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Accidental pinhole and pinspeck cameras
Revealing the scene outside the picture
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Abstract We identify and study two types of “accidental”
images that can be formed in scenes. The first is an acci-
dental pinhole camera image. The second class of acciden-
tal images are “inverse” pinhole camera images, formed by
subtracting an image with a small occluder present from a
reference image without the occluder. Both types of acci-
dental cameras happen in a variety of different situations.
For example, an indoor scene illuminated by natural light, a
street with a person walking under the shadow of a building,
etc. The images produced by accidental cameras are often
mistaken for shadows or interreflections. However, acciden-
tal images can reveal information about the scene outside
the image, the lighting conditions, or the aperture by which
light enters the scene.

Keywords Accidental cameras· pinhole· anti pinhole

1 Introduction

There are many ways in which pictures are formed around
us. The most efficient mechanisms are to use lenses or nar-
row apertures to focus light into a picture of what is in front.
A set of occluders (to form a pinhole camera) or a mirror
surface (to capture only a subset of the reflected rays) let
us see an image as we view a surface. Researchers in com-
puter vision have explored numerous ways to form images,
including novel lenses, mirrors, coded apertures, and light
sources (e.g. Adelson and Wang (1992), Baker and Nayar
(1999), Levin et al (2007), Nayar et al (2006)). The novel
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Fig. 1 What are the dark regions on the white wall? Are they shadows?
See Fig. 2 to get the answer.

cameras are, by necessity, carefully designed to control the
light transport such that images can be viewed from the data
recorded by the sensors. For those cases, an image is formed
by intentionally building a particular arrangement of sur-
faces that will result in a camera. However, similar arrange-
ments appear naturally by accidental arrangements of sur-
faces in many places. Often the observer is not aware of the
faint images produced by those accidental cameras.

Fig. 1 shows a picture of a hotel room somewhere in
Spain. There would be nothing special in this picture if it
wasn’t for the pattern of darkness and light on the wall. At
first, one could mis-interpret some of the dark patterns on
the wall of the bedroom as shadows. But after close inspec-
tion, it is hard to understand which objects could be casting
those shadows on the wall. Understanding the origin of those
shadows requires looking at the full environment surround-
ing that wall. Fig. 2.a shows a montage of the full scene.
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a)

b) c) d) e)

Fig. 2 An accidental pinhole camera: light enters a room via an openwindow. The window restricts the light rays that can enter the room, just as a
pinhole camera does, creating a faint picture on the wall of the scene outside the room. a) Montage of the full scene of the hotel room and the patio
outside, b) picture of the wall when the window is full open, c) picture of the wall when the window is turned into a tiny pinhole. d) Upside-down
picture, e) True view outside the window.

All the light inside the room enters via an open window fac-
ing the wall. Outside the room there is a patio getting direct
sunlight. As there are no objects blocking the window and
producing those shadows we will have to look for a differ-
ent explanation for the patterns appearing on the wall. What
is happening here is that the window of the room is acting
as a pinhole and the entire room has become anaccidental
pinhole camera projecting an image onto the wall. As the
window is large, the projected image is a blurry picture of
the outside. One way to confirm our hypothesis and to reveal
the origin of light patterns that appear in the room is to block
the window to only allow light to enter via a narrow aper-
ture, thus transforming the room into a camera obscura. Af-
ter blocking the window, the projected image appears sharp
as shown in Fig. 2.c. Now we can see that the light patterns
shown on Fig. 1 were not shadows but a very blurry upside-
down image of the scene outside the room (Fig. 2.e).

Perceiving as images the light projected by a pinhole
into a wall with an arbitrary geometry might not be easy, es-
pecially when the image is created by an accidental camera.
This, together with blurring from the large window aperture,
leads to most such accidental images being interpreted as

shadows. In this paper, we point out that in scenes,acciden-
tal images can form, and can be revealed within still images
or extracted from a video sequence using simple processing,
corresponding to accidental pinhole and “inverse” pinhole
camera images, respectively. These images are typically of
poorer quality than images formed by intentional cameras,
but they are present in many scenes illuminated by indirect
light and often occur without us noticing them.

Accidental cameras can have applications in image foren-
sics as they can be used to reveal other parts of the scene
not directly shown in a picture or video. Accidental images
can be used to better understand the patters of light seen on
a normal scene that many times are wrongly identified as
shadows. In the literature there are examples of accidental
cameras being used to extract information not directly avail-
able in the original picture. For instance, the scene might
also contain reflective surfaces (e.g., the faucet or a mirror)
which might reveal a distorted image of what is outside of
the picture frame. In Nishino and Nayar (2006) the authors
show an example ofaccidental mirrors. They show how to
extract an image of what is on the other side of the camera
by analyzing the reflected image on the eye of the people
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a) b)

c) d)

Fig. 3 Relaxing the pinhole camera design. a) Pinhole camera from aclass project (the small thumbnail shows a picture taken with this camera). b)
Relaxing the design of the pinhole camera by removing the walls of the camera. c) Turning the room into a camera obscura using whatever objects
were around to reduce the opening. d) Accidental creation ofa pinhole. The pinhole is formed by the right arm against the body, an upside-down,
faint and blurry picture of the window can be seen projected on the wall.

present in the picture. A Bayesian analysis of diffuse reflec-
tions over many different times has been used for imaging
in astronomy applications (Hasinoff et al (2011)).

In this paper we identify and study two types of acciden-
tal cameras (pinholes and antipinholes) that can be formed in
scenes, extending the work described in Torralba and Free-
man (2012). In section 2 we review the principles behind the
pinhole camera. We also describe situations in which acci-
dental pinhole cameras arise and how the accidental images
can be extracted from pictures. In section 3 we discuss the
anti-pinhole cameras and we show how shadows can be used
as accidental anti-pinhole cameras revealing the scene out-

side the picture. In section 4 we discuss applications and
show examples of accidental cameras.

2 Accidental pinhole cameras

The goal of this section is to illustrate a number of situa-
tions in which accidental pinhole cameras are formed and
to educate the eye of the reader to see the accidental im-
ages that one might encounter in daily scenes around us. We
show how we can use Retinex (Land and McCann (1971)) to
extract the accidental images formed by accidental pinhole
cameras.
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a) b)

Fig. 4 a) shows a picture of the floor taken under the shadow of a
tree. The pinholes created by the leaves project different copies of the
sun on the floor. b) shows a tree inside a corridor near a windowpro-
duces copies of the scene outside the window. However in thiscase
they are too faint and blurry to be clearly noticed by a personwalking
by. Fig. 10 shows the result of processing this image to increase the
contrast.

2.1 Pinhole camera

In order to build a good pinhole camera we need to take
care of several details. Fig. 3.a shows a pinhole camera built
for a class exercise. In this box there are two openings: one
large opening (clearly visible in the picture) where we can
insert a digital camera and a small opening near the center
that will be the one letting light inside the box. The digital
camera will be used to take a long exposure picture of the
image projected on the white paper. Light will enter via a
small hole. The smaller the hole, the sharper the picture will
be. The inside of the camera has to be black to avoid inter-
reflections. The distance between the hole and the back of
the box (focal length) and the size of the white paper will
determine the angle of view of the camera. If the box is very
deep, then the picture will correspond to only a narrow an-
gle.

It is important to follow all those indications in order to
get good quality pictures. However, if one is willing to lose
image quality, it is possible to significantly relax the design
constraints and still get reasonable images. This is illustrated
in Fig. 3. In Fig. 3.b the pinhole camera has been replaced
by two pieces of paper, one paper is white and it will be
used to form an image and the other one has a hole in the
middle. Now light arrives to the image plane from multiple
directions as there is no box to block all the light rays that
do not come from the pinhole. However, still an image gets
formed and has enough contrast to be visible by the naked
eye. Despite the low quality of the image, this setting cre-
ates a compelling effect as one can stand nearby and see
the image projected. Fig. 3.c shows how the room is turned

a) b)

Fig. 5 In this picture, a small cabin in the wall contains a hole pointing
downwards. a) The hole acts as a pinhole projecting a green patch on
the ceiling. b) view outside the hole. This hole was used as a toilet by
the guard of this jail of the XVI century in Pedraza, Spain.

into a camera obscura without taking too much care on how
the window is blocked to produce a small opening. In this
case the window is partially closed and blocked with a pil-
low and some cushions. Despite that several openings are
still present, a picture of the buildings outside the room gets
projected on the wall. In Fig. 3.d we see a more extreme sit-
uation in which now the pieces of paper have been replaced
by a moreaccidental set of surfaces. In this case, a person
stands in front of a wall. A small opening between the arms
and body creates a pinhole and projects a faint image on the
wall. The pinhole is not completely circular, but still creates
an image.

The goal of these visual experiments is to help the viewer
to get familiar with the notion that pinhole cameras can be
substantially simplified and still produce reasonable images.
Therefore, one can expect that these more relaxed camera
designs might happen naturally in many scenes.

2.2 Accidental pinhole cameras

Accidental pinhole cameras happen everywhere by the ac-
cidental arrangement of surfaces in the world. The images
formed are generally too faint and blurry to be noticed, or
they are misinterpreted as shadows or inter-reflections. Let’s
start by showing some examples of accidental pinhole cam-
eras.

One of the most common situations that we often en-
counter is the pinhole cameras formed by the spacing be-
tween the leaves of a tree (e.g., Minnaert (1954)). This is
illustrated in Fig. 4.a showing a picture of the floor taken the
shadow of a tree. The tiny holes between the leaves of a tree
create a multitude of pinholes. The pinholes created by the
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a)

b)

c)

d)

Fig. 6 The top row (a) shows two different rooms illuminated by exte-
rior light, creating shading patterns within the room. Someof these pat-
terns may look like shadows. The images in (b), from the same view-
points as (a), show the effect of closing the windows, leaving only a
small aperture, turning the room in a camera obscura. (c) shows those
images upside-down, to better reveal the formed image. (d) shows the
view from the window to the outside. The shadows on (a) are in fact
blurred images, not shadows. The room created an accidentalcamera
obscura.

leaves project different copies of the sun on the floor. This is
something we see often but rarely think about the origin of
the bright spots that appear on the ground. In fact, the leaves
of a tree create pinholes that produce images in many other
situations. In Fig. 4.b, a tree inside a corridor near a window
produces copies of the scene outside the window. However,
in this case, the produced images are too faint and blurry to
be clearly noticed by a person walking by.

a)

b) c)

d) e)

Fig. 7 Examples of convolutions by the aperture function. (a) Light-
ing within room shown together with the window opening. (b) Lighting
from a night scene, and (c) the view out the window at night, showing
the multiple point sources. The point sources reveal in (b) the rectangu-
lar convolution kernel of the window aperture. (d) Daytime view within
the room, and (e) the view out the window, which, convolved with the
window aperture, yields the projected patterns in (d).

Fig. 5 shows another common situation. Sometimes, small
apertures in a scene can project colored lights into walls and
ceilings. In this picture, a window contains a hole pointing
downwards. The hole looks over the ground bellow which is
covered by grass and receives direct sunlight. The hole acts
as a pinhole projecting a green patch on the ceiling.

Perhaps the most common scenario that creates acciden-
tal pinhole cameras is a room with an open window as dis-
cussed in Fig. 2. Fig. 6.a shows two indoor scenes with com-
plex patterns of lights appearing on the walls and ceiling. By
transforming each room into a camera obscura, the images
appear in focus (Fig. 6.b), revealing the origin of what could
be perceived at first as shadows or inter-reflections. Fig. 6.c
shows the images re-oriented to allow a better interpretation
of the projected image and Fig. 6.d shows pictures of what
is outside of the window in each case.

Accidental pinhole cameras deviate from ideal pinhole
cameras in several ways:

– Large non-circular aperture
– Image is projected on a complex surface far from the

ideal white flat lambertian surface.
– Multiple apertures
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a) b) c) d)

i) j) k) l)

e) f) g) h)

Fig. 8 a) Input image, b) Canny edges, c)I ′x(x, y), d) I ′y(x, y), e) ρ′x(x, y), f) ρ′y(x, y), g) L′

x(x, y), h) L′

y(x, y), i) recovered reflectance
image, j) recovered illumination image, k) illumination image upside-down, l) view outside of the image.

– Inter reflections (e.g., inside a room the walls will not be
black)

To illustrate the image formation process with a room-
size example, consider the room shown in Fig. 7.a. In this
scene, the light illuminating the room enters via a partially
open window. In this particular setup, the room will act as
a camera obscura with the window acting as the aperture.
For simplicity, let’s focus on analyzing the image formed
on the flat wall opposite to the window (the leftmost wall
in Fig. 7.a). If the window was a small pinhole, the image
projected in the wall would be a sharp image (as shown in
Fig. 6.b). Let’s denote asS(x, y) the image that would be
formed on the wall if the window was an ideal pinhole. As
the room deviates from the ideal pinhole camera, the image
formed will be different fromS(x, y) in several ways. The
point spread function (PSF) produced by the window on the
wall, T (x, y), will resemble an horizontally oriented rectan-
gular function. A pinhole camera is obtained when the aper-
tureT (x, y) is sufficiently small to generate a sharp image
I(x, y). For a more complete analysis of variations around
the pinhole camera we refer to Zomet and Nayar (2006).
The resulting image projected on the wall will be the convo-

lution:

L(x, y) = T (x, y) ∗ S(x, y) (1)

As the wall will be different from a white lambertian sur-
face, we need to include also albedo variations of the surface
where the image is being projected:

I(x, y) = ρ(x, y)L(x, y) (2)

Fig. 7.b and Fig. 7.d show two views of the same room
under different outdoor illuminations (night time and day-
light). At night, illumination sources produce anS(x, y) im-
age that could be approximated by a few delta functions rep-
resenting the point light sources in the outside scene. There-
fore, the image that appears on the wall looks like a few
superimposed copies of the window shape (and the coloring
indicates which light source is responsible of each copy).
Under daylight (Fig. 7.d and Fig. 7.e), most of the illumi-
nation is diffuse, and the resulting image is the convolution
of the outdoor scene with the window shape, giving a very
blurry image of what is outside. We will show later how this
simple model can be used to infer the shape of the window
when the window is not visible in the picture.
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a) Original picture

b) Albedo

c) Illumination upside-down

d) View outside the window

Fig. 9 Additional results applying Retinex to several images. a) Input images, b) recovered reflectance images, c) recovered illumination images
upside-down, and d) view outside of the windows. Note the resemblance between the images in row c and row d (accounting forblurring and
projection). The rightmost column shows a special situation in which the recovered image in row c doesn’t look like the image in row d. See fig. 10
and the associated text for an explanation.

What we have discussed here is a very simple model that
will not account for all the complexities of image formation
process and the image hidden inside a room. We have ig-
nored the 3D layout of the scene, variations of the BRDF,
inter-reflections (which will be very important as a room is
composed of surfaces with different reflectances and col-

ors). Despite its simplicity, this model is useful to suggest
successful ways of extracting images of the outside scene.

2.3 Getting a picture

The images formed by accidental pinhole cameras are blurry
and faint, and are generally masked by the overall diffuse
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illumination and the reflectance of the scene they are pro-
jected onto. To increase the contrast of these accidental im-
ages we need first to remove from the picture other sources
of intensity variation. This problem is generally formulated
as finding the intrinsic images (Barrow and Tenenbaum (1978)),
decomposing the imageI(x, y) into a reflectance imageρ(x, y)
and an illumination imageL(x, y). In the examples in this
section we will show that a simple version of the Retinex
algorithm (Land and McCann (1971)) is quite successful in
extracting accidental images from pictures.

There are three main sources of intensity variations su-
perimposed in an accidental camera image:

1. the reflectance image of the interior scene
2. the shading components of the interior scene
3. the projected image of the outside world, blurred by the

accidental camera aperture.

Retinex has been used to separate (1) from (2) as in Bar-
row and Tenenbaum (1978) and in Tappen et al (2005), but
we’re using it to separate (3) from the combination of (1)
and (2). Retinex works much better for the task of extract-
ing accidental images than to separate (1) from (2), because
the accidental camera aperture blurs things so much.

In our setting we are interested in the illumination im-
ageL(x, y), removing the effects of the albedoρ(x, y) of
the surface in which the outside image gets projected. Using
logarithms, denoted by primes, eq. 2 becomes:

I ′(x, y) = ρ′(x, y) + L′(x, y) (3)

GivenI ′(x, y), our goal is to recoverL′(x, y). Land and
McCann (Land and McCann (1971)) introduced the Retinex
algorithm to solve this problem. Since then, there has been a
large number of approaches dealing with this problem (e.g.,
Tappen et al (2005); Grosse et al (2009); Barron and Malik
(2012)). Here we will make use of the same assumption as
it was originally proposed by Land and McCann: that the
illumination image,L′(x, y), introduces edges in the image
that are of lower contrast (and blurrier) than the edges due
to the scene reflectance,ρ′(x, y). Although this assumption
might work well under direct illumination where strong and
sharp shadows appear in the image, it holds true for the sit-
uations in which accidental cameras are formed, as the illu-
mination is generally indirect and produces faint variations
in the scene.

Retinex works by thresholding the gradients and assign-
ing the gradients below the threshold to the gradients of the
illumination image. Here we will use the Canny edge de-
tector (Canny (1986)) as a robust thresholding operator as it
takes into account not just the local strength of the deriva-
tives but also the continuation of edges in the image. Pixels
marked as edges by the Canny edge are more likely to be
due to reflectance changes than to variations in the illumina-
tion image. We will estimate the gradients of the logarithm

Fig. 10 The tiny holes between the leaves of a tree can create a mul-
titude of pinholes. After applying the Retinex algorithm, we can now
appreciate that there are multiple repetitions of blue and orange patches
corresponding to the scene outside the window (fig. 9.d) on the wall.

of the illumination image as:

L′
x(x, y) = I ′x(x, y) × (1− Ed(x, y)) (4)

L′
y(x, y) = I ′y(x, y)× (1− Ed(x, y)) (5)

Ed(x, y) is the binary output of the Canny edge detector.
The binary mask is made thick by marking pixels that are
at a distance ofd pixels from an edge. As the illumination
image is very faint, it is important to suppress the derivatives
due to the albedo that are at some small distance from the de-
tected edges. Once the illumination derivatives are estimated
we recover the illumination image that matches those gradi-
ents as closely as possible. We use the psedoinverse method
proposed in Weiss (2001) to integrate the gradient field and
to recover the illumination. The method builds the pseudo
inverse of the linear system of equations that computes the
derivatives from the illumination image. The pseudo inverse
allows computing the illumination image that minimize the
squared error between the observed derivatives and the re-
constructed derivatives. Once the illumination image has been
estimated, the reflectance image is obtained from eq. 3.

Fig. 8 shows the result of applying Retinex to an in-
put image. Fig. 8.a shows a picture of a bedroom. The es-
timated reflectance and illumination images are shown in
figs. (i) and (j) respectively. Note that the recovered illumi-
nation image has a strong chromatic component. The illu-
mination image is produced by light entering by a window
on the opposite wall (not visible in the input image). There-
fore, it is an upside-down image of the scene outside the
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window. Fig. 8.k shows the upside-down illumination im-
age and fig. 8.l shows the true view outside the window. The
illumination image is distorted due to the room shape but it
clearly shows the blue of the sky, and the green patch of the
grass on the ground. Fig. 9 shows additional results.

As discussed at the beginning of this section, fig. 4 de-
scribed how the tiny holes between the leaves of a tree can
create a multitude of pinholes. Fig. 10 shows the detail from
the tree picture shown in fig. 9. On the wall we can now ap-
preciate that there are multiple repetitions of the blue and
orange patches that correspond to the scene outside the win-
dow (fig. 9.d).

Unfortunately, the blur factor is generally too large for
the images recovered from accidental pinhole cameras to
be recognizable. In the next section we introduce another
type of accidental camera that can recover, in certain cases,
sharper images than the ones obtained with accidental pin-
hole cameras.

3 Accidental pinspeck cameras

Pinhole cameras can be great cameras, but when formed ac-
cidentally, the images they create have very poor quality.
Here we will discuss pinspeck cameras. Pinspeck cameras
are harder to use and less practical than a pinhole camera.
However, accidental pinspeck cameras are better and more
common than accidental pinhole cameras.

3.1 Shadows

Under direct sunlight the shadow produced by an object ap-
pears as a sharp distorted copy of the object producing it
(fig. 11.a) and there seems to be nothing more special about
it. The shadow that accompanies us while we walk disap-
pears as soon as we enter under the shadow of a building
(fig. 11.b). However, even when there is no apparent shadow
around us, we are still blocking some of the light that fills
the space producing a very faint shadow on the ground all
around us. In fact, by inspecting fig. 11.b it is hard to see
any kind of change in the colors and intensities in the ground
near the person. But if we crop the region near the feet and
increase the contrast we can see that there is a colorful shadow
(see fig. 11.c). The shadow is yellow just along the feet and
it takes a blue tone right behind the feet.

We will show in the rest of this section that there is in-
deed a faint shadow and it is strong enough to be detectable.
Why is this important? Because a shadow is also a form of
accidental image. The shadow of an object is all the light
that is missing because of the object’s presence in the scene.
If we were able to extract the light that is missing (i.e. the
difference between when the object is absent from the scene
and when the object is present) we would get an image. This

a)

b)

c)

Fig. 11 A person walking in the street, a) under direct sunlight the
person projects a sharp dark shadow. However, b) when there is no
direct sunlight, the shadow seems to disappear, but there are still shad-
ows from the indirect illumination. c) Increasing the contrast reveals a
colorful shadow.
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Fig. 13 Relaxing the anti-pinhole camera. This figure shows some frames of a video showing a ball bouncing and the difference between a frame
without ball present and the frames of the video. The difference corresponds to the light that would had been produced by apinhole camera with
the pinhole in the location of the ball. For clarity, the ballis shown as it looks in the original frame.

Location 

Intensity 

Location 

Intensity 

… … 

Pinhole Anti-pinhole 

a) b)

Fig. 12 Illustration of the image formation process for a Pinhole cam-
era (a), and a pinspeck camera (b). Modified from Cohen (1982).

difference image would be the negative of the shadow and
it will be approximatively equivalent to the image produced
by a pinhole camera with a pinhole with the shape of the
occluder.

A shadow is not just a dark region around an object. A
shadow is the negative picture of the environment around
the object producing it. A shadow (or the colored shadows
as called by Minnaert (1954)) can be seen as the acciden-
tal image created by an accidental anti-pinhole camera (or
pinspeck camera, Cohen (1982)).

3.2 Pinspeck camera

Pinhole cameras form images by restricting the light rays
that arrive to a surface so that each point on a surface gets
light from a different direction. However, another way in
which rays of light that hit a surface are restricted is when
there is an occluder present in the scene. An occluder blocks
certain of the light rays, producing a diffuse shadow. In the
cast shadow, there is more than just the silhouette of the oc-

cluder, there is also the negative image of the scene around
the occluder. The occluder produces ananti-pinhole or pin-
speck camera.

Pinspeck cameras were proposed by Adam L. Cohen
(1982), and also used before by Zermeno et al (1978) and
Young (1974). Fig. 12 illustrates how the pinspeck camera
works, as described by Cohen (1982). In the pinhole camera,
a surface inside a box receives light coming from a small
aperture. In the pinspeck camera, the box with the hole is
replaced by a single occluder. If the occluder size matches
the size of the pinhole, the image that gets projected on the
surface will have an intensity profile with a bias and reversed
with respect to the intensity profile produced by the pinhole
camera:

Loccluder(x, y) = L− Lpinhole(x, y) (6)

whereL is the overall intensity that would reach each point
on the surface if there were no occluder. If the illumination
comes from a source infinitely far away, then all the points
on the surface will receive the same intensity,L.

As noted by Cohen (1982), there are a number of impor-
tant differences between the pinspeck and the pinhole cam-
era.

– Bias termL: this term can be quite large in comparison
with the light that gets blockedLpinhole. Increasing the
exposure time will burn the picture. Therefore, in order
to improve the signal to noise ratio we need to integrate
over multiple pictures.

– Occluder: if the occluder is spherical, the vigneting is
reduced as the effective aperture does not change shape
when seen from different points on the surface. There-
fore, eq. 6 is just an approximation for the points directly
under the occluder.

In the next section we will show that accidental pinspeck
cameras are very common.
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Fig. 14 A frame upside-down from the processed video from fig. 13
compared with the scene in front of the wall. The right columnshows
low resolution version of the images in the left column to highlight the
similarities between the recovered image (on top) and the real scene
(bottom).

3.3 Accidental pinspeck cameras

Let’s first look at a few relaxed pinspeck camera designs.
Fig. 13 shows some frames of a video showing a ball bounc-
ing. There is no direct sunlight in this corner of the building.
Therefore, no shadow is visible. But after close inspection
we can see a faint change in the brightness of the walls as the
ball gets closer to the wall and ground. In fact, the shadow
produced by the ball extends over most of the wall. Note
that nowL is not constant any more and the surface where
the image should be projected is not a white surface. But we
can still compute the difference between a frame where the
ball is absent and the frames of the video where the ball is
present. The resulting difference image corresponds to a pic-
ture that one could take if the scene was illuminated only by
the light that was blocked by the ball. This is the light pro-
duced by a pinhole camera with the pinhole in the location
of the ball.

Fig. 14 shows a frame upside-down from the processed
video from fig. 13 and compares it with the scene that was
in front of the wall. Despite that this relaxed pinspeck cam-
era differs in many ways from the ideal pinspeck camera, it
is able to produce a reasonable, albeit blurry, image of the
scene surrounding this building corner.

Accidental anti-pinholes differ from ideal anti-pinholes
in several aspects:

– Non-spherical (large) occluder.
– The surface has a varying albedoρ(x, y).

– The bias termL is not constant. This situation is quite
common, especially in indoors as we will discuss later.

– The scene might have a complicated geometry. For the
derivations here we will assume that the portion of the
scene of interest is planar.

The goal of the rest of the section is to provide some in-
tuition of how accidental images are formed from accidental
pinspeck cameras. We will show how these accidental im-
ages can be extracted from sets of pictures or videos. We
start by providing an analysis of the image formation pro-
cess.

If we have an arbitrary scene before the occluder used to
form the pinspeck camera is present, we would capture an
image that we will call the background image:

Ibackground(x, y) = ρ(x, y)L(x, y) (7)

If we had an ideal camera, we would like this image to be
constant (with no albedo or illuminations variations). How-
ever, the imageIbackground(x, y) will just be a normal pic-
ture where variations in intensities are due to both albedo
and illumination changes.

If we placed a pinhole to replace the source of illumina-
tion, then the image captured would be:

Ipinhole(x, y) = ρ(x, y)Lpinhole(x, y) (8)

and if an occluder appears on the scene, the picture will be:

Ioccluder(x, y) = ρ(x, y)Loccluder(x, y) (9)

In this equation we assume that the occluder is not visible
in the picture. Note that these three images only differ in the
illumination and have the same albedos.

If the pinhole and the occluder have the same silhouette
as seen from the surface where the illumination gets pro-
jected, then the image captured when there is an occluder
can be approximated by:

Ioccluder(x, y) = Ibackground(x, y)− Ipinhole(x, y) (10)

and therefore, given two pictures, one of the normal scene
and another with the occluder present, we can compute the
picture that would had been taken by a pinhole camera with
a pinhole equal to the shape of the occluder as:

Ipinhole(x, y) = Ibackground(x, y)− Ioccluder(x, y) = (11)

ρ(x, y) (L(x, y)− Loccluder(x, y)) =

ρ(x, y) (Thole(x, y) ∗ S(x, y))

whereThole(x, y) is related to the occluder silhouette and
ρ(x, y) is the surface albedo.

If L(x, y) is constant, then we can remove the unknown
albedo by using the ratio of the image with the occluder and
the image without it:

Lpinhole(x, y)/L = 1−
Ioccluder(x, y)

Ibackground(x, y)
(12)
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Fig. 15 Relaxing the anti-pinhole camera. Compare with fig. 13. The man forms a fairly large occluder, leading to a blurry pin speck camera
image, in contrast with that of the ball, in fig. 13. At the far right, the man tries to become a better pinhole, which helps a little.

However,L(x, y) is rarely constant in indoor scenes and
computing ratios will not extract the desired image.

Fig. 15 shows a few frames of a video captured at the
same scene as in fig. 13 but with a person walking instead of
the bouncing ball. In order to apply eq. 11 we first compute
a background image by averaging the first 50 frames of the
video before the person entered the view. Then, we compute
the difference between that background image and all the
frames of the video to obtain a new video showing only the
scene as if it was illuminated by the light that was blocked
by the person. Three frames of the resulting video are shown
in fig. 15.

We will study next typical situations in which accidental
pinspeck cameras occur.

3.4 Shadows in rooms

The indoors provide many opportunities for creating acci-
dental cameras. As discussed in section 2, a room with an
open window can become an accidental pinhole camera. In
section 2 we showed how we could use Retinex in order to
estimate the illumination imageLpinhole(x, y). Despite that
we can recover images revealing some features of the scene
outside the room (fig. 9), the images generally reveal only a
few color patches and are too blurry to be recognizable.

Let’s now imagine that we have access to several im-
ages of the room, or a video, where a person is moving
inside the room. As the person moves, it will be blocking
some of the ambient light. The person will behave as an

accidental pinspeck camera. To extract a picture from this
accidental pinspeck camera inside the room we will apply
eq. 11. First, we use 50 frames from the sequence to com-
puteIbackground(x, y). Then, we subtract all the frames of
the video from that background image. Fig. 16 shows three
frames from the video. The first frame (Fig. 16.a) corre-
sponds to the beginning of the video and it is very simi-
lar to the background image as the person has not entered
the scene yet. Therefore, applying eq. 11 to this frame re-
sults mostly in noise. Later in the video, a person enters in
the room (Fig. 16.b) blocking some of the light entering the
window and producing a colorful shadow. However, the ob-
tained difference image from eq. 11 is not much better than
the image obtained with the Retinex algorithm. However,
later on the video a faint but sharp image gets projected onto
the wall when applying eq. 11. In that frame the person is not
visible within the picture, but it is still blocking part of the
light producing now a much better accidental camera than
the one formed by the room alone. Fig. 17 compares the im-
ages obtained with the accidental pinhole camera (Fig. 17.a)
and the picture obtained from the video (Fig. 17.b). Fig. 17.c
shows the view outside the window. The building is now rec-
ognizable in Fig. 17.b. What has happened here?

As the person was walking inside the room eventually
he passed in front of the window. At that moment, the oc-
cluder became the size of the intersection between the per-
son and the window, which is much smaller than the per-
son or the window. This scenario is illustrated in Fig. 18.
Fig. 18 shows how an occluder produces light rays com-
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a) b) c)

Fig. 16 Three frames from a video of a person walking inside a room. Top row shows the three unprocessed frames, and the bottom row shows
the difference of multi-frame average centered on current frame from a multi-frame average of the background. a) One of the first frames in the
video. b) a person inside the room blocks some of the light entering the window and produces a colorful shadow (c) and the person is not visible
anymore, but now a faint but sharp image gets projected onto the wall. In this last frame, the person is very close to the window producing a better
accidental camera.

a) b) c)

Fig. 17 Comparison between the accidental pinhole and the accidental pinspeck cameras. a) Output of Retinex on a single frame from section 2.3,
designed to extract pinhole camera image. b) Output of the accidental pinspeck camera (selected frame), and c) true viewoutside the window. (a)
and (b) are upside-down so that they can be compared easily with (c). As is often the case, this pinspeck camera image is noisier, but sharper, than
the related pinhole camera image.

plementary to that of a small aperture with the size of the
occluder. Fig. 18.a shows the rays inside a room that enter
via a window. The figure shows all the light rays that hit a
point inside the room (in this drawing we assume that there
are no interreflections and that all the light comes from the
outside). Fig. 18.b shows the light rays when there is an oc-
cluder placed near the window. The difference between the
two light fields is illustrated in Fig. 18.c. The intersection
between the person and the window creates a new equiva-
lent occluder:

Thole(x, y) = Tperson(x, y)× Twindow(x, y) (13)

and, therefore:

Iwindow(x, y)− Ioccluded−window(x, y) = (14)

ρ(x, y) (Thole(x, y) ∗ S(x, y))

a) b) c)

Fig. 18 a) Room with a big aperture (too large to produce a sharp
image), b) aperture with an occluder, c) difference betweenthe two
light fields, revealing just the light rays striking the small occluder.

As Thole(x, y) can be now small, the produced image be-
comes sharper than with the image produced just by the win-
dow alone.
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a) b)

c) d)

Fig. 19 a) Window, b) window with an occluder, c) view of the wall
opposite to the window when no occluder is present, d) view ofthe
wall with the occluder present.

Fig. 19 shows another example showing pictures of the
window to illustrate how the person is located with respect
to the window (Fig. 19.a and b). All the illumination in the
room is coming via the window. Fig. 19.c and d show the
corresponding pictures on showing the wall in front of the
window. There is a very small difference between images
(c) and (d), but that difference carries information about the
scene that can be seen through the window. Note in this case
that Fig. 19.c corresponds toIbackground(x, y) in eq. 11. In
this caseL(x, y) is clearly not constant as the illumination in
the scene that projects to the wall is already the result of an
accidental pinhole camera. Therefore, we can not use ratios
to remove the effect of albedo variations in the scene.

In order to recover the image that would have been pro-
duced by a pinhole with the shape of the intersection be-
tween the person and the window we need to subtract two
images–the image with the occluder (Fig. 19.d) from the im-
age without it (Fig. 19.c).

Fig. 20.a shows the difference image obtained by sub-
tracting Fig. 19.d from Fig. 19.c. In the difference image we
can see an increased noise level because we are subtracting
two very similar images. But we can also appreciate that a
pattern, hidden in the images from Fig. 19, is revealed. This
pattern is a picture of what is outside the room as it would
had been obtained by the light entering the room by an aper-
ture of the size and shape of the occluder. By making the
occluder smaller we can get a sharper image, but at a cost of
increased noise.

Fig. 21 shows the input video and the difference between
the background image and the input video. The first frame is
only noise, but as the person moves we can see how the wall
reveals a picture. As the person moves, the occluder pro-

a) Difference image

b) Difference upside down c) True outdoor view

Fig. 20 a) Difference image (Fig. 19.c minus Fig. 19.d). b) Difference
upside-down. c) True outside scene.

duces a pinhole camera with the pinhole in different loca-
tions. This produces a translation on the picture that appears
on the wall. These translated copies of the image contain
disparity information and could be used to recover the 3D
structure if the noise is low enough.

3.5 Limitations

The inverse pinhole has two limitations over traditional pin-
hole cameras. The first is that it requires at least two im-
ages or a video because we need to extract a reference back-
ground. The second limitation relates to signal to noise ratio.
If the picture had no noise and unlimited precision, it would
be possible to extract a perfect sharp image (after deblur-
ring) from the inverse pinhole. In general, to improve the
signal to noise ratio (SNR), traditional pinhole cameras re-
quire increasing the sensitivity of the light sensor or using
long exposures in order to capture enough light. In inverse
pinhole cameras the signal to noise ratio decreases when
the background illumination increases with respect to the
amount of light blocked by the occluder. If the input is a
video, then temporal integration can improve the signal to
noise ratio.

While there are many causes of noise in images (Liu
et al (2008)), if we assume just Poisson noise, proportional
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Fig. 21 top row) Input sequence (a person walks inside a room moving toward and from a window not visible in the movie), bottom row)difference
between reference image (first frame of the video) and each frame. The difference creates an approximation to a camera obscura with an aperture
that moves as the occluder moves inside the room (see companion video).

to the square root of the light intensity, we can calculate the
SNR of the computed image, limited by the discrete nature
of light. Let A be the area of an aperture,A =

∫
T (x)dx.

The SNR of the unoccluded photo will be proportional to√
Awindow. The signal of the difference image is propor-

tional toAoccluder, while its noise is proportional to
√
Awindow,

giving an SNR of Aoccluder√
Awindow

. Thus the SNR of the acciden-
tal image is reduced from that of the original image by a
factor of Aoccluder

Awindow
. Specifics of the sensor noise will reduce

the SNR further from that fundamental limit. Therefore, this
method will work best when the light entering the room
comes from a small window or a partially closed window.
In such a case, the ratio between the image without the oc-
cluder and the difference image will have similar intensity
magnitudes. There are also other sources of noise, like inter-
reflections coming from the walls and other objects.

Despite these limitations, accidental pinspeck cameras
might be used to reveal information about the scene sur-
rounding a picture not available by other means. We will
discuss some applications in section 4. As discussed before,
in order to get a sharp image when using a pinhole camera,
we need to make a small aperture. This is unlikely to hap-
pen accidentally. However, it is more common to have small
occluders entering a scene.

3.6 Calibration

One important source of distortion comes from the relative
orientation between the camera and the surface (or surfaces)
in which the image is projected. Fig. 22 shows how the wall
from Figs. 7.a and 21 is corrected by finding the homogra-
phy between the wall and the camera. This can be done by
using single view metrology (e.g., Criminisi et al (2000)).
This correction is important in order to use the images to
infer the window shape, in section 4.3.

a) b)

Fig. 22 a) Rectified image, and b) crop and rectified wall from Figs. 7.a
and 21.

We have the additional difficulty of finding the reference
image (the image without the occluder). If the input is on
video, one way of deciding which frame can be used as ref-
erence is to select the frame with highest intensity (as the
occluder will reduce the amount of light entering into the
scene). Another possibility is to use multiple frames as refer-
ence and select the one providing more visually interpretable
results.

4 Applications of accidental cameras

In this section we will discuss several applications of acci-
dental cameras.

4.1 Seeing what is outside the room

Paraphrasing Abelardo Morell (Morell (1995)), “a camera
obscura has been used ... to bring images from the outside
into a darkened room”. As shown in section 3.2, in certain
conditions, we can use the diffuse shadows produced by oc-
cluders near a window to extract a picture of what is outside
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a) Input (occluder present) b) Reference (occluder absent)

c) Difference image (b-a) d) Crop upside down e) True view

Fig. 23 Finding a picture of what is outside a room (d) from two pic-
tures (a) and (b). The true view (e) is shown for comparison with the
recovered image (d).

of the room and we have shown numerous examples of acci-
dental pinhole and pinspeck cameras inside rooms. Fig. 23
shows a different example inside a bedroom.

As discussed before, to extract accidental images we need
to find the reference image to apply eq. 11. In the case of
Fig. 21 we used the average of the first 50 frames of the
video. But nothing prevents us from using different refer-
ence images. Using different reference images might actu-
ally create new opportunities to reveal accidental images.
This is illustrated in Fig. 24.

Fig. 24 shows a few frames from a video in which a wall
and a window are visible. A person walks in the room and
stands near the window. In the first frame Fig. 24.a, the per-
son is not near the window and it can be used as reference
frame. If we subtract from this picture the one from frame
Fig. 24.b, we obtain the image shown in Fig. 24.d which re-
veals the scene outside the window. The scene is still quite
blurred. However, if we continue watching the video, there
is a portion of the video where the person is standing near the
window and just moves one hand (Fig. 24.c). If we use now
as reference Fig. 24.b and we subtract Fig. 24.c, this will
correspond to an accidental camera with a pinhole equal to
the size of the intersection between the window and the arm.
That is a much smaller occluder than the one obtained be-
fore. The result Fig. 24.g. This is a sharper image (although
noisier) than the one obtained before. Figures 24.f-h com-
pare the two accidental images with the true view outside
the window.

4.2 Seeing light sources

In indoor settings, most of the illumination is dominated by
direct lighting. Due to the large ratio between direct and in-
direct illumination when there are direct light sources, shad-
ows can only be used to recover the light sources. If the sig-
nal to noise ratio were sufficiently large, it could be possible

a) b)

c) d)

Fig. 25 a) Reference image, and b) image with an occluder producing
a faint shadow on the wall. There are two main occluders: a hand and
a ball. The ball is already outside of the frame of the picture. c) Differ-
ence image. The shadow reveals a person throwing a ball. The ball acts
as a pinhole camera and produces a clearer picture of the light sources.
d) Picture of the lamp illuminating the scene (ground truth).

to get a picture of the rest of the scene. Fig. 25 shows an ex-
ample. In Fig. 25 a ball produces a shadow that can be used
to extract a picture of the lamp in the ceiling.

4.3 Seeing the shape of the window

Fig. 26 shows a series of pictures taken in two different
rooms with windows closed by different amounts and with
different window shapes. As the window closes, the pattern
of illumination inside the room changes. Note that when
there is diffuse illumination coming from the outside, the
window shape is not clearly visible on the wall. This is clearly
illustrated on Fig. 7. Fig. 7 shows that when there are point
light sources outside, the window shape appears clearly pro-
jected onto the wall. However, with more general outdoor
scenes, the window shape is not visible directly. However
the window shape has a strong influence on the blur and
gradient statistics of the pattern projected onto the wall.

As discussed in section 2.1, the pattern of intensities on
the wall corresponds to a convolution between the window
shape and the sharp image that would be generated if the
window was a perfect pinhole. Therefore, the shape of the
window modifies the statistics of the intensities seeing on
the wall just as a blur kernel changes the statistics of a sharp
image. This motivates using algorithms from image deblur-
ring to infer the shape of the window. The shape of the win-
dow can be estimated similarly to how the blur kernel pro-
duced by motion blur is identified in the image deblurring
problem (e.g., Krishnan et al (2011)).

Fig. 26 shows the estimated window shapes using the
algorithm from Krishnan et al (2011). The input to the algo-
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a) c)b)

d) e)

f) g) h)

Fig. 24 Looking for different accidental images within a sequence.a-c) show three frames of a long video. d) and e) show two different accidental
images using different reference images. f-h) comparison of the accidental images with the true view outside the window. Notice that (g), taken
using a smaller occluder, is sharper, but noisier.

rithm are the images from Fig. 26.c and 26.g and the output
are the window shapes shown in Fig. 26.d and 26.h. The
method shows how the kernel gets narrower as the window
is closed and it also correctly finds the orientation of the
window. It fails only when the window is very open as the
pattern of intensities is too blurry, providing very littleinfor-
mation.

Finding the light sources, window shape and the scene
outside a picture could be used in computer graphics to pro-
vide a better model of the light rays in the scene to render
synthetic objects that will be inserted inside the picture.

4.4 Seeing the illumination map in an outdoor scene

Any object in a scene is blocking some light and, effectively
behaving like an accidental pinspeck camera taking a pic-
ture of its surrounding. In particular, a person walking in the
street projects a shadow and acts like an accidental pinspeck
camera. In this case the occluder is very large and with a
shape very different from a sphere.

As shown in fig. 11, the shadow around a person can
be very colorful. If we have two pictures, one without the
person and another with the person, taking the difference
between them (eq. 11) reveals the colors of the scene around
the person as shown in fig. 27.a. We can see that the yellow
shadow in fig. 11 corresponded in fact to the blue of the
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Fig. 28 Walking on the street. Shadows from indirect lighting can becolorful, due the colors of the sky and buildings around the person.

10 20 30 40

10

20

30

40

10 20 30 40

10

20

30

40

10 20 30 40

10

20

30

40

10 20 30 40

10

20

30

40

10 20 30 40

10

20

30

40

a)

b)

c)

10 20 30 40

10

20

30

40

10 20 30 40

10

20

30

40

10 20 30 40

10

20

30

40

10 20 30 40

10

20

30

40

10 20 30 40

10

20

30

40

d)

e)

f)

g)

h)

Fig. 26 a,e) Window (ground truth), b,f) picture of the room, c,g)
warped and cropped wall region (input to the estimation), and d,h) es-
timated window shape (the estimated shape is quite robust tothe size
of the estimated kernel size). Note that the kernel estimation algorithm
infers the qualitative size and shape of the window apertures in most
cases.

sky right above the person, and the blueish shadow behind it
corresponded to a yellow reflection coming from a building
in front of the person not visible in the picture. Fig. 27.b
shows the same street but on a cloudy day. Now the colorful
shadow has been replaced by a gray shadow. Without strong

a) b)

Fig. 27 The colors of shadows on sunny (a) and cloudy (b) days. The
image (a) shows the scene from fig. 11 but now showing the result of
applying eq. 11. (b) Shows the same scene on a cloudy day. Now the
shadow appears gray.

first-bounce-from-sun lighting, the shadow only shows the
gray sky.

Fig. 28 shows five frames from a video in which a per-
son is walking in the street. In the first frame from fig. 28,
the person is in a region of the scene where there is direct
sunlight. The person creates a sharp image (which is just a
picture of the sun projected on the ground and deformed by
the person shape and the scene geometry). However, as soon
as the person enters the region of the scene that is under the
shadow of a building, the shadow becomes faint and increas-
ing the contrast reveals the colors of the scene around the
person. In these results the background image is computed
as the average of the first 50 frames from the video.

If we know the 3D geometry of the scene and the lo-
cation of the occluder, then we can infer where the light
rays that contribute to the shadow come from and we could
reconstruct the scene around the person and outside of the
picture frame. This is illustrated in Fig. 29. Fig. 29.a shows
one frame of a sequence with a person walking. Fig. 29.b
shows the background image (computed as the median of
all the frames in the video), and Fig. 29.c shows the differ-
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a) Input (person walking) b) Background (median)

c) Difference (negative shadow) d) 3D scene

e) Input warped on a panoramic view

f) Recovered full panoramic view

g) Detail from the panorama h) Ground truth

(cm)

Fig. 29 A person walking in the street projects a complex shadow containing information about the full illumination map outsidethe picture frame.
This figure illustrates how to use the shadow projected by a person (c) to recover a panoramic view of the scene outside the picture frame (g).

ence (b)-(a), which is the negative of the shadow. In order to
recover the 3D geometry we use single view metrology. We
use LabelMe 3D which allows recovering metric 3D from
object annotations (Russell and Torralba (2009)). The re-
covered 3D scene is shown in Fig. 29.d. Fig. 29.e shows the
panoramic image reconstructed only from the information
directly available from the input Fig. 29.a. Pixels not directly
visible in the input picture as marked black. Fig. 29.f shows
the recovered panorama using the shadow of the person and
Fig. 29.g shows a crop of the panorama corresponding to
the central region. The yellow region visible in Fig. 29.g
is in fact a building with a yellow facade. Fig. 29.h which
shows the full scene for comparison. Note that the shadow
projected on the wall on the left side of the picture provides
information about the right side of the scene not visible in-
side the picture.

4.5 Accidental pinholes and pinspecks everywhere

Any time an object moves in a video it is creating accidental
images. As an object moves, the light rays that reach dif-
ferent parts of the scene change. Most of the times those
changes are very faint and remain unnoticed, or just create
sharp shadows. But in some situations, the signal to noise
ratio is enough to extract from a video the hidden accidental
images formed.

An illustration of how a moving object creates acciden-
tal pinhole and pinspeck cameras is shown in fig. 30. In this
video, a person is sitting in front of a computer and moving
his hand. Behind the person there is a white wall that re-
ceives some of the light coming from the computer screen.
As the person moves, there are some changes in the light that
reaches the wall. By appropriately choosing which frames
need to be subtracted, one can produce the effect of an ac-
cidental pinspeck being placed between the screen and the

wall. This accidental pinspeck will project a picture of the
screen on the wall.

When an object is moving, choosing the best reference
frame might be hard. A simple technique that can be applied
is to compute temporal derivatives. In order to process the
video, we created another video by computing the difference
between one frame and the frame two seconds before. The
resulting video was temporally blurred by averaging over
blocks of 10 frames in order to improve the signal to noise
ratio. Once the video is processed it has to be inspected to
identify which frames produce the best accidental images.
Exploring carefully a video can be time consuming and it
might require exploring different time intervals to compute
derivatives, or chose among different possible reference im-
ages.

Fig. 30.a and fig. 30.b show two selected frames of the
video and fig. 30.c shows the difference. We can see that a
blurry pattern is projected on the wall behind. That pattern
is an upside-down view of the image shown in the screen.
Fig. 30.d shows several examples of what was shown in the
screen and a selected frame from the processed video. De-
spite that the images have low quality they are an example
of accidental images formed by objects in the middle of a
room.

5 Conclusion

We have described and shown “accidental” images that are
sometimes found in scenes. These images can either be di-
rect or processed from several images to exploit “inverse
pinholes”. These images (a) explain illumination variations
that would otherwise be incorrectly attributed to shadows,
can reveal (b) the lighting conditions outside the interior
scene, or (c) the view outside a room, or (d) the shape of
the light aperture into the room, and (e) the illumination
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a) b) c)

d)

Fig. 30 Accidental pinholes and pinspecks cameras can be generated
as an object moves or deforms. a) and b) show two frames of a video. c)
Difference image revealing a pattern projected on the wall.d) Some of
the resulting images formed on the wall compared to the actual image
that was shown on the computer screen.

map in an outdoor scene. While accidental images are in-
herently low signal-to-noise images, or are blurry, under-
standing them is required for a complete understanding of
the photometry of many images. Accidental images can re-
veal parts of the scene that were not inside the photograph
or video and can have applications in forensics (O’Brien and
Farid (2012)).
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