
How Does Batch Normalization Help Optimization?
Shibani Santurkar*, Dimitris Tsipras*, Andrew Ilyas*, Aleksander Madry

Massachusetts Institute of Technology madry-lab.ml

Batch Normalization (BatchNorm)

Faster Convergence Robust to Hyperparameter Choice

0 5k 10k 15k
Steps

50

100

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Learning Rate=0.1

Standard
Standard + BatchNorm

0 5k 10k 15k
Steps

50

100

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)

Learning Rate=0.5

Standard
Standard + BatchNorm

⇒ Used almost by default in most architectures (7k+ citations)

How does BatchNorm help training?

Why does BatchNorm work?
Reducing Internal Covariate Shift (ICS) by normalizing activations

[When training deep models, the input distribution of each layer
changes over time.] The change in the distributions of layers’
inputs presents a problem because the layers need to
continuously adapt to the new distribution.

[Ioffe, Szegedy 2015]

But: Is that really what happens?

A closer look at activation distributions
Layer inputs over training:

Layer #3 Layer #11
Standard +BatchNorm Standard +BatchNorm

training

⇒ No apparent difference between models with and without BN

What if we introduce additional (artificial) ICS?

Specifically: We add time-varying noise (with non-zero mean) to
the outputs of BatchNorm layers

0 5k 10k 15k
Steps

20

40

60

80

100

Tr
ai

ni
ng

 A
cc

ur
ac

y

Standard
Standard + BatchNorm
Standard + "Noisy" Batchnorm

La
ye

r #
2

Standard Standard +
 BatchNorm

Standard +
 "Noisy" BatchNorm

La
ye

r #
9

La
ye

r #
13

Result: Increased instability, yet no apparent decrease in performance
⇒ Stability and performance seem to not be strongly connected

An optimization-based notion of ICS?
Idea: Measure change in gradient due to previous layer updates

Deep Linear Network

103

104

Tr
ai

ni
ng

 L
os

s
LR

 =
 1

e-
07

LR
 =

 1
e-

07

Standard
Standard + BatchNorm

0

1

Co
s A

ng
le

Layer #9 Layer #17

VGG

20

40

60

80

100

Tr
ai

ni
ng

 A
cc

ur
ac

y
(%

)
LR

 =
 0

.1
LR

 =
 0

.1

Standard
Standard + BatchNorm

0

1

Co
s A

ng
le

We observe:
→ In deep linear models there is essentially no such change altogether
→ In VGG networks, the changes caused by the updates to previous

layers are similar for both standard and batch normalized networks

Roots of BatchNorm’s success
Our approach: Examine the loss and gradient landscape

x0
−∇loss(x0)

x(λ) = x0 − λ∇loss(x0)
x(λ)

Specifically: Measure variation of loss and gradient over λ

loss(x(λ)) ‖∇loss(x(λ))−∇loss(x0)‖2

0 5k 10k 15k
Steps

100

101

Lo
ss

 L
an

ds
ca

pe

Standard
Standard + BatchNorm

0 5k 10k 15k
Steps

0

50

100

150

200

250

Gr
ad

ie
nt

 P
re

di
ct

iv
en

es
s Standard

Standard + BatchNorm

⇒ Loss and gradients significantly better behaved for BatchNorm

Impact of adding a BatchNorm layer

We show:
⇒ Loss is provably more Lipschitz wrt y
⇒ Gradients wrt y are provably more predictive (and hence reliable)
⇒ Translates into similar worst-case improvements for W

Future directions
→ Better normalization schemes

(Normalizing by other norms offer similar improvements)
→ Understand BatchNorm’s impact on generalization
→ More broadly: Study the other elements of our DL toolkit in depth

Full version at arxiv:1805.11604

