
Differentiable Monte Carlo Ray Tracing through Edge Sampling

TZU-MAO LI,MIT CSAIL
MIIKA AITTALA,MIT CSAIL
FRÉDO DURAND,MIT CSAIL
JAAKKO LEHTINEN, Aalto University & NVIDIA

(a) initial guess (b) real photograph (c) camera gradient
(per-pixel contribution)

(d) table albedo gradient
(per-pixel contribution)

(e) light gradient
(per-pixel contribution)

(f) our fitted result

Fig. 1. We develop a general-purpose differentiable renderer that is capable of handling general light transport phenomena. Our method generates gradients
with respect to scene parameters, such as camera pose (c), material parameters (d), mesh vertex positions, and lighting parameters (e), from a scalar loss
computed from the output image. (c) shows the per-pixel gradient contribution of the L1 difference with respect to the camera moving into the screen. (d)
shows the gradient with respect to the red channel of table albedo. (e) shows the gradient with respect to the green channel of the intensity of one light source.
As one of our applications, we use our gradient to perform an inverse rendering task by matching a real photograph (b) starting from an initial configuration
(a) with a manual geometric recreation of the scene. The scene contains a fisheye camera with strong indirect illumination and non-Lambertian materials. We
optimize for camera pose, material parameters, and light source intensity. Despite slight inaccuracies due to geometry mismatch and lens distortion, our
method generates image (f) that almost matches the photo reference.

Gradient-based methods are becoming increasingly important for computer
graphics, machine learning, and computer vision. The ability to compute
gradients is crucial to optimization, inverse problems, and deep learning. In
rendering, the gradient is required with respect to variables such as camera
parameters, light sources, scene geometry, or material appearance. However,
computing the gradient of rendering is challenging because the rendering
integral includes visibility terms that are not differentiable. Previous work on
differentiable rendering has focused on approximate solutions. They often
do not handle secondary effects such as shadows or global illumination, or
they do not provide the gradient with respect to variables other than pixel
coordinates.

We introduce a general-purpose differentiable ray tracer, which, to our
knowledge, is the first comprehensive solution that is able to compute deriva-
tives of scalar functions over a rendered image with respect to arbitrary scene
parameters such as camera pose, scene geometry, materials, and lighting
parameters. The key to our method is a novel edge sampling algorithm that
directly samples the Dirac delta functions introduced by the derivatives of
the discontinuous integrand. We also develop efficient importance sampling
methods based on spatial hierarchies. Our method can generate gradients in
times running from seconds to minutes depending on scene complexity and
desired precision.

Authors’ addresses: Tzu-Mao Li, MIT CSAIL, tzumao@mit.edu; Miika Aittala, MIT
CSAIL, miika@csail.mit.edu; Frédo Durand, MIT CSAIL, fredo@mit.edu; Jaakko Lehti-
nen, Aalto University & NVIDIA, jaakko.lehtinen@aalto.fi.

© 2018 Copyright held by the owner/author(s).
This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive Version of Record was published in ACM Transactions on
Graphics, https://doi.org/10.1145/3272127.3275109.

We interface our differentiable ray tracer with the deep learning library
PyTorch and show prototype applications in inverse rendering and the
generation of adversarial examples for neural networks.

CCS Concepts: • Computing methodologies→ Ray tracing; Visibility;
Reconstruction;

Additional Key Words and Phrases: ray tracing, inverse rendering, differen-
tiable programming

ACM Reference Format:
Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen. 2018. Dif-
ferentiable Monte Carlo Ray Tracing through Edge Sampling. ACM Trans.
Graph. 37, 6, Article 222 (November 2018), 11 pages. https://doi.org/10.1145/
3272127.3275109

1 INTRODUCTION
The computation of derivatives is increasingly central to many areas
of computer graphics, computer vision, and machine learning. It
is critical for the solution of optimization and inverse problems,
and plays a major role in deep learning via backpropagation. This
creates a need for rendering algorithms that can be differentiated
with respect to arbitrary input parameters, such as camera location
and direction, scene geometry, lights, material appearance, or tex-
ture values. Unfortunately, the rendering integral includes visibility
terms that are not differentiable at object boundaries. Whereas the
final image function is usually differentiable once radiance has been
integrated over pixel prefilters, light source areas, etc., the integrand
of rendering algorithms is not. In particular, the derivative of the
integrand has Dirac delta terms at occlusion boundaries that cannot
be handled by traditional sampling strategies.

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

https://doi.org/10.1145/3272127.3275109
https://doi.org/10.1145/3272127.3275109
https://doi.org/10.1145/3272127.3275109

222:2 • Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen

Previous work in differentiable rendering [Kato et al. 2018; Loper
and Black 2014] has focused on fast, approximate solutions using
simpler rendering models that only handle primary visibility, and
ignore secondary effects such as shadows and indirect light. Ana-
lytical solutions exist for diffuse interreflection [Arvo 1994] but are
difficult to generalize for arbitrary material models. The work by Ra-
mamoorthi et al. [2007] is an exception but it only differentiates with
respect to image coordinates, whereas we want derivatives with
respect to arbitrary scene parameters. Other previous work usually
also relies on finite differences, with the usual limitation of these
methods when the function is complex, namely that these meth-
ods work well for simple configurations but they do not propose a
comprehensive solution to the full light transport equation.
In this work, we propose an algorithm that is, to the best of our

knowledge, the first to compute derivatives of scalar functions over
a physicially-based rendered image with respect to arbitrary input
parameters (camera, light materials, geometry, etc.). Our solution
is stochastic and builds on Monte Carlo ray tracing. For this, we
introduce new techniques to explicitly sample edges of triangles in
addition to the usual solid angle sampling of traditional approaches.
This requires new spatial acceleration strategies and importance
sampling to efficiently sample edges. Our method is general and can
sample derivatives for arbitrary bounces of light transport. The run-
ning times we observed range from a second to a minute depending
on the required precision, for an overhead of roughly 10 × −20×
compared to rendering an image alone.
We integrate our differentiable ray tracer with the automatic

differentiation library PyTorch [Paszke et al. 2017] for efficient in-
tegration with optimization and learning approaches. The scene
geometry, lighting, camera and materials are parameterized by Py-
Torch tensors, which enables a complex combination of 3D graphics,
light transport, and neural networks. Backpropagation runs seam-
lessly across PyTorch and our renderer.

2 RELATED WORK

2.1 Inverse graphics
Inverse graphics techniques seek to find the scene parameters given
observed images. Vision as inverse graphics has a long history in
both computer graphics and vision (e.g. [Baumgart 1974; Patow and
Pueyo 2003; Yu et al. 1999]). Many techniques in inverse graphics
utilize derivatives of the rendering process for inference.

Blanz and Vetter [1999] optimized for shape and texture of a face.
Shacked and Lischinski [2001] and Bousseau et al. [2011] optimized
a perceptual metric for lighting design. Gkioulekas et al. [2016;
2013] focused on scattering parameters. Aittala et al. [2016; 2013;
2015] are interested in spatially varying material properties. Bar-
ron et al. [2015] proposed a solution to jointly optimize shape, illumi-
nation, and reflectance. Khungurn et al. [2015] aimed for matching
photographs of fabrics. All of the approaches above utilize gradients
for solving the inverse problem, and had to develop a specialized
solver to compute the gradient of the specific light transport sce-
narios they were interested in.

Loper and Black [2014] and Kato et al. [2018] proposed two gen-
eral differentiable rendering pipelines. Both of them focus on per-
formance and approximate the primary visibility gradients when

there are multiple triangles inside a pixel, and both of them as-
sume Lambertian materials and do not compute shadows and global
illumination.
Recently, it is increasingly popular for deep learning methods

to incorporate a differentiable rendering layer in their architecture
(e.g. [Liu et al. 2017; Richardson et al. 2017]). These rendering layers
are usually special purpose and do not handle geometric disconti-
nuities such as primary visibility and shadow.

To our knowledge our method is the first that is able to differen-
tiate through a full path tracer, while taking the geometric disconti-
nuities into account.

2.2 Derivatives in rendering
Analytical derivatives have been used for computing the footprint
of light paths [Igehy 1999; Shinya et al. 1987; Suykens and Willems
2001] and predicting the changes of specular light paths [Chen and
Arvo 2000; Jakob and Marschner 2012; Kaplanyan et al. 2014]. The
derivatives are usually manually derived for the particular type of
light paths the work focused on, making it difficult to generalize to
arbitrary material models or lighting effects. Unlike these methods,
we compute the gradients using a hybrid approach that mixes auto-
matic differentiation and manually derived derivatives focusing on
the discontinuous integrand.
Arvo [1994] proposed an analytical method for computing the

spatial gradients for irradiance. The method requires clipping of
triangle meshes in order to correctly integrate the form factor, and
does not scale well to scenes with large complexity. It is also diffi-
cult or impossible to compute closed-form integration for arbitrary
materials.
Ramamoorthi et al.’s work on first order analysis of light trans-

port [2007] is highly related to our method. Their method is a special
case of ours. Our derivation generalizes their method to differenti-
ate with respect to any scene parameters. Furthermore we handle
primary visibility, secondary visibility and global illumination.

Irradiance or radiance caching [Jarosz et al. 2012; Krivanek et al.
2005; Ward and Heckbert 1992] numerically computes the gradient
of interreflection with respect to spatial position and orientation
of the receiver. To take discontinuities into account, these methods
resort to stratified sampling. Unlike these methods, we estimate
the gradient integral directly by automatic differentiation and edge
sampling.
Li et al. [2015] proposed a variant of the Metropolis light trans-

port [Veach and Guibas 1997] algorithm by computing the Hessian
of a light path contribution with respect to the path parameters
using automatic differentiation [Griewank and Walther 2008]. Their
method does not take geometric discontinuities into account.

3 METHOD
Our task is the following: given a 3D scene with a continuous pa-
rameter set Φ (including camera pose, scene geometry, material and
lighting parameters), we generate an image using the path tracing
algorithm [Kajiya 1986]. Given a scalar function computed from
the image (e.g. a loss function we want to optimize), our goal is to
backpropagate the gradient of the scalar with respect to all scene
parameters Φ.

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

Differentiable Monte Carlo Ray Tracing through Edge Sampling • 222:3

(a) area sampling (b) edge sampling

Fig. 2. (a) The figure shows a pixel overlapped with two triangles. We are in-
terested in computing the derivative of pixel color with respect to the green
triangle moving up. Since the area covered by the green triangle increases,
the final pixel color will contain more green area and less white background.
Traditional area sampling (yellow samples) even instrumented with auto-
matic differentiation does not account for the change in covered area. (b) In
addition to traditional area sampling, we propose a novel edge sampling
algorithm (blue samples) to sample the differential area on the edges. Our
method computes unbiased gradients and correctly takes occlusion into
account.

The pixel color is formalized as an integration over all light paths
that pass through the pixel filter. We use Monte Carlo sampling to
estimate both the integral and the gradient of the integral. However,
since the integrand is discontinuous due to edges of geometry and
occlusion, traditional area sampling does not correctly capture the
changes due to camera parameters or triangle vertex movement
(Figure 2 (a)). Mathematically, the gradient of the discontinuous
integrand is a Dirac delta function, therefore traditional sampling
has zero probability of capturing the Dirac deltas.

Our strategy for computing the gradient integral is to split it into
smooth and discontinuous regions (Figure 2). For the smooth part of
the integrand (e.g. Phong shading or bilinear texture reconstruction)
we employ traditional area sampling with automatic differentiation.
For the discontinuous part we use a novel edge sampling method
to capture the changes at boundaries. In the following subsection,
we first focus on primary visibility where we only integrate over
the 2D screen-space domain (Section 3.1). We then generalize the
method to handle shadow and global illumination (Section 3.2)
We focus on triangle meshes and we assume the meshes have

been preprocessed such that there is no interpenetration. We also
assume no point light sources and no perfectly specular surfaces.
We approximate these with area light sources and BRDFs with very
low roughness. We also focus on static scenes and leave integration
over the time dimension for motion blur as future work.

3.1 Primary visibility
We start by focusing on the 2D pixel filter integral for each pixel
that integrates over the pixel filter k and the radiance L, where the
radiance itself can be another integral that integrates over light
sources or the hemisphere. We will generalize the method to handle
discontinuities inside the radiance integral in Section 3.2. The pixel
color I can be written as:

I =

"
k (x ,y)L(x ,y)dxdy. (1)

(a) half-spaces

zero contribution

(b) occlusion

Fig. 3. (a) An edge splits the space into two half-spaces fu and fl . If the edge
moves right, the green area increases while the white area decreases. We
integrate over edges to compute gradients by taking into account the change
in areas. To compute the integration, we sample a point (the blue point) on
the edge and compute the difference between the half-spaces by computing
the color on the two sides of the edge. (b) Our method handles occlusion
correctly since an occluded sample will land on the continuous part of the
path contribution function, thus having the exact same contribution on
the two sides (for example, the grey sample has zero contribution to the
gradient).

For notational convenience we will combine the pixel filter and
radiance and call them scene function f (x ,y) = k (x ,y)L(x ,y). We
are interested in the gradients of the integral with respect to some
parameters Φ in the scene function f (x ,y;Φ), such as the position
of a mesh vertex:

∇I = ∇

"
f (x ,y;Φ)dxdy. (2)

The integral usually does not have a closed-form solution, espe-
cially when more complex effects such as non-Lambertian BRDFs
are involved. Therefore we rely on Monte Carlo integration to esti-
mate the pixel value I . However, we cannot take the naive approach
of applying the same Monte Carlo sampler to estimate the gradient
∇I , since the scene function f is not necessarily differentiable with
respect to the scene parameters (Figure 2a).

A key observation is that all the discontinuities happen at triangle
edges. This allows us to explicitly integrate over the discontinuities.
A 2D triangle edge splits the space into two half-spaces (fu and fl
in Figure 3). We can model it as a Heaviside step function θ :

θ (α (x ,y)) fu (x ,y) + θ (−α (x ,y)) fl (x ,y), (3)

where fu represents the upper half-space, fl represents the lower
half-space, and α defines the edge equation formed by the triangles.
For each edge with two endpoints (ax ,ay), (bx ,by), we can con-
struct the edge equation by forming the line α (x ,y) = Ax+By+C . If
α (x ,y) > 0 then the point is at the upper half-space, and vice versa.
For the two endpoints of the edge α (x ,y) = 0. Thus by plugging in
the two endpoints we obtain:

α (x ,y) = (ay − by)x + (bx − ax)y + (axby − bxay). (4)

We can rewrite the scene function f as a summation of Heaviside
step functions θ with edge equation αi multiplied by an arbitrary

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

222:4 • Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen

function fi :"
f (x ,y)dxdy =

∑
i

"
θ (αi (x ,y)) fi (x ,y)dxdy. (5)

fi itself can contain Heaviside step functions, for example a triangle
defines a multiplication of three Heaviside step functions. fi can
even be an integral over light sources or the hemisphere. This fact
is also crucial for our later generalization to secondary visibility.

Wewant to analytically differentiate the Heaviside step function θ
and explicitly integrate over its derivative – the Dirac delta function
δ . To do this we first swap the gradient operator inside the integral,
then we use product rule to separate the integral into two:

∇

"
θ (αi (x ,y)) fi (x ,y)dxdy

=

"
δ (αi (x ,y))∇αi (x ,y) fi (x ,y)dxdy

+

"
∇fi (x ,y)θ (αi (x ,y))dxdy.

(6)

Equation 6 shows that we can estimate the gradient using two
Monte Carlo estimators. The first one estimates the integral over
the edges of triangles containing the Dirac delta functions, and
the second estimates the original pixel integral except the smooth
function fi is replaced by its gradient, which can be computed
through automatic differentiation.
To estimate the integral containing Dirac delta functions, we

eliminate the Dirac function by performing variable substitution
to rewrite the first term containing the Dirac delta function to an
integral that integrates over the edge, that is, over the regions where
αi (x ,y) = 0: "

δ (αi (x ,y))∇αi (x ,y) fi (x ,y)dxdy

=

∫
αi (x,y)=0

∇αi (x ,y)

∇x,yαi (x ,y)

fi (x ,y)dσ (x ,y),

(7)

where

∇x,yαi (x ,y)

 is the L

2 length of the gradient of the edge
equations αi with respect to x ,y, which takes the Jacobian of the
variable substitution into account. σ (x ,y) is the measure of the
length on the edge [Hörmander 1983].
The gradients of the edge equations αi are:

∇x,yαi

 =

√
(ax − bx)2 + (ay − by)2

∂αi
∂ax

= by − y,
∂αi
∂ay
= x − bx

∂αi
∂bx
= y − ay ,

∂αi
∂by
= ax − x

∂αi
∂x
= ay − by ,

∂αi
∂y
= bx − ax .

(8)

As a byproduct of the derivation, we also obtain the screen space
gradients ∂

∂x and ∂
∂y , which can potentially facilitate adaptive sam-

pling as shown in Ramamoorthi et al.’s first-order analysis [2007].
We can obtain the gradient with respect to other parameters, such
as camera parameters, 3D vertex positions, or vertex normals by

propagating the derivatives from the projected triangle vertices
using the chain rule:

∂α

∂p
=

∑
k ∈{x,y }

∂α

∂ak

∂ak
∂p
+
∂α

∂bk

∂bk
∂p
, (9)

where p is the desired parameter.
We use Monte Carlo sampling to estimate the Dirac integral

(Equation 7). Recall that a triangle edge defines two half-spaces
(Equation 3), therefore we need to compute the two values fl (x ,y)
and fu (x ,y) on the edge (Figure 3). By combining Equation 3 and
Equation 7, our Monte Carlo estimation of the Dirac integral for a
single edge E on a triangle can be written as:

1
N

N∑
j=1

∥E∥∇αi (x j ,yj) (fu (x j ,yj) − fl (x j ,yj))

P (E)

∇x j ,yjαi (x j ,yj)

, (10)

where ∥E∥ is the length of the edge and P (E) is the probability of
selecting edge E.
In practice, if we employ smooth shading, most of the triangle

edges are in the continuous regions and the Dirac integral is zero
for these edges since by definition of continuity fu (x ,y) = fl (x ,y).
Only the silhouette edges (e.g. [Hertzmann 1999]) have non-zero
contribution to the gradients. We select the edges by projecting all
triangle meshes to screen space and clip them against the camera
frustrum. We select one silhouette edge with probability propor-
tional to the screen space lengths. We then uniformly pick a point
on the selected edge.
Our method handles occlusion correctly, since if the sample is

blocked by another surface, (x ,y) will always land on the continuous
part of the contribution function f (x ,y). Such samples will have
zero contribution to the gradients. Figure 3b illustrates the process.

To recap, we use two sampling strategies to estimate the gradient
integral of pixel filter (Equation 2): one for the discontinuous regions
of the integrand (first term of Equation 6), one for the continuous
regions (second term of Equation 6). To compute the gradient for
discontinuous regions, we need to explicitly sample the edges. We
compute the difference between two sides of the edges using Monte
Carlo sampling (Equation 10).

3.2 Secondary visibility
Our method can be easily generalized to handle effects such as
shadow and global illumination by integrating over the 3D scene.
Figure 4 illustrates the idea.
We focus on a single shading point p since we can propagate

the derivative back to screen space and camera parameters using
Equation 6. Given the shading point, the shading equation involves
an integration over all pointsm on the scene manifoldM:

д(p) =

∫
M

h(p,m)dA(m), (11)

where A is the area measure of pointm, and h is the scene function
including material response, geometric factor, incoming radiance,
and visibility. Note that д(p) can itself be part of the pixel inte-
grand f (x ,y) in the previous section (Equation 1). Therefore we can
propagate the gradient of д(p) using the chain rule or automatic
differentiation with Equation 6.

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

Differentiable Monte Carlo Ray Tracing through Edge Sampling • 222:5

light source

blocker

shading point

(a) secondary visibility

edge surface element

scene surface element

(b) width correction

Fig. 4. (a) Our method can be easily generalized to handle shadow and
global illumination. Similar to the primary visibility case (Figure 3), a ge-
ometry edge (v0, v1) and the shading point p splits the 3D space into two
half-spaces fu and fl and introduces discontinuity. Assuming the blocker
is moving right, we integrate over the edge to compute the difference. By
doing so we take account of the increase in blocker area and the decrease
in light source area looking from the shading point. The integration over
edge is defined on the intersection between the scene manifold and the
plane formed by the shading point and the edge (the semi-transparent
triangle). (b) The orientation of the infinitesmal width of the edge differs
from the scene surface element the edge intersects with. During integration
we need to project the scene surface element width onto the edge surface
element. The ratio of the widths between the two is determined by 1

sinθ ,
which is one over the length of the cross product between the normal of
the edge plane and the scene surface.

Similar to the primary visibility case, an edge (v0,v1) in 3D in-
troduces a step function into the scene function h:

θ (α (p,m))hu (p,m) + θ (−α (p,m))hl (p,m). (12)

We can derive the edge function α (m) by forming a plane using the
shading point p and the two points on the edge. The sign of the
dot product between the vectorm − p and the plane normal deter-
mines the two half-spaces. The edge equation α (m) can therefore
be defined by

α (p,m) = (m − p) · (v0 − p) × (v1 − p). (13)

To compute the gradients, we analogously apply the derivation
used for primary visibility, using the 3D version of Equation 6 and
Equation 7 with x ,y replaced by p,m. The edge integral integrating
over the line on the scene surface, analogous to Equation 7 is:∫

α (p,m)=0

∇α (p,m)

∇mα (p,m)

h(p,m)
1

nm × nh

dσ ′(m)

nh =
(v0 − p) × (v1 − p)

(v0 − p) × (v1 − p)

,

(14)

where nm is the surface normal on pointm. There are two crucial
differences between the 3D edge integral (Equation 14) and the
previous screen space edge integral (Equation 7). First, while the
measure of the screen space edge integral σ (x ,y) coincides with the
unit length of the 2D edge, themeasure of the 3D edge integralσ ′(m)
is the length of projection of a point on the edge from the shading
point p to a pointm on the scene manifold (the semi-transparent
triangle in Figure 4a illustrates the projection). Second, there is
an extra area correction term

nm × nh

, since we need to project

the scene surface element onto the infinitesimal width of the edge
(Figure 4b).

To integrate the 3D edge integral using Monte Carlo sampling
we substitute the variable again from the pointm on the surface to
the line parameter t on the edge v0 + t (v1 −v0):∫ 1

0

∇α (p,m(t))

∇mα (p,m(t))

h(p,m(t))
∥ Jm (t)∥

nm × nh

dt , (15)

where the Jacobian Jm (t) is a 3D vector describing the projection
of edge (v0,v1) onto the scene manifold with respect to the line
parameter. We derive the Jacobian in Appendix A.1.

The derivatives for α (p,m) needed to compute the edge integral
are:

∇mα (p,m)

 =

(v0 − p) × (v1 − p)

∇v0α (p,m) = v1 ×m, ∇v1α (p,m) =m ×v0
∇pα (p,m) = (v0 − p) × (v1 − p).

(16)

Efficient Monte Carlo sampling of secondary edges is more in-
volved. Unlike primary visibility where the viewpoint does not
change much, shading point p can be anywhere in the scene. The
consequence is that we need a more sophisticated data structure
to prune the edges with zero contribution. Section 4 describes the
process for importance sampling edges.

4 IMPORTANCE SAMPLING THE EDGES
Our edge sampling method described in Section 3 requires us to
sample an edge from hundreds of thousands, or even millions of
triangles in the scene. The problem is two-fold: we need to sample
an edge and then sample a point on the edge efficiently. Typically
only a tiny fraction of these edges contribute to the gradients, since
most of the edges are not silhouette (e.g. [Hertzmann 1999]), and
many of them may have small solid angle. Naive sampling methods
fail to select important edges. Even if the number of edges is small,
it is often the case that only a small region on the edge has non-zero
contribution, especially when there exists highly-specular materials.

As mentioned in Section 3.1, the case for primary visibility is eas-
ier since the viewpoint is the camera. We project all edges onto the
screen in a preprocessing pass, and test whether they are silhouette
with respect to the camera position. We sample an edge based on
the distance of two points on the screen and uniformly sample in
screen space. For secondary visibility the problem is much more
complicated. The viewpoint can be anywhere in the scene, and we
need to take the material response between the viewpoint and the
point on the edge into account.
In this section we describe a scalable implementation for sam-

pling edges given arbitrary viewpoint. Our solution is inspired by
previous methods for sampling many light sources using hierarchi-
cal data structures (e.g. [Estevez and Kulla 2018; Paquette et al. 1998;
Walter et al. 2005]), efficient data structures for selecting silhouette
edges [Hertzmann and Zorin 2000; Sander et al. 2000], and the more
recent closed-form solution for linear light sources [Heitz et al. 2016;
Heitz and Hill 2017].

4.1 Hierarchical edge sampling
Given a shading point, our first task is to importance sample one or
more triangle edges. There are several factors to take into account

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

222:6 • Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen

scenes 10s, w/o importance samp. 10s, w/ importance samp. 350s, w/o importance samp. 350s, w/ importance samp.

Fig. 5. Equal time comparison between sampling with and without our importance sampling method. We tested our algorithm on scenes with soft shadow,
global illumination, and specular reflection. We show the per-pixel derivatives of average color with respect to the bunny moving up in the top row, and the
derivatives with respect to the reflected plane with the SIGGRAPH logo moving right in the second row. For the second row we only show the gradients in the
red inset. The texture derivatives are resolved better without importance sampling since it has less overhead and more samples. However, without importance
sampling it is difficult to capture rare events such as shadows cast by a small area light or very specular reflection of edges, causing extremely high variance in
the gradients.

when selecting the edges: the geometric foreshortening factor pro-
portional to the inverse squared distance to the edge, the material
response between the shading point and the point on the edge, and
the radiance incoming from the edge direction (e.g. whether it hits
a light source or not).
We build two hierarchies. The first contains the triangle edges

that associate with only one face and meshes that do not use smooth
shading normals. The second contains the remaining edges. For the
first set of edges we build a 3D bounding volume hierarchy using
the 3D positions of the two endpoints of an edge. For the second
set of edges we build a 6D bounding volume hierarchy using the
two endpoint positions and the two normals associated with the
two faces of an edge. For quick rejection of non-silhouette edges,
for each node in the hierarchy we store a cone direction and an
angle covering all possible normal directions [Sander et al. 2000].
An alternative might be a 3D hierarchy similar to the ones used by
Sander et al. [2000] or Hertzmann and Zorin [2000], but we opt for
simplicity here. Similar to previous work [Walter et al. 2006], we
scale the directional components with 1

8 the diagonal of the scene’s
bounding box. During the construction we split the dimension with
longest extent.

We traverse the hierarchies to sample edges. The edges blocking
light sources are usually the most significant source of contribution.
Therefore we traverse the hierarchy twice. The first traversal focuses
on edges that overlap with the cone subtended by the light source
at the shading point, and the second traversal samples all edges.
We combine the two sets of samples using multiple importance
sampling [Veach and Guibas 1995]. We use a box-cone intersection
to quickly discard the edges that do not intersect the light sources.

During the traversal, for each node in the hierarchy we compute
an importance value for selecting which child to traverse next, based
on an upper bound estimation of the contribution, similar to the
lightcuts algorithm [Walter et al. 2005].We estimate the bound using
the total length of edges times inverse squared distance times a Blinn-
Phong BRDF (using the method described in Walter’s note [2005]).
We set the importance to zero if the node does not contain any
silhouette. We traverse into both children if the shading point is
inside both of their bounding boxes, or when the BRDF bound is
higher than a certain threshold (for all examples in the paper we
set it to 1), or when the angle subtended by the light cone is smaller
than a threshold (we set it to cos−1 (0.95)).

4.2 Importance sampling a single edge.
After we select a set of edges, we need to choose a point on the edge
we selected. Oftentimes with a highly-specular BRDF, only a small
portion of the edge has significant contribution. We employ the
recent technique on integrating linear light sources over Linearly
Transformed Cosine Distribution [Heitz et al. 2016; Heitz and Hill
2017]. Heitz and Hill’s work provides a closed-form solution of
the integral between a point and a linear light source, weighted
by BRDF and geometric foreshortening. We numerically invert the
integrated cumulative distribution function using Newton’s method
for importance sampling. We precompute a table of fitted linearly
transformed cosine for our BRDFs.

We evaluate our sampling method using equal-time comparison
and show the results in Figure 5. We compare against the baseline
approach of uniformly sampling all edges by length. The baseline

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

Differentiable Monte Carlo Ray Tracing through Edge Sampling • 222:7

initial guess

target

optimized result
(a) primary occlusion (b) shadow (c) camera & glossy (d) glossy receiver (e) near-specular (f) global illumination

Fig. 6. We verify our renderer by matching a range of synthetic scenes with different light transport configurations. For each scene, we start from an initial
parameter (first row) and attempt to set scene parameters so that the rendering matches the target (second row) using gradient-based optimization. Each
scene is intended to test a different aspect of the renderer. (a) optimizes triangle positions under the presence of occlusion. (b) optimizes blocker position for
shadow. (c) optimizes camera pose and material parameters over textured and glossy surfaces. (d) optimizes the blocker position where the shadow receiver
is highly glossy. (e) optimizes an almost specular reflection of a plane behind the camera; the free parameter is the plane position. (f) optimizes camera
pose under the presence of global illumination and soft shadow. Our method is able to generate gradients for these scenes and to optimize the parameters
correctly, resulting in minimal difference between the optimized result (final row) and target (second row). All the scenes are rendered with 4 samples per pixel
during optimization. The final renderings are produced with 625 samples per pixel, except for (f) we use 4096 samples. We encourage the reader to refer to the
supplementary materials for videos and more scenes.

approach is not able to efficiently sample rare events such as shad-
ows cast by a small light source or very specular reflection of edges,
while our importance sampling generates images with much lower
variance.

5 RESULTS
We implement our method in a stand-alone C++ renderer with an
interface to the automatic differentiation library PyTorch [Paszke
et al. 2017]. To use our system, the user constructs their scenes using
lists of PyTorch tensors. For example, triangle vertices and indices
are represented by floating point and integer tensors. Our renderer
in the forward pass outputs an image which is also a PyTorch tensor.
The user can then compute a scalar loss on the output image and
obtain the gradient by backpropagating to the scene parameters.
Inside our C++ renderer, we use an operator overloading approach
for automatic differentiation. We use the Embree library [Wald
et al. 2014] for our ray casting operations. The renderer supports a
pinhole camera with planar and equiangular spherical projection,
Lambertian and Blinn-Phong BRDFs with Schlick approximation
for Fresnel reflection, bilinear reconstruction of textures for diffuse

and specular reflectance and roughness, and area light sources with
triangle meshes.

5.1 Verification of the method
We tested our method on several synthetic scenes covering a variety
of effects, including occlusion, non-Lambertian materials, and global
illumination. Figure 6 shows the scenes. We start from an initial
parameter, and try to optimize the parameters to minimize the L2
difference between the rendered image and target image using gra-
dients generated by our method (except for the living room scene
in Figure 6 (f) where we optimize for the L2 difference between
the Gaussian pyramids of the rendered image and target image).
Our PyTorch interface allows us to apply their in-stock optimiz-
ers, and backpropagate to all scene parameters easily. We use the
Adam [Kingma and Ba 2015] algorithm for optimization. The num-
ber of parameters ranges from 6 to 30. The experiment shows that
our renderer is able to generate correct gradients for the optimizer
to infer the correct scenes. It also shows that we are able to handle
many different light transport scenarios, including cases where a
triangle vertex is blocked but we still need to optimize it into the
correct position, optimization of blocker position when we only see

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

222:8 • Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen

image

finite differences

ours
(a) triangles (b) shadow (c) teapot

Fig. 7. We compare with central finite differences by rendering the scenes
in Figure 6 at 32× 32. The scenes are slightly adjusted to make the per-pixel
gradient look clearer in the image. The derivatives are with respect to (a)
each rightmost vertex of the two triangles moving left (b) the shadow blocker
moving up (c) the camera moving into the screen. Our derivatives match
the finite differences within an error of 1% relative to the L1 norm of the
gradients. Finite differences usually take two or three orders of magnitude
more samples to reach the same error. For our method, we use 16 thousand
samples per pixel for the scene with two triangles and 32 thousand samples
per pixel for the other two scenes. For finite differences, we use 1 million
samples per pixel for the triangles scene and 10 million samples per pixel
for the rest.

the shadow, joint optimization of camera and material parameters,
pose estimation in presence of global illumination, optimizing block-
ers occluding highly-glossy reflection, and inverting near specular
reflection. See the supplementary materials for more results.
We also compare our method to central finite differences on a

lower resolution version of the synthetic scenes in Figure 7. Our
derivatives match the finite difference within an error of 1% relative
to the L1 norm of the gradients. The comparison is roughly equal
quality. We increase the number of samples for the finite differences
until the error is low enough. In general finite difference requires
a small step size to measure the visibility gradient correctly, thus
they usually take two or three orders of magnitude more samples to
reach the same error as our result. In addition, finite differences do
not scale with the number of parameters, making them impractical
for most optimization tasks.
Figure 8 demonstrates the convergence of our method by visu-

alizing the gradients of the bunny scene in Figure 5 over different
numbers of samples per pixel. We show the gradients of the average
of pixel colors with respect to the bunny moving right on the screen.

(a) 1 spp (b) 16 spp

(c) 128 spp (d) 1024 spp

Fig. 8. We visualize the per-pixel gradient contribution generated by our
method over different numbers of the samples per pixel. We take the bunny
scene from Figure 5. The gradient is the average of color with respect to
the bunny moving right. The 1024 samples per pixel image took around
40 minutes to compute on a 6-core machine. In practice we usually use 4
samples per pixel for inverse rendering.

Generating the near-converged 1024 samples per pixel image takes
around 40 minutes on a 6-core machine. In practice we don’t render
converged images for optimization. We utilize stochastic gradient
descent and render a low sample count image (usually 4).

5.2 Comparison with previous differentiable renderers
In this subsection we compare our method with two previously
proposed differentiable renderers: OpenDR [Loper and Black 2014]
and Neural 3D Mesh renderer [Kato et al. 2018]. Both previous
methods focus on speed and approximate the gradients even un-
der Lambertian materials with unshadowed direct lighting. In con-
trast, our method outputs unbiased gradients and supports arbitrary
non-Dirac materials, shadow, and global illumination, as shown in
Figure 6.

Both OpenDR and Neural 3D Mesh renderer follow the approach
of first rendering into a color buffer using a traditional rasterizer
with z-buffer. They then approximate the derivatives with respect
to screen-space triangle vertex positions using the rendered color
buffer. OpenDR performs a screen-space filtering approach based
on a brightness constancy assumption [Jones and Poggio 1996]. The
shape of the filter is determined by boundary detection using tri-
angle ID. For the horizontal derivatives of a pixel neighboring an
occlusion boundary on the left, they use the kernel [0,−1, 1]. For
pixels that are not neighboring any boundaries, or are intersect-
ing with boundaries, or are neighboring more than one occlusion

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

Differentiable Monte Carlo Ray Tracing through Edge Sampling • 222:9

(a) planar scene (b) OpenDR (c) Neural (d) ours

Fig. 9. (a) A plane lit by a point light close to the plane. We are interested
in the derivative of the image with respect to the plane moving right. Since
the point light stays static, the derivatives should be zero except for the
boundary. (b) (c) Previous work uses color buffer differences to approximate
the derivatives, making them unable to take large variation between pixels
into account and output non zero derivatives at the center. (d) Our method
outputs the correct derivatives.

boundary, they use the kernel 1
2 [−1, 0, 1]. The Neural 3D Mesh ren-

derer performs an extra edge rasterization pass of the triangle edges
and accumulates the derivatives by computing the difference be-
tween the color difference on the color buffer around the edge. The
derivative responses are modified by applying a smooth falloff.

Both previous differentiable renderers output incorrect gradients
in the case where there is brightness variation between pixels due
to lighting. Figure 9 shows an example of a plane lit by a point
light with inverse squared distance falloff. We ask the two renderers
and ours to compute the derivatives of the pixel color with respect
to the plane moving right. Since the light source does not move,
the illumination on the plane remains static and the derivatives
should be zero except for the boundaries of the plane. Since both
previous renderers use the differences between color buffer pixels
to approximate derivatives, they incorrectly take the illumination
variation as the changes that would happen if the plane moves right,
and output non-zero derivatives around the highlights. On the other
hand, since we sample on the edges, our method correctly outputs
zero derivatives on continuous regions.

OpenDR’s point light does not have distance falloff and the Neural
3D mesh renderer does not support point lights so we modified their
renderers. Our renderer does not support pure point lights so we
use a small planar area light to approximate a point light. We also
tessellate the plane into 256 × 256 grids as both previous renderers
use Gouraud shading.

5.3 Inverse rendering application
We apply our method on an inverse rendering task for fitting camera
pose, material parameters, and light source intensity. Figure 1 shows
the result. We take the scene photo and geometry data from the
thesis work of Jones [2017], where the scene was used for validating
daylight simulation. The scene contains strong indirect illumination
and has non-Lambertian materials. We assign most of the materials
to white except for plastic or metal-like objects, and choose an
arbitrary camera pose as an initial guess. There are in total 177
parameters for this scene. We then use gradient-based optimizer
Adam and the gradients generated by our method, to find the correct
camera pose and material/lighting parameters. In order to avoid
getting stuck in local minima, we perform the optimization in a
multi-scale fashion, starting from 64 × 64 and linearly increasing to

(a) input scene
53% street sign
14.5% traffic light
6.7% handrail

(b) 5 iterations
26.8% handrail
20.2% street sign
4.8% traffic light

(c) 25 iterations
23.3% handrail
3.39% street sign or
traffic light

0 5 10 15 20 25 30

0.1
0.2
0.3
0.4
0.5
0.6

iteration

cl
as
ss

co
re

(d) combined class score of street sign and traffic light

Fig. 10. Our method can be used for finding 3D scenes as adversarial ex-
amples for neural networks. We use the gradient generated by our method
to optimize for the geometry of the stop sign, camera pose, light intensity
and direction to minimize the class scores of street sign and traffic light
classes. After 5 iterations the network classifies the stop sign as a handrail,
and after 25 iterations both street sign and traffic light are out of the top 5
prediction. In (d) we plot the sum of street sign and traffic light class scores
as a function of iteration. As we optimize scene parameters such as the stop
sign shape, gradient descent tries to find the geometries that minimizes the
class scores, thus we see decreasing of the score.

the final resolution 512×512 through 8 stages. For each scale we use
an L1 loss and perform 50 iterations. We exclude the light source
in the loss function by setting the weights of pixels with radiance
larger than 5 to 0.

5.4 3D adversarial example
Recently, it has been shown that gradient-based optimization can
also be used for finding adversarial examples for neural networks
(e.g. [Goodfellow et al. 2015; Szegedy et al. 2014]) for analysis or
mining training data. The idea is to take an image that was originally
labelled correctly by a neural network classifier, and use backpropa-
gation to find an image that minimizes the network’s output with
respect to the correct output. Our system can be used for mining
adversarial examples of 3D scenes, since it provides the ability to
backpropagate from image to scene parameters. A similar idea has
been explored by Zeng et al. [2017], but we use a more general
renderer.

We demonstrate this in Figure 10. We show a stop sign classified
correctly as a street sign by the VGG16 classifier [Simonyan and
Zisserman 2014]. We then optimize for 2256 parameters including
camera pose, light intensity, sun position, global translation, rota-
tion, and vertex displacement of the stop sign.We perform stochastic

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

222:10 • Tzu-Mao Li, Miika Aittala, Frédo Durand, and Jaakko Lehtinen

gradient descent to minimize the network’s output of the classes
street sign and traffic light, using 256 samples per pixel. After 5 iter-
ations the network starts to output handrail as the most probable
class. After 23 iterations both the street sign class and traffic light
class are out of the top-5 predictions and the sum of the two has
less than 5% probability.

We do not claim this is a robust way to break or to attack neural
networks, since the CG scene we use has different statistics com-
pared to real world images. Nevertheless this demonstrates that our
gradient can be used for finding interesting scene configurations
and can be potentially used for mining training data.

5.5 Limitations
Performance. Our current CPU implementation takes seconds to
minutes to generate a small resolution image (say 256 × 256) with
a small number of samples (say 4). Note though that when using
stochastic gradient descent it is usually not necessary to use high
sample counts.
We have found that, depending on the type of scene, the bot-

tleneck can be at the edge sampling phase or during automatic
differentiation of the light paths. Developing better sampling algo-
rithms such as incorporating bidirectional path tracing could be an
interesting avenue of future work. Developing better compiler tech-
niques for optimizing automatic differentiation code and supporting
GPU backends is also an important task.

Other light transport phenomena.We assume static scenes with no
participating media. Differentiating motion blur requires sampling
on 4D edges with an extra time dimension. Combining our method
with Gkioulekas et al.’s work [2013] for handling participating media
is left as future work.
Interpenetrating geometries and parallel edges. Dealing with the

derivatives of interpenetration of triangles requires a mesh splitting
process and its derivatives. Interpeneration can happen if the mesh
is generated by some simulation process. Our method also does not
handle the case where two edges are perfectly aligned as seen from
the center of projection (camera or shadow ray origin). However,
these are zero-measure sets in path space, and as long as the two
edges are not perfectly aligned to the viewport, we will be able to
converge to the correct solution.

Shader discontinuities. We assume our BRDF models and shaders
are differentiable and do not handle discontinuities in the shaders.
We handle textures correctly by differentiating through the smooth
reconstruction, and many widely-used reflection models such as
GGX [Walter et al. 2007] (with Smith masking) or Disney’s prin-
cipled BRDF [Burley 2012] are differentiable. However, we do not
handle the discontinuities at total internal reflection and some other
BRDFs relying on discrete operations, such as the discrete stochastic
microfacet model of Jakob et al. [2014]. Compiler techniques for
band-limiting BRDFs can be applied to mitigate the shader disconti-
nuity issue [Yang and Barnes 2018].

6 CONCLUSION
We have introduced a differentiable Monte Carlo ray tracing algo-
rithm that is capable of generating correct and unbiased gradients
with respect to arbitrary input parameters such as scene geometry,

camera, lights and materials. For this, we have introduced a novel
edge sampling algorithm to take the geometric discontinuities into
consideration, and derived the appropriate measure conversion. For
increased efficiency, we use a new discrete hierarchical sampling
method to focus on relevant edges as well as continuous edge im-
portance sampling. We believe this method and the software that
we will release will have an impact in inverse rendering and deep
learning.

A APPENDIX

A.1 Derivation of the 3D edge Jacobian
We derive the Jacobian Jm (t) in Equation 15. The goal is to compute
the derivatives of pointm(t) with respect to the line parameter t . The
relation betweenm(t) and t is described by a ray-plane intersection.
That is, we are intersecting a plane at pointm with normal nm with
a ray of origin p and unnormalized direction ω (t):

ω (t) = v0 + (v1 −v0)t − p

τ (t) =
(m − p) · nm
ω (t) · nm

m(t) = τ (t)ω (t).

(17)

We can then derive the derivative Jm (t) =
∂m (t)
∂t as:

Jm (t) = τ (t)

(
(v1 −v0) − ω (t)

(v1 −v0) · nm
ω (t) · nm

)
(18)

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their detailed comments
(especially reviewer #1). The work started as an internship project at
NVIDIA, where Marco Salvi and Aaron Lefohn provided immensely
helpful advice. Luke Anderson and Prafull Sharma helped proofread
the drafts. Nathaniel Jones modelled the conference scene in Figure 1
and gave helpful comments on the applications of inverse rendering
for architectural design. The teapot model in Figure 5 was modelled
by Martin Newell and the bunny in the same figure was created by
Brian Curless and Marc Levoy. Both of them were downloaded from
Morgan McGuire’s website [2017]. The living room scene in Figure 6
(f) was modelled by Wig42 and ported to Mitsuba scene format by
Benedikt Bitterli [2016]. The stop sign in Figure 10 was modelled
by Elijah Rai, and the street in the same figure was modelled by
Pabong. Both of themwere downloaded from Free3D.com. The work
is funded by Toyota Research Institute.

REFERENCES
Miika Aittala, Timo Aila, and Jaakko Lehtinen. 2016. Reflectance modeling by neural

texture synthesis. ACM Trans. Graph. (Proc. SIGGRAPH) 35, 4 (2016), 65:1–65:13.
Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. 2013. Practical SVBRDF Capture

In The Frequency Domain. ACM Trans. Graph. (Proc. SIGGRAPH) 32, 4 (2013),
110:1–110:12.

Miika Aittala, Tim Weyrich, and Jaakko Lehtinen. 2015. Two-shot SVBRDF Capture
for Stationary Materials. ACM Trans. Graph. (Proc. SIGGRAPH) 34, 4 (2015), 110:1–
110:13.

James Arvo. 1994. The Irradiance Jacobian for Partially Occluded Polyhedral Sources.
In SIGGRAPH. 343–350.

Jonathan T Barron and Jitendra Malik. 2015. Shape, Illumination, and Reflectance from
Shading. Transactions on Pattern Analysis and Machine Intelligence 37, 8 (2015),
1670–1687.

Bruce Guenther Baumgart. 1974. Geometric modeling for computer vision. Technical
Report. Stanford University Department of Computer Science.

Benedikt Bitterli. 2016. Rendering resources. https://benedikt-bitterli.me/resources/.

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

Differentiable Monte Carlo Ray Tracing through Edge Sampling • 222:11

Volker Blanz and Thomas Vetter. 1999. A morphable model for the synthesis of 3D
faces. In SIGGRAPH. 187–194.

Adrien Bousseau, Emmanuelle Chapoulie, Ravi Ramamoorthi, and Maneesh Agrawala.
2011. Optimizing environment maps for material depiction. Computer Graphics
Forum (Proc. EGSR) 30, 4 (2011), 1171–1180.

Brent Burley. 2012. Physically-based shading at Disney. In SIGGRAPH Course Notes.
Practical physically-based shading in film and game production., Vol. 2012. 1–7.

Min Chen and James Arvo. 2000. Theory and application of specular path perturbation.
ACM Trans. Graph. 19, 4 (2000), 246–278.

Alejandro Conty Estevez and Christopher Kulla. 2018. Importance Sampling of Many
Lights with Adaptive Tree Splitting. ACM Comput. Graph. Interact. Tech. (Proc. HPG)
1, 2 (2018), 25:1–25:17.

Ioannis Gkioulekas, Anat Levin, and Todd Zickler. 2016. An evaluation of computational
imaging techniques for heterogeneous inverse scattering. In European Conference
on Computer Vision. Springer, 685–701.

Ioannis Gkioulekas, Shuang Zhao, Kavita Bala, Todd Zickler, and Anat Levin. 2013.
Inverse Volume Rendering with Material Dictionaries. ACM Trans. Graph. 32, 6
(2013), 162:1–162:13.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. 2015. Explaining and Harness-
ing Adversarial Examples. In International Conference on Learning Representations.

Andreas Griewank and Andrea Walther. 2008. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation (second ed.). Society for Industrial and
Applied Mathematics, Philadelphia, PA, USA.

Eric Heitz, Jonathan Dupuy, Stephen Hill, and David Neubelt. 2016. Real-time polygonal-
light shading with linearly transformed cosines. ACM Trans. Graph. (Proc. SIG-
GRAPH) 35, 4 (2016), 41:1–41:8.

Eric Heitz and Stephen Hill. 2017. Linear-Light Shading with Linearly Transformed
Cosines. In GPU Zen.

Aaron Hertzmann. 1999. Introduction to 3D Non-Photorealistic Rendering: Silhouettes
and Outlines. In SIGGRAPH Course Notes. Course on Non-Photorelistic Rendering,
Stuart Green (Ed.). ACM Press/ACM SIGGRAPH, New York.

Aaron Hertzmann and Denis Zorin. 2000. Illustrating smooth surfaces. In SIGGRAPH.
517–526.

Lars Hörmander. 1983. The analysis of linear partial differential operators I: Distribution
theory and Fourier analysis.

Homan Igehy. 1999. Tracing Ray Differentials. SIGGRAPH, 179–186.
Wenzel Jakob, Miloš Hašan, Ling-Qi Yan, Jason Lawrence, Ravi Ramamoorthi, and Steve

Marschner. 2014. Discrete stochastic microfacet models. ACM Transs Graph. (Proc.
SIGGRAPH) 33, 4 (2014), 115:1–115:10.

Wenzel Jakob and Steve Marschner. 2012. Manifold exploration: a Markov Chain Monte
Carlo technique for rendering scenes with difficult specular transport. ACM Trans.
Graph. (Proc. SIGGRAPH) 31, 4 (2012), 58:1–58:13.

Wojciech Jarosz, Volker Schönefeld, Leif Kobbelt, and Henrik Wann Jensen. 2012.
Theory, analysis and applications of 2D global illumination. ACM Trans. Graph. 31,
5 (2012), 125:1–125:21.

Michael J. Jones and Tomaso Poggio. 1996. Model-Based Matching by Linear Combina-
tions of Prototypes. Technical Report.

Nathaniel Louis Jones. 2017. Validated interactive daylighting analysis for architectural
design. Ph.D. Dissertation. Massachusetts Institute of Technology.

James T. Kajiya. 1986. The Rendering Equation. Computer Graphics (Proc. SIGGRAPH)
20, 4 (1986), 143–150.

Anton S Kaplanyan, Johannes Hanika, and Carsten Dachsbacher. 2014. The natural-
constraint representation of the path space for efficient light transport simulation.
ACM Trans. Graph. (Proc. SIGGRAPH) 33, 4 (2014), 102:1–102:13.

Hiroharu Kato, Yoshitaka Ushiku, and Tatsuya Harada. 2018. Neural 3D Mesh Renderer.
In Conference on Computer Vision and Pattern Recognition. 3907–3916.

Pramook Khungurn, Daniel Schroeder, Shuang Zhao, Kavita Bala, and Steve Marschner.
2015. Matching Real Fabrics with Micro-Appearance Models. ACM Trans. Graph.
35, 1 (2015), 1:1–1:26.

Diederick P Kingma and Jimmy Ba. 2015. Adam: A method for stochastic optimization.
In International Conference on Learning Representations.

Jaroslav Krivanek, Pascal Gautron, Sumanta Pattanaik, and Kadi Bouatouch. 2005.
Radiance Caching for Efficient Global Illumination. (2005), 550–561.

Tzu-Mao Li, Jaakko Lehtinen, Ravi Ramamoorthi, Wenzel Jakob, and Frédo Durand.
2015. Anisotropic Gaussian Mutations for Metropolis Light Transport through
Hessian-Hamiltonian Dynamics. ACM Transactions on Graphics (Proc. SIGGRAPH
Asia) 34, 6 (2015), 209:1–209:13.

Guilin Liu, Duygu Ceylan, Ersin Yumer, Jimei Yang, and Jyh-Ming Lien. 2017. Material
Editing Using a Physically Based Rendering Network. In International Conference
on Computer Vision. 2280–2288.

Matthew M. Loper and Michael J. Black. 2014. OpenDR: An Approximate Differentiable
Renderer. In European Conference on Computer Vision, Vol. 8695. 154–169.

Morgan McGuire. 2017. Computer Graphics Archive. https://casual-effects.com/data
Eric Paquette, Pierre Poulin, and George Drettakis. 1998. A Light Hierarchy for Fast Ren-

dering of Scenes with Many Lights. Computer Graphics Forum (Proc. Eurographics)
(1998), 63–74.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary
DeVito, Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. 2017. Auto-
matic differentiation in PyTorch. (2017).

Gustavo Patow and Xavier Pueyo. 2003. A survey of inverse rendering problems.
Computer Graphics Forum 22, 4 (2003), 663–687.

Ravi Ramamoorthi, Dhruv Mahajan, and Peter Belhumeur. 2007. A First-order Analysis
of Lighting, Shading, and Shadows. ACM Trans. Graph. 26, 1 (2007), 2:1–2:21.

Elad Richardson, Matan Sela, Roy Or-El, and Ron Kimmel. 2017. Learning detailed face
reconstruction from a single image. In Conference on Computer Vision and Pattern
Recognition. 5553–5562.

Pedro V. Sander, Xianfeng Gu, Steven J. Gortler, Hugues Hoppe, and John Snyder. 2000.
Silhouette Clipping. In SIGGRAPH. 327–334.

Ram Shacked and Dani Lischinski. 2001. Automatic lighting design using a perceptual
quality metric. Computer Graphics Forum 20, 3 (2001), 215–227.

Mikio Shinya, T. Takahashi, and Seiichiro Naito. 1987. Principles and Applications of
Pencil Tracing. Comput. Graph. (Proc. SIGGRAPH) 21, 4 (1987), 45–54.

K. Simonyan and A. Zisserman. 2014. Very Deep Convolutional Networks for Large-
Scale Image Recognition. arXiv preprint arXiv:1409.1556 (2014).

Frank Suykens and Yves D. Willems. 2001. Path Differentials and Applications. In
Eurographics Workshop on Rendering Techniques. 257–268.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian
Goodfellow, and Rob Fergus. 2014. Intriguing properties of neural networks. In
International Conference on Learning Representations.

Eric Veach and Leonidas J. Guibas. 1995. Optimally Combining Sampling Techniques
for Monte Carlo Rendering. In SIGGRAPH. 419–428.

Eric Veach and Leonidas J. Guibas. 1997. Metropolis Light Transport. In SIGGRAPH.
65–76.

Ingo Wald, Sven Woop, Carsten Benthin, Gregory S Johnson, and Manfred Ernst. 2014.
Embree: a kernel framework for efficient CPU ray tracing. ACM Trans. on Graph.
(Proc. SIGGRAPH) 33, 4 (2014), 143.

Bruce Walter. 2005. Notes on the Ward BRDF. Program of Computer Graphics, Cornell
University, Technical report PCG-05 6 (2005).

Bruce Walter, Adam Arbree, Kavita Bala, and Donald P Greenberg. 2006. Multidimen-
sional lightcuts. ACM Trans. Graph. (Proc. SIGGRAPH) 25, 3 (2006), 1081–1088.

Bruce Walter, Sebastian Fernandez, Adam Arbree, Kavita Bala, Michael Donikian, and
Donald P Greenberg. 2005. Lightcuts: a scalable approach to illumination. ACM
Trans. Graph. (Proc. SIGGRAPH) 24, 3 (2005), 1098–1107.

Bruce Walter, Stephen R Marschner, Hongsong Li, and Kenneth E Torrance. 2007.
Microfacet models for refraction through rough surfaces. Rendering Techniques
(Proc. EGSR) (2007), 195–206.

Greg Ward and Paul Heckbert. 1992. Irradiance Gradients. In Eurographics Rendering
Workshop. 85–98.

Y. Yang and C. Barnes. 2018. Approximate Program Smoothing Using Mean-Variance
Statistics, with Application to Procedural Shader Bandlimiting. Computer Graphics
Forum (Proc. Eurographics) 37, 2 (2018), 443–454.

Yizhou Yu, Paul Debevec, Jitendra Malik, and Tim Hawkins. 1999. Inverse global
illumination: Recovering reflectance models of real scenes from photographs. In
SIGGRAPH. 215–224.

Xiaohui Zeng, Chenxi Liu, Weichao Qiu, Lingxi Xie, Yu-Wing Tai, Chi Keung Tang, and
Alan L Yuille. 2017. Adversarial Attacks Beyond the Image Space. arXiv preprint
arXiv:1711.07183 (2017).

ACM Trans. Graph., Vol. 37, No. 6, Article 222. Publication date: November 2018.

https://casual-effects.com/data

	Abstract
	1 Introduction
	2 Related Work
	2.1 Inverse graphics
	2.2 Derivatives in rendering

	3 Method
	3.1 Primary visibility
	3.2 Secondary visibility

	4 Importance sampling the edges
	4.1 Hierarchical edge sampling
	4.2 Importance sampling a single edge.

	5 Results
	5.1 Verification of the method
	5.2 Comparison with previous differentiable renderers
	5.3 Inverse rendering application
	5.4 3D adversarial example
	5.5 Limitations

	6 Conclusion
	A Appendix
	A.1 Derivation of the 3D edge Jacobian

	Acknowledgments
	References

