Batch Normalization (BatchNorm)

Faster Convergence Robust to Hyperparameter Choice

Learning Rate=0.5

Learning Rate=0.1

100 100

> >

O O

© ©

| - | -

o —— Standard 3 —— Standard

g 50 —— Standard + BatchNorm g —— Standard + BatchNorm
o) o

£ c

£ =

© ©

| - | -

= -

0 5k 10k 15k 0 5K 10k 15k
Steps Steps

= Used almost by default in most architectures (7k—+ citations)

How does BatchNorm help training?

Why does BatchNorm work?

Reducing Internal Covariate Shift (ICS) by normalizing activations

[When training deep models, the input distribution of each layer
changes over time.] The change in the distributions of layers’
inputs presents a problem because the layers need to
continuously adapt to the new distribution.

[loffe, Szegedy 2015]

But: |s that really what happens?

A closer look at activation distributions

Layer inputs over training:

Layer #3 Layer #11
+BatchNorm

Standard +BatchNorm Standard

suluies]

= No apparent difference between models with and without BN

How Does Batch Normalization Help Optimization?
Shibani Santurkar®, Dimitris Tsipras™, Andrew llyas™, Aleksander Madry

Massachusetts Institute of Technology

What if we introduce additional (artificial) 1CS?

S L w — oy —d€s"

Specifically: We add time-varying noise (with non-zero mean) to

the outputs of BatchNorm layers

Standard Standard + Standard +
BatchNorm "Noisy" BatchNorm

100

N

#

5’ 80 S

© S
>

8 60

(@)}

< #

o)]

S .0 >

C -1
o

- — Standard N

—

20 I —— standard + BatchNorm H*

—— Standard + "Noisy" Batchnorm q;

(©

0 5k 10k 15k

Steps

Result: Increased instability, yet no apparent decrease in performance

= Stability and performance seem to not be strongly connected

An optimization-based notion of 1CS?

Idea: Measure change in gradient due to previous layer updates

Deep Linear Network

Layer #9 Layer #17

=
o

— Standard
—— Standard + BatchNorm

=
(@)
N

LR = 1e-07
Training Loss
Cos Angle
o

=
o
w

LR =0.1
Training Accuracy (%)
Cos Angle

— Standard
— Standard + BatchNorm

20

We observe:
— In deep linear models there is essentially no such change altogether

— In VGG networks, the changes caused by the updates to previous
ayers are similar for both standard and batch normalized networks

madry-lab.ml

Roots of BatchNorm’s success

Our approach: Examine the loss and gradient landscape

X0, —"" - x(A) = xog — AVloss(x)
—Vloss(xp)

Specifically: Measure variation of loss and gradient over A

loss(x(\)) | Vloss(x(A)) — Vloss(x)||2

101
m Standard 250 I Standard

:ﬂ Standard + BatchNorm 1 Standard + BatchNorm
0

0 5k 10k 15k 0 5k 10k 15k
Steps Steps

N
o
o

|

150 \

oo [l]
w MKW (ALl

W

asbiadaad ik

Loss Landscape

U1
o

=
<
Gradient Predictiveness

= Loss and gradients significantly better behaved for BatchNorm

Impact of adding a BatchNorm layer

y X

X

“<>
<

w L — W — BN — L

We show:
= Loss is provably more Lipschitz wrt y

= Gradients wrt y are provably more predictive (and hence reliable)

= Translates into similar worst-case improvements for W

Future directions

— Better normalization schemes
(Normalizing by other norms offer similar improvements)

— Understand BatchNorm's impact on generalization
— More broadly: Study the other elements of our DL toolkit in depth

ETNE
Full version at arxiv:1805.11604 x
[=]

