30] I. Laptev, M. Marszalek, C. Schmid, and
B. Rozenfeld, ‘‘Learning realistic human
actions from movies,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2008,
DOI: 10.1109/CVPR.2008.4587756.

[31] I. Laptev and P. Perez, ‘‘Retrieving actions in
movies,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
2007, DOI: 10.1109/ICCV.2007.4409105.

[32] S. Lazebnik, C. Schmid, and J. Ponce,
‘‘Beyond bags of features: Spatial pyramid
matching for recognizing natural scene
categories,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2006, pp. 2169–2178.

[33] B. Leibe, N. Cornelis, K. Cornelis, and
L. V. Gool, ‘‘Dynamic 3D scene analysis from a
moving vehicle,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2007,
DOI: 10.1109/CVPR.2007.383146.

[34] C. Liu, J. Yuen, and A. Torralba,
‘‘Nonparametric scene parsing: Label transfer
via dense scene alignment,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2009,
pp. 1972–1979.

[35] C. Liu, J. Yuen, A. Torralba, J. Sivic, and
W. T. Freeman, ‘‘Sift flow: Dense
correspondence across different scenes,’’ in
Proc. Eur. Conf. Comput. Vis., 2008, pp. 28–42.

[36] T. Malisiewicz and A. A. Efros, ‘‘Recognition
by association via learning per-exemplar
distances,’’ in Proc. IEEE Conf. Comput.

Vis. Pattern Recognit., 2008,
DOI: 10.1109/CVPR.2008.4587462.

[37] D. Marr, ‘‘Early processing of visual
information,’’ Philosoph. Trans. R. Soc. Lond.,
vol. B-275, pp. 483–524, 1976.

[38] V. Nedovic, A. Smeulders, A. Redert, and
J.-M. Geusebroek, ‘‘Depth information
by stage classification,’’ in Proc. IEEE
Int. Conf. Comput. Vis., 2007,
DOI: 10.1109/ICCV.2007.4409056.

[39] B. M. Oh, M. Chen, J. Dorsey, and F. Durand,
‘‘Image-based modeling and photo editing,’’ in
Proc. Annu. Conf. Comput. Graph. Interactive
Tech., 2001, pp. 1–8.

[40] A. Oliva and A. Torralba, ‘‘Modeling the shape
of the scene: A holistic representation of the
spatial envelope,’’ Int. J. Comput. Vis., vol. 42,
no. 3, pp. 145–175, 2001.

[41] J. Ponce, T. L. Berg, M. Everingham,
D. A. Forsyth, M. Hebert, S. Lazebnik,
M. Marszalek, C. Schmid, B. C. Russell,
A. Torralba, C. K. I. Williams, J. Zhang, and
A. Zisserman, Dataset Issues in Object
Recognition. New York: Springer-Verlag,
2006.

[42] N. Quadrianto, L. Song, and A. J. Smola,
‘‘Kernelized sorting Advances in Neural
Information Processing Systems. Cambridge,
MA: MIT Press, 2008.

[43] A. Quattoni and A. Torralba, ‘‘Recognizing
indoor scenes,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2009, pp. 413–420.

[44] A. Quattoni, M. Collins, and T. J. Darrell,
‘‘Transfer learning for image classification
with sparse prototype representations,’’ in
Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2008, DOI: 10.1109/CVPR.2008.4587637.

[45] R. Raina, A. Battle, H. Lee, B. Packer, and
A. Y. Ng, ‘‘Self-taught learning: Transfer
learning from unlabeled data,’’ in Proc. 24th
Int. Conf. Mach. Learn., New York, 2007,
pp. 759–766, ACM.

[46] X. Ren, C. C. Fowlkes, and J. Malik,
‘‘Figure/ground assignment in natural
images,’’ in Proc. Eur. Conf. Comput. Vis.,
2006, pp. 614–627.

[47] H. A. Rowley, S. Baluja, and T. Kanade,
‘‘Human face detection in visual scenes,’’ in
Advances in Neural Information Processing
Systems, vol. 8. Cambridge, MA: MIT Press,
1995.

[48] B. Russell and A. Torralba, ‘‘Building a
database of 3D scenes from user annotations,’’
in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2009, pp. 2711–2718.

[49] B. C. Russell, A. A. Efros, J. Sivic,
W. T. Freeman, and A. Zisserman, ‘‘Using
multiple segmentations to discover objects
and their extent in image collections,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit.,
2006, pp. 1605–1614.

[50] B. C. Russell, A. Torralba, C. Liu, R. Fergus,
and W. T. Freeman, ‘‘Object recognition
by scene alignment,’’ in Advances in Neural
Information Processing Systems. Cambridge,
MA: MIT Press, 2007.

[51] B. C. Russell, A. Torralba, K. P. Murphy, and
W. T. Freeman, ‘‘LabelMe: A database and
web-based tool for image annotation,’’ Int. J.
Comput. Vis., vol. 77, no. 1–3, pp. 157–173,
2008.

[52] A. Saxena, M. Sun, and A. Ng, ‘‘Learning
3-D scene structure from a single still image,’’
in Proc. Int. Conf. Comput. Vis., 2007,
DOI: 10.1109/ICCV.2007.4408828.

[53] A. Saxenaa, S. H. Chung, and A. Y. Ng,
‘‘Learning depth from single monocular
images,’’ in Advances in Neural Information

Processing Systems, vol. 18. Cambridge,
MA: MIT Press, 2005.

[54] H. Schneiderman and T. Kanade, ‘‘A statistical
model for 3D object detection applied to faces
and cars,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2000, pp. 746–751.

[55] C. Schuldt, I. Laptev, and B. Caputo,
‘‘Recognizing human actions: A local SVM
approach,’’ in Proc. Int. Conf. Pattern Recognit.,
2004, pp. 32–36.

[56] F. P. S. Service, ‘‘Flicrk’’. [Online]. Available:
http://www.flickr.com.

[57] H. Simon, ‘‘On a class of skew distribution
functions,’’ Biometrika, vol. 42, pp. 425–440,
1955.

[58] J. Sivic, B. Kaneva, A. Torralba, S. Avidan, and
W. T. Freeman, ‘‘Creating and exploring a
large photorealistic virtual space,’’ in Proc.
Comput. Vis. Pattern Recognit. Workshop, 2008,
DOI: 10.1109/CVPRW.2008.4562950.

[59] J. Sivic, B. C. Russell, A. A. Efros,
A. Zisserman, and W. T. Freeman,
‘‘Discovering objects and their location in
images,’’ in Proc. IEEE Int. Conf. Comput. Vis.,
2005, vol. 1, pp. 370–377.

[60] A. F. Smeaton, P. Over, and W. Kraaij,
‘‘Evaluation campaigns and TRECVid,’’ in
Proc. 8th ACM Int. Workshop Multimedia Inf.
Retrieval, 2006, pp. 321–330.

[61] N. Snavely, S. M. Seitz, and R. Szeliski,
‘‘Photo tourism: Exploring photo collections
in 3D,’’ ACM Trans. Graphics, vol. 25, no. 3,
pp. 137–154, 2006.

[62] A. Sorokin and D. Forsyth, ‘‘Utility data
annotation with amazon mechanical turk,’’
in Proc. 1st IEEE Workshop Comput. Vis.
Pattern Recognit., 2008,
DOI: 10.1109/CVPRW.2008.4562953.

[63] M. Spain and P. Perona, ‘‘Measuring and
predicting importance of objects in our visual
world,’’ California Inst. Technol., Pasadena,
CA, Tech. Rep., 2007.

[64] D. G. Stork, ‘‘The open mind initiative,’’
IEEE Intell. Syst. Appl., vol. 14, no. 3,
pp. 19–20, May/Jun. 1999.

[65] E. Sudderth, A. Torralba, W. T. Freeman, and
W. Willsky, ‘‘Learning hierarchical models
of scenes, objects, and parts,’’ in Proc. IEEE
Int. Conf. Comput. Vis., 2005, vol. 2,
pp. 1331–1338.

[66] K. Sugihara, ‘‘An algebraic approach to the
shape-from-image-problem,’’ Artif. Intell. J.,
vol. 23, pp. 59–95, 1984.

[67] A. Thomas, V. Ferrari, B. Leibe, T. Tuytelaars,
and L. V. Gool, ‘‘Depth-from-recognition:
Inferring meta-data by cognitive feedback,’’ in
Proc. IEEE 11th Int. Conf. Comput. Vis., 2007,
DOI: 10.1109/ICCV.2007.4408831.

[68] S. Todorovic and N. Ahuja, ‘‘Extracting
subimages of an unknown category from a set
of images,’’ in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2006, pp. 927–934.

[69] A. Torralba, ‘‘How many pixels make an
image?’’ Visual Neurosci., vol. 26,
pp. 123–131, 2009.

[70] A. Torralba, R. Fergus, and W. T. Freeman,
‘‘80 million tiny images: A large database
for non-parametric object and scene
recognition,’’ IEEE Pattern Aanal. Mach. Intell.,
vol. 30, no. 11, pp. 1958–1970, Nov. 2008.

[71] A. Torralba, R. Fergus, and Y. Weiss, ‘‘Small
codes and large image databases for
recognition,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2008,
DOI: 10.1109/CVPR.2008.4587633.

[72] A. Torralba, K. P. Murphy, and W. T. Freeman,
‘‘Sharing visual features for multiclass and
multiview object detection,’’ IEEE Trans.

Torralba et al. : LabelMe: Online Image Annotation and Applications

Vol. 98, No. 8, August 2010 | Proceedings of the IEEE 1483

Pattern Anal. Mach. Intell., vol. 29, no. 5,
pp. 854–869, May 2007.

[73] A. Torralba and P. Sinha, ‘‘Detecting faces in
impoverished images,’’ Massachusetts Inst.
Technol. (MIT) AI Lab, Cambridge, MA,
Tech. Rep. 028, 2001.

[74] M. Turk and A. Pentland, ‘‘Eigenfaces for
recognition,’’ J. Cogn. Neurosci., vol. 3, no. 1,
pp. 71–86, 1991.

[75] T. Vetter, M. Jones, and T. Poggio,
‘‘A bootstrapping algorithm for learning linear
models of object classes,’’ in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 1997,
pp. 40–46.

[76] S. Vijayanarasimhan and K. Grauman,
‘‘Multi-level active prediction of useful image
annotations for recognition,’’ in Advances in

Neural Information Processing Systems.
Cambridge, MA: MIT Press, 2008.

[77] L. von Ahn and L. Dabbish, ‘‘Labeling
images with a computer game,’’ in Proc.
SIGCHI Conf. Human Factors Comput. Syst.,
2004, pp. 319–326.

[78] L. von Ahn, R. Liu, and M. Blum,
‘‘Peekaboom: A game for locating objects in
images,’’ in Proc. SIGCHI Conf. Human Factors
Comput. Syst., 2006, pp. 55–64.

[79] M. Weber, M. Welling, and P. Perona,
‘‘Towards automatic discovery of object
categories,’’ in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2000, pp. 101–109.

[80] J. Winn and N. Jojic, ‘‘Locus: Learning
object classes with unsupervised

segmentation,’’ in Proc. IEEE Intl. Conf. Comput.
Vis., 2005, vol. 1, pp. 756–763.

[81] Z. Yao, X. Yang, and S. Zhu, ‘‘Introduction to a
large scale general purpose groundtruth
database: Methodology, annotation tools, and
benchmarks,’’ in Proc. 6th Int. Conf. Energy
Minimization Methods Comput. Vis. Pattern
Recognit., Ezhou, China, 2007, pp. 169–183.

[82] L. Zhang, G. Dugas-Phocion, J.-S. Samson,
and S. M. Seitz, ‘‘Single view modeling of
free-form scenes,’’ in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2001,
vol. 1, pp. I-990–I-997.

[83] G. K. Zipf, The Psychobiology of Language.
Orlando, FL: Houghton Mifflin, 1935.

ABOUT THE AUT HORS

Antonio Torralba received the degree in tele-

communications engineering from Telecom BCN,

Spain, in 1994 and the Ph.D. degree in signal,

image, and speech processing from the Institut

National Polytechnique de Grenoble, Grenoble,

France, in 2000.

He is an Associate Professor of Electrical

Engineering and Computer Science at the Com-

puter Science and Artificial Intelligence Laborato-

ry (CSAIL), Massachusetts Institute of Technology

(MIT), Cambridge. From 2000 to 2005, he spent postdoctoral training at

the Brain and Cognitive Science Department and the Computer Science

and Artificial Intelligence Laboratory, MIT.

Dr. Torralba is an Associate Editor of the IEEE TRANSACTIONS ON PATTERN

ANALYSIS AND MACHINE INTELLIGENCE, and of the International Journal in

Computer Vision. He received the 2008 National Science Foundation

(NSF) Career award, the best student paper award at the IEEE Conference

on Computer Vision and Pattern Recognition (CVPR) in 2009, and the

2010 J. K. Aggarwal Prize from the International Association for Pattern

Recognition (IAPR).

Bryan C. Russell received the B.A. degree in

computer science from Dartmouth College,

Hanover, NH, in 2001 and the Ph.D. degree in

electrical engineering and computer science from

the Computer Science and Artificial Intelligence

Laboratory (CSAIL), Massachusetts Institute of

Technology (MIT), Cambridge, in 2007.

Since 2008, he has been a Postdoctoral Fellow

in the INRIA Willow team at the Ecole Normale

Superieure, Paris, France. His primary interests

are in object recognition and scene understanding.

Jenny Yuen received the B.S. degree in computer

engineering from the University of Washington,

Seattle, in 2006 and the M.S. degree in computer

science from the Massachusetts Institute of Tech-

nology (MIT), Cambridge, in 2008, where she is

currently working towards the Ph.D. degree in

computer science.

She was awarded a National Defense Science

and Engineering fellowship as well as a National

Science Foundation Fellowship in 2007. She

received the best student paper award at IEEE Conference on Computer

Vision and Pattern Recognition (CVPR) in 2009.

Torralba et al. : LabelMe: Online Image Annotation and Applications

1484 Proceedings of the IEEE | Vol. 98, No. 8, August 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues false
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

