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Fig. 1. We introduce a differentiable rasterizer for vector graphics that bridges the raster and vector domains through backpropagation. Differentiable
rasterization enables many novel vector graphics applications. (a) Interactive editing that locally optimizes for image-space metrics, such as opacity, under
geometric constraints. (b) A new painterly rendering technique by fitting random Bézier curves to a target image. (c) Improving state of art image vectorization
result. (d) Editing vector graphics using potentially non-differentiable raster image processing operators, such as seam carving [Avidan and Shamir 2007] for
image retargeting. (e) Training a variational autoencoder [Kingma and Welling 2014] to generate vector MNIST digits [LeCun et al. 1998] and adding stylized
strokes as postprocessing. Images courtesy of wikipedia user Daderot and Eric Guinther, and freesvg.org user OpenClipart.

We introduce a differentiable rasterizer that bridges the vector graphics and
raster image domains, enabling powerful raster-based loss functions, opti-
mization procedures, and machine learning techniques to edit and generate
vector content. We observe that vector graphics rasterization is differentiable
after pixel prefiltering. Our differentiable rasterizer offers two prefiltering op-
tions: an analytical prefiltering technique and a multisampling anti-aliasing
technique. The analytical variant is faster but can suffer from artifacts such
as conflation. The multisampling variant is still efficient, and can render
high-quality images while computing unbiased gradients for each pixel with
respect to curve parameters.

We demonstrate that our rasterizer enables new applications, including
a vector graphics editor guided by image metrics, a painterly rendering
algorithm that fits vector primitives to an image by minimizing a deep
perceptual loss function, new vector graphics editing algorithms that exploit
well-known image processing methods such as seam carving, and deep
generative models that generate vector content from raster-only supervision
under a VAE or GAN training objective.
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1 INTRODUCTION
Vector graphics compactly define images using mathematical prim-
itives such as 2D points and curves in a resolution-independent
fashion. They are ubiquitous in print, animation, web design, and
user interfaces. However, current methods to edit or create vec-
tor graphics are arguably trailing behind those designed for raster
images. For instance, automatic generation of vector graphics typi-
cally requires specialized algorithms that trace image edges and fit
curves [Hertzmann 1998; Selinger 2003], and vector editing often
calls for specialized solvers tailored to specific geometric primi-
tives [Sun et al. 2007; Yang et al. 2015; Zhao et al. 2018].

In contrast, image processing and machine learning have created
powerful and general tools such as convolutional neural networks
to manipulate raster images. These methods can extract and transfer
image style [Gatys et al. 2016], learn to map images from one domain
to another [Isola et al. 2017], or synthesize novel images by learning
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from large image collections [Goodfellow et al. 2014; Kingma and
Welling 2014].

One could consider a workflow where vector graphics are first
rasterized [Batra et al. 2015; Ganacim et al. 2014; Kilgard and Bolz
2012] then post-processed by a raster-domain algorithm. Unfortu-
nately, this is a one-way process that discards the structure implicit
in the vector graphic, and the only way back to the vector domain
is by re-tracing the raster result, which produces a graphic with a
dramatically different structure. This means that it is not possible
to truly apply raster-based algorithms to vector graphics this way.
We seek to create a differentiable rasterizer, to bridge the raster

and vector domains so that raster-based algorithms and loss func-
tions can be used to modify or synthesize vector content. The com-
mon preconception that rasterization is not differentiable has led to
the development of differentiable neural approximations to rasteri-
zation [Huang et al. 2019; Nakano 2019; Zheng et al. 2019]. Unfortu-
nately, these are often limited to only a few primitives, are costly to
train, and generalize poorly beyond their training dataset.
Building on recent work in differentiable 3D rendering [Li et al.

2018], we show that such approximations are unnecessary; when
properly accounting for pixel prefiltering (anti-aliasing), the raster-
ized image is differentiable with respect to curve and other vector
parameters. Based on this observation, we build a differentiable ras-
terizer that produces correct, high-quality rasterizations of general
vector content (in the forward pass) and can automatically compute
gradients with respect to the input vector parameters (backward
pass).

This crucial issue of anti-aliasing requires special treatment, since
automatically differentiating anti-aliasing algorithms does not pro-
duce correct or efficient gradient code. We develop two distinct
anti-aliasing implementations that each enable differentiable rasteri-
zation. The first approach usesMonte Carlo sampling (e.g., [Ganacim
et al. 2014; Kilgard and Bolz 2012]) to compute a high-quality ref-
erence solution that converges to the correct raster image. It has
reasonable performance, but requires incoherent memory access,
and it is stochastic. The second formulation is slightly faster and
deterministic, but can sometimes be less accurate or suffer from
artifacts such as conflation [Kilgard and Bolz 2012]. It uses an ap-
proximate analytical prefilter based on the signed distance to the
closest curve (e.g., [Nehab and Hoppe 2008]).

In the Monte Carlo variant, we express a pixel’s color as the sum
of integrals over object areas and apply the Reynolds transport the-
orem [Reynolds et al. 1903] — a high-dimensional generalization
of the Leibniz integral rule — to differentiate the object boundary
parameters by sampling the boundaries. We properly account for
discontinuities introduced by point sampling, e.g., when render-
ing a step edge, which automatic differentiation techniques do not
handle. While previous differentiable Monte Carlo rendering meth-
ods (e.g., [Li et al. 2018]) focused on triangle meshes, our method
works with arbitrary curves and strokes, including Bézier curves
and ellipses.
In the analytical prefiltering variant, we can compute gradients

by automatic differentiation. However, we must take special care
for cubic Bézier curves, since the distance between a point and a
cubic curve does not have a closed-form solution, and we need to

differentiate an iterative polynomial root solver. We use the implicit
function theorem for efficient differentiation of the iterative solver.

Both anti-aliasing strategies are embarrassingly parallel. We pro-
vide our CUDA implementation together with a PyTorch interface
that enables our differentiable rasterizer to be used within larger
differentiable programs.

Differentiable rasterization enables gradient-based optimization
across the vector and raster domains. With this, we cast a wide
range of novel vector graphics problems into a unified optimization
framework: minimizing a rendering loss on the raster output, either
by directly updating vector graphics parameters, or by optimizing
a neural network that generates vector graphics (Figure 1). We
develop a new interactive vector graphics editing system that can
simultaneously optimize geometric and raster metrics, improve
existing image vectorization methods by fine-tuning the results to
better match the target image, apply raster image processing filters
such as seam carving [Avidan and Shamir 2007] to vector graphics,
and train generative models for vector graphics — both variational
autoencoders and generative adversarial networks — which are
supervised only with raster images.
Our work focuses on differentiating the rasterization procedure

with respect to continuous parameters of the vector shapes (vertex
positions, colors, stroke width, etc). Discrete changes to the topology
of vector graphics are important , but they remain beyond the scope
of this paper.

To summarize, we make the following contributions:

• We identify the key criteria for a general-purpose differen-
tiable rasterization algorithm for vector graphics, including
polynomial and rational polynomial curves, transparency,
occlusion, constant and gradient fill, and strokes.
• We show how traditional rasterization algorithms are not
directly differentiable in this new setting. We propose a dif-
ferentiable anti-aliasing algorithm using multisampling. We
resolve the discontinuities by explicitly sampling the shape
boundaries and deriving the gradients for curves using the
Reynolds transport theorem.
• We demonstrate an alternative approximate, deterministic
solution through analytical prefiltering that is slightly faster
at the cost of artifacts such as conflation.
• We unify and formulate a wide range of vector graphics edit-
ing and learning tasks as gradient-based optimization prob-
lems where a vector graphic is made to match a target image
via a loss on its rasterization (Figure 1). We show that the
rasterizer can be used in complex and practical optimization
and learning tasks, including vector graphics editing, image
vectorization, and learning to synthesize vector graphics.

We open-source our code at https://github.com/BachiLi/diffvg.

2 RELATED WORK

2.1 Vector graphics creation and editing
We briefly review previous work on creating and editing vector
graphics. Due to the lack of a general differentiable rasterizer, previ-
ous techniques often either focused on the geometry of the vector
graphics, or converted the raster images to a convenient geometric
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representation. Some specialized methods for fitting vector graph-
ics to raster images exist, but they do not handle general vector
graphics, which include occlusion and transparency.

Image vectorization methods. Most methods that generate vector
graphics from raster images first segment images into regions, and
fit Bézier curves [Lecot and Levy 2006; Selinger 2003; Xia et al. 2009],
diffusion curves [Orzan et al. 2008; Xie et al. 2014] and gradient
meshes [Sun et al. 2007] to the region boundaries. These techniques
provide a good initial guess for image vectorization. We show that
we can improve the results by optimizing the continuous param-
eters of the generated vector graphics to minimize a raster-space
rendering loss using our differentiable rasterizers (§ 6.3).
Techniques based on differentiating rasterization exist for diffu-

sion curves [Zhao et al. 2018], gradient meshes [Sun et al. 2007], and
closed Bézier curves [Yang et al. 2015]. Compared to these methods,
we significantly extend the range of vector graphics that can be dif-
ferentiated through the rasterizer, including occlusion, transparency,
rational polynomials, and strokes.

Vector graphics editing. Research on user interfaces for vector
graphics dates back to Sketch Pad [Sutherland 1964], which allowed
users to impose geometric constraints on the vector graphics when
editing them. Briar [Gleicher 1992] and Lillicon [Bernstein and Li
2015] explored similar ideas but extended the editors to address
different constraints and editing. Our interactive editor (§ 6.2) builds
on top of this work, and allows the user to put constraints on the
rendering in addition to the geometry, increasing the expressivity
of the editor.

Generating vector graphics using neural networks. Deep learning
models have been proposed for vector graphics. Ha and Eck [2018]
and Lopes et al. [2019] trained generative recurrent models using a
sketch database. Azadi et al. [2018] and Yue et al. [2019] generate
new fonts given a few example styles.

Deep learning has also been used for solving image vectorization.
Ellis et al. [2018] combined program synthesis and recurrent neural
networks to infer a graphics program that generates a target sketch
image. Ganin et al. [2018] instead trained a model-free reinforce-
ment learning agent on natural images using a drawing simulator,
combined with an adversarial loss.

Neural approximations of rasterization. Some recent work uses
neural networks to smoothly approximate the rasterization oper-
ation [Huang et al. 2019; Nakano 2019; Zheng et al. 2019]. These
neural approximations usually assume a specific vector graphics con-
figuration (e.g., a single constant color quadratic stroke) and a fixed
resolution. These techniques were necessary because rasterization
was considered to be non-differentiable. We show that with careful
derivation, it can be made differentiable, and the approximation is
no longer required.
Differentiable rasterization allows us to use a general rendering

loss and propagate image gradients to the vector representation of
such models, in contrast to the task-specific position based losses
or model-free reinforcement learning approaches used in previ-
ous work. This allows us, for example, to train vector graphics-
generating variational autoencoders and generative adversarial net-
works directly on raster images (§ 6.3).

pixel prefilter kernel

Fig. 2. Pixel prefiltering using a convolution makes a discontinuous function
smooth. We illustrate this using a box function in 1D. To rasterize this
discontinuous box function with anti-aliasing, we convolve the box with
a kernel centered at the pixel center. Moving the box causes a continuous
change of the area under the filtering kernel, and therefore, of the anti-
aliased signal.

2.2 Vector graphics rasterization
Previous work has studied efficient algorithms and data structures
to rasterize closed curves and strokes. Much of it focused on anti-
aliasing (e.g., [Duff 1989; Fabris and Forrest 1997; Manson and Schae-
fer 2013]). Recent work explored the efficient parallelization of vec-
tor graphics rasterization on graphics hardware (e.g., [Batra et al.
2015; Kilgard and Bolz 2012; Kokojima et al. 2006; Li et al. 2016;
Loop and Blinn 2005]).
Nehab and Hoppe [2008] and Ganacim et al. [2014] proposed

data structures to efficiently compute the shaded color given an
arbitrary point on the image. Our boundary sampling procedure
(§ 5) requires the same random access pattern and can therefore
benefit from these data structures.

2.3 Differentiable rendering
Differentiating 3D rendering has drawn attention in both computer
graphics and vision research recently (e.g., [de La Gorce et al. 2011;
Kato et al. 2018; Liu et al. 2018, 2019; Loper and Black 2014]). Our
gradient derivation is inspired by the work of Li et al. [2018], but
it extends it using the Reynolds transport theorem [Reynolds et al.
1903] to simplify the derivation and generalize to curves and strokes.

Reynolds’s transport theorem has also been shown to be useful
for differentiable rendering in Li’s thesis [2019] and the recent work
of Zhang et al. [2019] on differentiating volume rendering. We focus
our derivation on 2D vector graphics, which significantly simplifies
the theory.

3 OVERVIEW
We want to bridge the gap between vector and raster graphics, by
differentiating through the vector rasterization process and enabling
gradient-based optimization.
The key insight that makes this possible is that, while vector

shapes — represented mathematically as indicator functions — are
not directly differentiable, applying anti-aliasing smoothes out the
discontinuities. This makes the anti-aliased rasterized image differ-
entiable with respect to the vector shape parameters (Figure 2).

Special care is needed when differentiating through rasterization
as different anti-aliasing strategies call for different gradient imple-
mentations. Depending on the anti-aliasing technique we choose,
we evaluate the gradient with respect to shape parameters either by
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Fig. 3. Our method supports vector graphics formed by polynomial and
rational polynomial curves, including polygons, quadratic and cubic Bézier
curves, circles and ellipses, with colored strokes, fills, and gradients.

integrating the shape boundaries to account for the discontinuities,
or by analytically integrating the integrand, which requires making
simplifying assumptions.

Our differentiable rasterizer is useful both for direct optimization
of vector graphics, and to train neural networks that generate vec-
tor graphics. It supports polynomial and rational curves, stroking,
transparency, occlusion, and gradient fills (Figure 3).
In the following, first, we present a vector graphics rendering

model that is suitable for differentiable rasterization.We then discuss
how we differentiate through this model. Finally, we demonstrate
several applications enabled by our differentiable rasterizer.

4 RENDERING MODEL AND DESIGN CHOICES
Our goal is to have an accurate, high-quality solution that covers as
many common vector graphics representations as possible, while
being fully differentiable. Differentiation and optimization introduce
unique challenges to rendering models:
• We show that prefiltering, or anti-aliasing can make raster-
ization differentiable. However, care has to be taken when
differentiating the anti-aliasing algorithm.
• We should avoid methods based on converting curves into
polylines or converting filled curves into polygons or trian-
gle meshes, since such conversion is not differentiable — a
small change to the curve parameters can cause a topological
change on the generated polylines or meshes.
• We need to be particularly careful about introducing approxi-
mations to the rendering model, as all the intermediate shapes
need to be rendered accurately during iterative optimization.

We first describe the vector graphics primitives we support. Then
we discuss how vector graphics are rasterized and introduce the
mathematical model of pixel prefiltering, which is crucial to differ-
entiation. In Section 5, we present and analyze two differentiable
rasterization algorithms that solve the pixel prefiltering.

4.1 Vector primitives
Our primitives are based on the SVG (Scalable Vector Graphics)
standard. We support SVG paths (with linear, quadratic or cubic
segments1), ellipses, circles, and rectangles, but any curve with a
parametric form is compatible with our method. The curves can be
either open or closed (Figure 3).

Each curve can have a fill color and/or a stroke color (fill color has
no effect on open curves). Our implementation assumes round caps
for the strokes, but adding new cap styles is straightforward. Colors
1Our current implementation converts arcs to cubic curves [Cridge 2015], but extending
our method to handle arcs is possible.

(a) quadratic approximation
of a cubic curve

(b) a control point moved
→ more subdivisions

Fig. 4. Some rasterizers approximate cubic curves with quadratic curves
by recursively splitting the curves until quadratic curves can accurately ap-
proximate the subdivided cubic curves. This enables efficient computation
for stroke rasterization. Unfortunately, this is not suitable in differentiable
rasterization, since moving the control points could generate more or less
quadratic curves, making the operation not differentiable. Here we demon-
strate a simple curve splitting scheme guided by an error bound [Colomitchi
2006]. Moving the top-right control point to the right would generate extra
quadratic curves.

can be solid, linear gradient, or radial gradient, and contain RGB
and alpha channels.

4.2 Vector graphics rasterization
To understand the differentiation of vector graphics, we first briefly
review how rasterization is typically implemented [Nehab and
Hoppe 2008] and how differentiable rasterization demands certain
forward rendering models. A raster image is a 2D grid sampling over
the space of the vector graphics scene f (x ,y;Θ), where Θ contains
the curve parameters. We first define the scene function f , then we
will describe how to use f to compute a color for each pixel.

Given a 2D location (x ,y) ∈ R2, we first find all the filled curves
and strokes that overlap with the location. We then sort them with
a user-specified order and compute the color using alpha blend-
ing [Porter and Duff 1984].
To find the curves overlap with the 2D location, for each filled

curve, we compute the winding number at the location by tracing
a ray to the right of (x ,y) and count the number the intersections.
We determine whether the point is inside the curve based on the fill
rule: the even-odd fill rule defines all points with an odd winding
number as inside, and the non-zero fill rule includes all points with a
non-zero winding number. For each stroke, we compute the distance
between the point and the closest point on the curve. If it is smaller
than half the stroke width, the point is inside the curve stroke.
Intersecting a ray with a polynomial curve with degree N for

winding number computation boils down to solving the roots of
a polynomial with degree N . On the other hand, computing the
closest distance between a point and the polynomial curve requires
solving the roots of a polynomial p (t ) with degree 2N − 1, since it
amounts to solving argmint (p (t ) − q)

2 where q = (x ,y).
For cubic curve strokes, which are ubiquitous in practice, we need

to solve a 5th order polynomial that does not admit a closed-form
solution. Most rasterizers resolve this by either approximating cubic
curves using quadratic curves by splitting the curves using the de
Casteljau algorithm [Batra et al. 2015; Kilgard and Bolz 2012], or
converting the stroke boundary into a filled curve [Ganacim et al.
2014; Kilgard 2020; Nehab 2020]. Some approaches approximate the
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(a) reference
distance (ours)

(b) approximate
distance [Nehab
and Hoppe 2008]

(c) reference
stroke (ours)

(d) approximate
stroke [Nehab

and Hoppe 2008]

Fig. 5. A popular technique approximates the distance between a point
and a polynomial curve by converting the curve into an implicit function,
and approximates the neighborhood using a Taylor expansion [Loop and
Blinn 2005; Nehab and Hoppe 2008]. While this method produces accurate
distance in the proximity of the curve and is very efficient, it is not suit-
able for differentiable rasterization, since we need to process strokes with
arbitrary width. Here we compare the approximate distance of quadratic
curves proposed by Nehab and Hoppe [2008] with the actual distance. The
approximation shows clear artifacts when the stroke radius is large.

distance by converting the strokes into an implicit function [Loop
and Blinn 2005; Nehab and Hoppe 2008].

None of these approaches are suitable for differentiable rasteriza-
tion. Adaptive curve subdivision is not differentiable, since a small
parameter change on the cubic curve can cause the subdivision
procedure to generate more or fewer quadratic segments (Figure 4).
Similarly, the parallel curve of a cubic stroke is a 10th order polyno-
mial [Farouki and Neff 1990] and requires even more subdivisions.
The distance approximation is also not preferable, since they are
only accurate in the proximity of the curves. During optimization,
we could generate curves with large stroke width that breaks these
approximations (Figure 5).

Instead, we directly solve the polynomial using bisection and the
Newton-Raphson method [Press et al. 2007]. The initial guess of the
iterative solver is obtained from isolator polynomials [Sederberg
and Chang 1994] – the real roots of a 5th order polynomial equation
can be isolated by the roots of a linear equation and a 3rd order
polynomial. Appendix A details the implementation. Efficiently
differentiating the iterative solver is not trivial. We discuss the
differentiation in Section 5.2.
Similarly, the distance between a point and an ellipse also re-

quires iterative root solving, where a robust solution is detailedly
discussed by Eberly [2011]. Our implementation does not support
ellipse strokes yet, but the way we handle cubic curve strokes can
be used for ellipse strokes .

4.3 Pixel prefiltering and anti-aliasing
The scene function f is not differentiable with respect to curve
parameters, due to the inside-outside test. However, we show that
common anti-aliasing techniques make the pixel color differentiable.

f is not band-limited due to discontinuities, so rasterization, a
2D sampling over f , is prone to aliasing. To avoid aliasing, instead
of computing f at a single location for each pixel, we can prefilter
the scene f over a convolution kernel k with support A to make it

band-limited:

I (x ,y) =

"
A
k (u,v ) f (x − u,y −v ;Θ)dudv . (1)

We can then sample I (x ,y) at the pixel location to compute an
alias-free image.
For differentiable rasterization we are interested in ∂I

∂Θ . Impor-
tantly, the integration over the filter support means we only care
about the average color of a pixel, instead of the point evaluation
at the center. The curve movements lead to a continuous change of
the average color, making I (x ,y) differentiable (Figure 2).
Even though the pixel integral is differentiable, evaluating the

derivatives of the integral requires extra care. In the next section,
we propose two strategies for computing the pixel integrals I and its
derivatives ∂I

∂Θ . We then discuss the advantages and disadvantages
of the two.

5 DIFFERENTIABLE RASTERIZATION
The pixel integral (Equation 1) does not have a closed-form solution
in general. Inspired by previous approaches, we propose two ways
to solve the pixel integral. The first strategy computes the integral
using Monte Carlo integration. It generates a high-quality refer-
ence solution and has reasonable performance. The second strategy
approximates the integral by assuming the scene function f to be
a simplified configuration such that the integral has an analytical
solution. It has the benefit of being deterministic and slightly faster,
at the cost of being an approximate solution, which sometimes
manifests as artifacts on the raster image.

5.1 Monte Carlo sampling
To evaluate the pixel integral and its derivatives, our first approach
is to discretize the pixel integral using Monte Carlo sampling:

I (x ,y) =

"
A
k (u,v ) f (x − u,y −v ;Θ)dudv

≈
1
N

N∑
i
k (ui ,vi ) f (x − ui ,y −vi ;Θ),

(2)

where the samplesui ,vi can be either points on a uniform grid, inde-
pendent samples, stratified samples, or blue noise samples [Banterle
et al. 2012; Cook 1986; Dippé and Wold 1985].

Unfortunately, because of geometric discontinuities, f is not dif-
ferentiable with respect to most scene parameters, so we cannot
exchange the integral and differential operator to express ∂I

∂Θ as an
integral that could be similarly discretized.

To resolve this, we take inspiration from 3D differentiable render-
ing techniques [Li et al. 2018] and rework the integral by removing
the derivative operator outside of the integral, and discretizing
the reworked integrals. While previous 3D differentiable render-
ing methods focused on triangle meshes and 3D radiative transfer
equations [Li et al. 2018; Zhang et al. 2019], we present a simpler
derivation tailored to 2D vector graphics that work with curved
boundaries.
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Our goal is to compute the gradients of I with respect to the
parameters Θ:

∂I (x ,y)

∂Θ
=
∂

∂Θ

"
A
k (u,v ) f (x − u,y −v ;Θ)dudv

=
∂

∂Θ

"
A
д(u,v )dudv,

(3)

where we use д(u,v ) to represent the multiplication of the scene
function f and kernel k for brevity. Without loss of generality, we
assume the kernel k is continuous.
We partition the domain A into multiple sub-regions Ai such

that all the discontinuities of д are at the integration boundaries
(Figure 6a):

∂

∂Θ

"
д(u,v )dudv =

∑
i

∂

∂Θ

"
Ai (Θ)

д(u,v )dudv . (4)

The partition is done for the mathematical derivation only, and we
do not explicitly clip the curves to partition the space.
To simplify the problem, let us consider the case in 1D of an

individual integral. We can rewrite the integral when the boundaries
depend on the parameter Θ:

∂

∂Θ

∫ b (Θ)

0
д(u)du =

∫ b (Θ)

0

∂д(u)

∂Θ
du + д (b (Θ))

∂b (Θ)

∂Θ
. (5)

This equation is often called the Leibniz’s integral rule. The first in-
tegral is responsible for the differentiation of color and transparency,
while the second term is responsible for the change of the bound-
aries. We can estimate the derivative integral using Monte Carlo
sampling, and add the second correction term to take boundary
change into account.

The same idea can be generalized to 2D using Reynolds transport
theorem [Reynolds et al. 1903], whose definition is precisely the
following equation:

∂

∂Θ

"
Ai (Θ)

д(u,v )dudv ="
Ai (Θ)

∂

∂Θ
д(u,v )dudv +

∫
∂Ai (Θ)

(
∂p (t )

∂Θ
· n(t )

)
д(p (t ))dt ,

(6)

where ∂Ai is the boundary of area Ai , n(t ) is the outward-pointing
normal of the boundary, and p (t ) is a 2D vector representing the
points on the boundary (e.g., for a quadratic segment of a filled shape,
p (t ) = (1 − t )2p0 + 2(1 − t )tp1 + t2p2 and n(t ) is the normalized 2D
vector perpendicular to the tangent p′(t )). We refer to readers to
Flanders’s article [1973] for a concise proof of Reynolds’ theorem.
Compared to the 1D case, the boundary correction term now

becomes a 1D curve over the integration domain boundary ∂Ai .
It measures the expansion speed of the boundary with respect to
the differentiating parameter Θ. Figure 6b illustrates the intuition.
Our method correctly handles complex occlusions between multi-
ple primitives, since for the vector graphics primitives we consider
(Section 4.1), all discontinuities happen on the primitive bound-
aries. Reynolds transport theorem handles the boundary changes
by integrating over them.

To estimate Equation 6 over all shapes, we separately apply two
Monte Carlo estimators for the two integrals. Estimating the first

A0

A1
A2

A3
pixel �lter support

(a) partition

A0

A1
A2

A3

∇θ p

n

(b) sample boundary

Fig. 6. We can handle the discontinuities, occlusion, and transparency with
multiple shapes correctly using Monte Carlo sampling when differentiating
vector graphics rendering. To achieve this, (a) we first partition the pixel
filter support into disjoint regions such that the discontinuities are at the
boundaries of the disjoint regions Ai . (b) Assuming we want to take the
derivative of the green shape moving right (∇θ p), we integrate over the
change at the boundaries (the dashed green line), to take the increase of the
green area and the decrease of the blue area into account. The infinitesimal
change at the yellow point p is defined by the dot product of the normal n
and the x-axis. We derive the gradients through the Reynolds transport the-
orem [Reynolds et al. 1903] and generalize previous differentiable rendering
approaches [Li et al. 2018] to handle shapes with arbitrary boundaries.

integral is similar to standard vector graphics rendering, but in-
stead of outputting the color, we accumulate the gradients to the
corresponding color parameters. To estimate the second boundary
integral, we allocate N samples for each pixel (we usually set N = 4).
We first randomly pick a curve and a point on it. If the curve is part
of a stroke, we randomly offset the point on one side of the normal
by the half of the stroke width, or we randomly sample one of the
caps of the stroke. Notice that each point on the boundary p (t ) is
associated with two sub-regionsAi . We compute the scene function
f at the two sides of the sampled point, and propagate the gradients
to the corresponding parameter Θ:

∑
i

∫
∂Ai (Θ)

(∇Θp · n) f (x ,y;Θ) dxdy ≈

1
N

∑
j

(
∇Θpj · nj

)
( f (pj + ϵnj ) − f (pj − ϵnj ))

P (pj |c )P (c )
,

(7)

where ϵ is a small number (we use 10−4 pixels for all renderings),
and P (pj |c )P (c ) is the probability density of picking the curve c and
point pj on the curve or stroke boundaries. We sample on the curve
using the parametric form. For a curve p (t ), the probability density
can be computed by the inverse Jacobian of the transformation

(P (pj |c ) =





∂p (t )
∂t






−1
).

The Monte Carlo estimation handles the occlusion correctly. If
we sample a point on a curve that is occluded, the point will land
on a continuous region. Thus limϵ→0 f (pj + ϵnj ) − f (pj − ϵnj ) = 0
due to the definition of continuity, and the sample’s contribution is
0.

ACM Trans. Graph., Vol. 39, No. 6, Article 193. Publication date: December 2020.



Differentiable Vector Graphics Rasterization for Editing and Learning • 193:7

pixel prefilter kernel

(a) filled primitive

pixel prefilter kernel

(b) stroke

Fig. 7. Our differentiable analytical prefiltering method is based on previous
approaches that approximate radial filtering using the (signed) distance d to
the curve boundaries (e.g., [Gupta and Sproull 1981; Nehab and Hoppe 2008;
Turkowski 1982]). We approximate the 2D integral using an 1D integral on
the line formed by pixel center and the closest point on the curve boundary.
(a) For filled primitives, we approximate by analytically integrating a filter
kernel k over the line segment inside the primitive. (b). For strokes, we
approximate by taking a line segment whose length is the stroke width w

5.2 Analytical prefiltering
Our second, alternative, approach to differentiating rasterization is
to approximate the pixel integral by simplifying the vector graph-
ics configuration. We adapt a common approach that makes use
of signed distance field. We show that efficiently differentiating
through the signed distance field requires extra care.
We are interested in methods that can approximate general vec-

tor graphics without the need to convert the original curves into
another form. Our method is based on approaches that approxi-
mate the 2D anti-aliasing integral using an 1D integral based on
the signed distance between pixel center and the closest point on
the curve [Fabris and Forrest 1997; Gupta and Sproull 1981; Loop
and Blinn 2005; Nehab and Hoppe 2008; Turkowski 1982]. These
methods can be easily applied to general vector graphics as long as
we can compute the distance between the point and the curve.

Analytical approximation. We approximate the anti-aliasing in-
tegral by analytically integrating a radially symmetric filter kernel
k (r ) with support 1 (k (r ) = 0 for |r | ≥ 1) along a line, formed
by the pixel center and the closest point on the curve boundary.
This analytical approximation K (d ) would represent the coverage
of the shape inside the pixel filter. We also want our analytical cov-
erage approximation K (d ) to satisfy the normalization constraints:
K (1) = 0,K (−1) = 1. Therefore we defineK (d ) = C0+C1

∫ 1
d k (r )dr ,

where the constantsC0 andC1 can be solved by solving the normal-
ization constraint.
For filled curves we approximate the color at (x ,y) as

K (di (x ,y)) fi (x ,y) = αi (di (x ,y)) fi (x ,y), (8)

and for strokes we approximate the color as
(K (��di (x ,y)�� +w ) − K (��di (x ,y)�� −w )) fi (x ,y) =

αi (di (x ,y),w ) fi (x ,y),
(9)

wheredi (x ,y) is the closest signed distance between the pixel center
and the curve i (negative di means (x ,y) is inside of a closed curve),
w is the stroke half-width, and fi is a differentiable function that

represents the color assigned to the curve i (constant, linear or radial
gradient), evaluated at (x ,y). We then loop over all curves in a user-
specified order for alpha blending. The alpha, or the opacity, for
each shape is multipled by αi to approximate occlusion between
shapes. Following the suggestion of Nehab and Hoppe, we use a
parabolic kernel k (r ) = 4

3 (1 − r
2) and K (r ) = 1

2 +
1
4
(
r3 − 3r

)
.

Differentiation. The prefiltering contribution (Equations 8 and 9),
along with the alpha blending makes rasterization differentiable
with respect to the curve parameters (notice the dependency to the
signed distance d , which in turn depends on the curve parameters).
However, the computation of the signed distance d to a cubic curve
requires solving a 5-th order polynomial equation (Section 4.2).

Differentiating the iterative root solver using the standard reverse-
mode automatic differentiation [Griewank and Walther 2008] re-
quires memorizing all intermediate steps, which is inefficient. In-
stead, we apply the implicit function theorem [Rio Branco deOliveira
2012]. For a nth-order polynomial p (t ; c) = 0 with a variable t ∈ R
and coefficients c ∈ Rn , we want to know how changing the coeffi-
cients c can change the root t , i.e. ∂t∂c . The implicit function theorem
gives us:

∂t

∂c
= −

1
∂p (t,c)

∂t

∂p (t , c)
∂c

. (10)

Therefore, we only need the root t in order to calculate the deriva-
tives, where the root can be found by the iterative solver. This is a
known technique in automatic differentiation literatures and has
been applied in bi-level optimization [Bell and Burke 2008]. Once
we have the derivative ∂t

∂c , we can differentiate the prefiltering

contribution using the chain rule: ∂k̂
∂c =

∂k̂
∂d

∂d
∂t

∂t
∂c .

Remarks. Some works noticed the relation between the pixel in-
tegral and the curve boundaries using Green’s theorem [Catmull
1978; Duff 1989; Manson and Schaefer 2013] and derived analyti-
cal solutions by integrating over curve boundaries. This is still an
approximation due to several reasons. The boundary of a polyno-
mial curve stroke is not necessarily a closed polynomial curve (the
parallel curve of a cubic curve is a 10-th order polynomial, but the
cap at the stroke endpoints make it not a polynomial). Shading
with linear gradients that have multiple stops, radial gradients, or
even textures complicates the analytical solution. Finally, all these
methods require clipping a polynomial or rational polynomial curve
against each other and the pixel filter support, which makes their
implementation and the differentiation complex.

5.3 Discussion
Here we compare the two anti-aliasing strategies qualitatively. Over-
all, the Monte Carlo sampling produces higher-quality images since
it does not make assumptions on the scene configuration. The an-
alytical prefiltering approach is prone to the well-known confla-
tion artifacts when parallel edges exist (Figure 8). Modern vector
graphics rasterization engines running on GPUs mostly rely on
multisampling [Batra et al. 2015; Ganacim et al. 2014; Kilgard and
Bolz 2012] to avoid conflation artifacts. We discuss more about the
differentiability of parallel edges in Appendix B.
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(a) analytical
prefiltering

(b) Monte Carlo
sampling

(c) analytical
prefiltering

(d) Monte Carlo
sampling

(e) prefiltering
derivative

(f) Monte Carlo
derivative

(g) prefiltering
derivative

(h) Monte Carlo
derivative

Fig. 8. Rendering with analytical prefiltering provides a way to make the
rendering process differentiable, but produces undesirable artifacts. The
top row shows scenes with shared edges between primitives. The bottom
row shows the derivative for each pixel color with respect to the whole
scene moving right. Analytical prefiltering methods usually have to make
numerous assumptions about the scene (here we implemented Nehab and
Hoppe’s method [2008] based on analytical convolutions with half-planes).
This results in the notorious conflation artifacts. In contrast, ourMonte Carlo
sampling generates pleasing results. The vector graphics are taken from the
benchmark used by Ganacim et al. [2014] and Kilgard and Bolz [2012].

On the other hand, our boundary sampling (Section 5.1) creates
incoherent memory access because the evaluation location is de-
cided at random. This has several consequences: Firstly, this makes
the gradient computation stochastic, and can have impact to the
convergence rate of optimization. Secondly, we need to be able to
query the scene function f in a random-access manner [Nehab and
Hoppe 2008], which requires efficient data structures for sorting
the curve geometry. Thirdly, the incoherent memory access pattern
makes naive implementation less efficient on modern GPU due to
warp divergence. Our current implementation sorts the evaluation
locations by their Z-order to create coherent access, however for
large images the cost of sorting is non negligible. Finally, the bound-
ary sampling complicates selective evaluation of the pixel colors:
consider a pixel-wise loss function, we can stochastically evaluate
the loss function and gradients by randomly choosing the pixel
locations we want to evaluate, and this significantly speeds up the
gradient descent procedure [Azinović et al. 2019]. Unfortunately,
boundary sampling makes selective evaluation difficult: we need to
sample the intersection of the boundaries and the selected pixels’
filter support area.
In practice, we prefer the Monte Carlo formulation for our ap-

plications because it is less prone to artifacts and behaves closer to
modern GPU rasterizers. Unless otherwise specified, for most of our
applications we opted for the Monte Carlo sampling strategy. The
analytical prefiltering approach can be used when we want deter-
minism in gradient computation, or when it is desirable to mimic
the behavior of an existing non-differentiable rasterizer (notably
the WebKit browser engine 2). The analytical prefiltering also offers

2https://webkit.org/

finite differences

ours MC

ours analytical
(a) tiger (b) Hawaii (c) Boston

Fig. 9. We compare the gradients of finite differences over Monte Carlo sam-
pling, our Monte Carlo boundary sampling, and our analytical prefiltering
approach. The figure visualizes the derivative of pixel color with respect to all
primitives moving right, using benchmark images fromGanacim et al. [2014]
that contain thousands of segments to tens of thousands of segments with
complex occlusion. Our boundary sampling matches the finite differences
reference closely, while the analytical prefiltering gradient is largely the
same, but slightly different due to the different image formulation model.
For the Boston scene (c), the analytical prefiltering generates conflation
artifacts due to the parallel edges in the scene. We used 16 samples per
pixel were used to compute the Monte Carlo sampling, and 1 sample per
pixel for the analytical prefiltering. Typically when doing gradient-based
optimization we use 4 samples per pixel for Monte Carlo sampling. Zoom
in to compare the images in detail.

the capability to evaluate samples on a random access basis without
rendering the whole image.

6 APPLICATIONS AND EVALUATION
We implement our rasterizer in C++/CUDA with a PyTorch inter-
face [Paszke et al. 2019]. We use a bounding volume hierarchy with
axis-aligned bounding boxes of curve segments to accelerate the
winding number and distance queries. For the boundary sampling,
we sort the samples according to Z-order before evaluating the
contribution of each sample to decrease thread divergence. The
bounding volume hierarchy is built on CPU using a single thread.
We sort the bounding volumes of the primitives by the 2D Morton
codes of the box center [Lauterbach et al. 2009]. For the bounding
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Table 1. We measure the performance of our implementation of our differentiable rasterizer using a set of standard benchmarks [Ganacim et al. 2014; Kilgard
and Bolz 2012]. We denote the time spent on the forward pass as fwd, which includes the preprocessing time to copy the curve data from PyTorch, build the
acceleration structure, and render an image. We denote the time spent on the backward pass for computing gradient as rev. The preprocessing time is typically
negligible, except for contour, which takes around 0.15 seconds. Monte Carlo sampling is slightly more costly due to the need to sample multiple times per
pixel. Analytical prefiltering is slightly faster, while each sample is more expensive due to the requirement of the exact signed distance calculation.

tiger (495 × 510)
2532 curves

Boston (761 × 682)
27945 curves

contour (692 × 692)
188336 curves

Hawaii (1555 × 1281)
52946 curves

mcseem2 (684 × 594)
10224 curves

Monte Carlo sampling (2x2) fwd:0.060s/rev:0.222s fwd:0.074/rev:0.266s fwd:0.213s/rev:0.176s fwd:1.117s/rev:3.371s fwd:0.059s/rev:0.162s
Monte Carlo sampling (4x4) fwd:0.271s/rev:0.598s fwd:0.197s/rev:0.862s fwd:0.293s/rev:0.472s fwd:3.235s/rev:11.173s fwd:0.129s/rev:0.437s
Analytical prefiltering (1x1) fwd:0.098s/rev:0.0992s fwd:0.413s/rev:0.402s fwd:0.195s/rev:0.044s fwd:1.287s/rev:1.267s fwd:0.050s/rev:0.049s

(a) 1 spp (b) 22 spp (c) 32 spp

(d) 42 spp (e) 82 spp (f) 162 spp

Fig. 10. We study the variance of our Monte Carlo sampling using the tiger
scene in Fig. 9. As in the usual Monte Carlo integration, the variance of our
image decreases linearly as the number of the samples grow. We typically
use 22 samples per pixel (spp), which works well for various tasks ranging
from optimizing a complex vector graphic to training a neural network.

volumes of the segments within a path, we sort them by the y-axis
of the box center.

We show timing analysis of our methods in Table 1. In general we
achieve interactive performance for vector graphics with moderate
complexity (such as the tiger scene in Figure 9). As we will show in
Section 6.2, we can use our rasterizer inside an interactive vector
graphics editor. The analytical prefiltering approach is slightly faster
than the Monte Carlo sampling, since it only requires one number
of samples per pixel.

We believe performance optimization [Levien 2020], and incorpo-
rating more advanced acceleration data structures such as shortcut
trees [Ganacim et al. 2014], could significantly speed up the render-
ing, but the current performance is already sufficient for nontrivial
applications.

6.1 Evaluation
Gradient comparison. We compare the gradients generated by

both of our methods and central finite differences on various vec-
tor graphics scenes ranging from thousands of segments to tens

of thousands of segments. The results are shown in Figure 9 and
the supplementary material. The boundary sampling can handle
complex occlusion occurred in the complex vector graphics and
generates results close to finite differences. On the other hand, apart
from the conflation artifact case in Figure 8, the analytical prefilter-
ing gradients behave similarly to both the boundary sampling and
the finite differences. While the boundary sampling usually requires
multiple samples per pixel to reduce the variance, the analytical
prefiltering approach can produce stable output with one sample
per pixel.

Our approaches are significantly more efficient than finite differ-
ence when the number of variables to differentiate with is higher
than five. The computation time of finite differences grows linearly
with the number of variables, while our approach remains constant.

We analyze the variance of our Monte Carlo sampling in Figure 10.
Like typical Monte Carlo estimators, the variance decreases linearly
as the number of samples grows. We typically use 2 × 2 samples
per pixel, and it works well across a wide range of tasks, from
optimizing thousands of curves to training a neural network, as we
will demonstrate below.

We apply ourMonte Carlo differentiable vector graphics rasterizer
to a wide variety of tasks. Unless specified otherwise, we use the
Adam algorithm [Kingma and Ba 2015] to perform optimization.
The learning rates are tuned for each application, and we found that
having separate learning rates for color and points is crucial due to
their different ranges. All images, SVGs, and optimization videos
are included in the supplementary material.

6.2 Optimization-based Vector Editing
By and large, current vector graphics editing tools are based around
directly manipulating the geometry control points, or applying lo-
cal or global affine transformations to them. More sophisticated
editing tools based on a variety of geometric algorithms exist [Bern-
stein and Li 2015; Chugh et al. 2016; Sutherland 1964], but there
is a deep divide between these and typical editing operations used
on raster representations, such as brushes and filtering. Currently,
there is no general-purpose way to bridge this gap and gain the
ability to interpret these raster operations on the vector domain
non-destructively.

Our approach opens an avenue to achieve this. With differentiable
rasterization, we can define these editing operations as image-space
losses and then backpropagate them to optimize the parameters
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(a) (b)

Fig. 11. Examples of our brush-based editing using image losses. (a) shows
the result (below) of locally optimizing opacity to sculpt the note while
preserving parallelism of line segments (shown above). (b) shows the result
(below) of optimization of a block of text characters (above) to locally in-
crease opacity according to a pixel stencil while preserving the shape of
characters by optimizing text "‘boldness"’. We recommend readers viewing
this document electronically zoom in to see the difference more clearly.

of the vector graphics representation. This way of editing is non-
destructive in that it preserves the complete structure of the original
graphic, which can be both semantically meaningful and convenient
for other types of editing operations. While this optimization only
finds local optima and cannot manipulate discrete parameters such
as the topology of the shape, this is a desirable behavior in practice
because the edit results in a slight modification of the input rather
than an entirely new graphic.

Interactive brush-based editing. We may directly impose a loss on
e.g., the color of pixels under a brush, which corresponds to brush-
ing in a raster image. Optimizing the geometry for this loss causes
the shape to deform in a way that facilitates the sculpting of vector
shapes, as shown in Figure 11. We found that an operation that
increases or decreases the opacity of the pixels to be useful. More
involved pixel statistics can be used as well, such as imposing losses
on pixel Laplacians to formulate a smoothing/sharpening operator.
Losses backpropagated from the raster representation can easily be
combined with geometric losses common in vector graphics [Bern-
stein and Li 2015] to enforce the preservation of desirable geometric
properties like node smoothness or line parallelism. These simple
brushing operators are fast enough for interactive editing. We use
stochastic gradient descent (without momentum) as the optimizer

Initialization Seam Carving result Naive scaling

Fig. 12. We show the results of our vector Seam Carving. An initial graphic
is shown next to the retargeted result and a naively rescaled graphic for ref-
erence. Images courtesy of freesvg.org user OpenClipArt and vecteezy.com
users Vectorbox Studio and Graphics RF.

since we found that the momentum introduced by Adam can hurt
the interactive editing experience.

Vector seam carving. Many more advanced image filters and edit-
ing algorithms can also be transferred to the vector domain with
this optimization strategy. To illustrate this, we have implemented
a vector retargeting operator that changes the aspect ratio of a
vector graphic using the seam carving algorithm in the raster do-
main [Avidan and Shamir 2007]. The original seam carving algo-
rithm anisotropically scales an image while preserving structure or
important content. At every step, until the desired aspect ratio is
reached, it removes the “seam” that minimizes some cost functional
(e.g., image gradients).

Our idea is to use the standard raster seam carving algorithm,
but to reshape a vector graphic. We take an existing vector graphic,
render it to a raster image using our differentiable rasterizer, apply
one step of the seam carving algorithm on the raster image, and
optimize the vector graphics to match the altered raster image using
an L2 loss with 10 gradient descent steps. Figure 12 illustrates
the results. Any iterative raster image processing algorithm which
makes reasonably small steps could in theory be used with the
same scheme.

6.3 Vector Graphics Generation
Raster image generation using optimization and differentiable tech-
niques is a well-established research area. Thanks to our rasterizer,
we can now also achieve this in the vector domain . The most
straightforward way to accomplish this is to iteratively optimize
some initial vector shapes to match a target image.

Painterly rendering. For example, we may initialize the graphic
with a randomly distributed set of primitives and optimize to match
a target in the L2 sense, as shown in Figure 13. This achieves
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initialization L2 loss perceptual loss target

Fig. 13. Our renderer allows us to develop a novel painterly rendering al-
gorithm by fitting randomly initialized curves to target images, optimizing
control point positions, stroke widths, color, and opacity . The first column
shows the curve initialization. The second column shows the results of
minimizing L2 distance between the rendering and the target. The third
column shows the results of minimizing a deep-learning-based perceptual
loss [Zhang et al. 2018]. The fourth column shows the target images. We
found that the perceptual loss optimization usually results in more abstract,
stylized images, while the L2 loss usually delivers more photorealistic im-
ages. The first two rows are initialized with random strokes with 1 to 3 cubic
Bézier curves per stroke. The third row is initialized with random closed
Bézier curves with 3-5 segments per shape. Images courtesy of wikipedia
user Daderot and David Corby, and USC-SIPI image database.

by optimization results similar to what painterly rendering algo-
rithms [Hertzmann 1998, 2003] do by employing heuristics, or more
recently reinforcement learning [Ganin et al. 2018; Nakano 2019].
More interestingly, we can use a deep feature-based perceptual
loss [Zhang et al. 2018] for the same purpose, because our differ-
entiable rasterizer can backpropagate the loss all the way back to
the graphic elements. In practical terms, we have found that the
L2 loss generates more photorealistic graphics, while those created
through the perceptual loss are more stylized and abstract. Other
differentiable perceptual metrics can also be used [Artusi et al. 2019;
Wang et al. 2004]. For all images, we use the same learning rates (1
for control points, 0.1 for stroke widths, and 0.01 for color) and run
for 500 iterations.

Image vectorization. A plethora of image tracing algorithms exist
that approximate a raster image with a vector graphic. Usually, these
are based on trying to match curves to the edges detected in the
pictures to discover shapes, and then coloring them post-hoc. While
these produce empirically good results, they are not even locally
optimal due to various simplifying assumptions that had to be made
about the nature of the data. We can easily show – and fix – this by
using such a traced image as an initialization for our optimization.

peppers

MSE: 0.00560 MSE: 0.00190

flower

MSE: 0.00557 MSE: 0.00225
Adobe Image Trace ours input target

Fig. 14. Our rasterizer can be used to refine image vectorization results.
Given an input raster and the output of the corresponding vectors from
Adobe Image Trace, we optimize all the vector parameters, including color
and control points, with respect to an L2 loss. This significantly improves
fidelity, both numerically and visually. Even rows show the absolute differ-
ence between the rendering and the target, and the mean squared error
(MSE). Our results better represent gradual color changes, such as the thin,
long, pepper on the left in peppers, the white reflection on the right, and
the leaf at the bottom-left in flower. Images courtesy of wikipedia user Eric
Guinther and USC-SIPI image database.

By taking the result of the tracing algorithm implemented in Adobe
Illustrator, and then optimizing it to best match the target image in
the L2 sense, we achieve a roughly 2.5x reduction in themean square
error and 4 dB improvements on the peak signal-to-noise ratio, as
shown in Figure 14 and Table 2. Our improvement is achieved by
tweaking the control point positions and fill colors of the trace,
without introducing additional complexity to the representation.
For all images, we use the same learning rates (2 for control points
and 0.02 for color) and run for 250 iterations.

Deep generative modeling. Our rasterizer can be used as a dif-
ferentiable operator within a neural network — i.e., with other
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Table 2. We refine the image vectorization results of Adobe Image Trace on
a dataset of 5 images. Each image sees significant improvements in various
error metrics. On average we achieve 2.5× reduction on mean square error
and 4 dB improvement on peak signal-to-noise ratio. We tried both our
Monte Carlo method (§5.1) and the analytical prefiltering method (§5.2) on
this task. The analytical prefiltering method has slightly lower error, most
likely due to the absence of noise, which leads to faster convergence in
gradient descent.

MSE PSNR SSIM

Adobe Image Trace 0.00712 21.84 0.7318
ours (Monte Carlo) 0.00316 25.54 0.8287
ours (analytical prefiltering) 0.00265 26.22 0.8494

(a) random set of target images (b) our vector VAE outputs

Fig. 15. We trained a variational autoencoder to encode MNIST digits a into
vector outputs. This enables us to sample new digits that are resolution-
independent b. Zooming in on the digital version of the paper reveals the
superior sharpness of our vector output.

differentiable components either preceding or following it. This al-
lows us to adapt existing generative models for raster images into a
counterpart that outputs a vector representation. For demonstration
purposes, we have selected two models.

The first is a variational autoencoder (VAE) [Kingma and Welling
2014], which we trained to produce vector MNIST digits [LeCun
et al. 1998]. The encoder is a convolutional network. It processes
the grayscale raster digits, and encodes them into a 20-D latent
vector. The decoder transforms a latent code (which after training
can be sampled from a 20-D normal distribution) into the points
positions, stroke width, and opacity parameters of a pair of two-
segment Bézier paths. These paths are then rasterized using our
method to produce an output image that we can directly compare
to the raster input. We train this network using an L2 loss between
the ground truth image and the rasterized output, and a Kullback-
Liebler divergence that encourages the latent vectors to be normally
distributed. Figure 15 shows a random sample of vector outputs and
the ground-truth MNIST reference images. Figure 1e shows how
vector outputs enable resolution-independent renderings, and even
a posteriori stylization of the digits.

Our second model demonstrates that the differentiable rasterizer
works equally well in the know-to-be-challenging generative adver-
sarial training context [Goodfellow et al. 2014]. For this example, we
trained a similar decoder architecture to minimize the Wasserstein

(a) MNIST samples generated by
our vector GAN

(b) QuickDraw cat samples
generated by our vector GAN

(c) Latent space interpolation (d) Latent space interpolation

Fig. 16. Our rasterizer can also be used in a Generative Adversarial Networks
framework to train vector-generatingmodels from a dataset of raster images.
Here we show random samples frommodels trained on the MNIST dataset a
and the ‘cats’ subset of theQuickDraw dataset b. We also show the result
of interpolating pairs of samples in the latent space of each model c and d.

GAN with the Gradient Penalty objective [Gulrajani et al. 2017]. In
this example, the discriminator is a convolutional network that ei-
ther takes as input an image from the training dataset, or a generated
vector graphics rasterized with our algorithm, and tries to classify
the image as real or fake. In Figure 16, we show some rasterized
vector graphics produced by these models trained on two datasets —
MNIST and the more complex sketches of cats from QuickDraw [Ha
and Eck 2018]. We also show examples of interpolations of random
latent vectors in the GAN’s latent space. The training took about
12 hours for each model. For more details of the architecture and
training, see Appendix C.

Thanks to our differentiable rasterization, we can train generative
models with only image-based supervision, without requiring any
supervision on the curves themselves like previous approaches [Ha
and Eck 2018; Lopes et al. 2019]. Neither do we need to train a neural
network for approximating the rasterization process, which usually
fixes and limits the output resolution and only works on a single
type of vector primitive [Huang et al. 2019; Nakano 2019; Zheng
et al. 2019].

7 LIMITATIONS AND FUTURE WORK
Optimizing topologies. Our method shares the same limitation as

other gradient-based optimization methods. Our renderer only gives
gradients for continuous parameters like control point positions,
color values, and transformation parameters. It cannot create gradi-
ents for discrete decisions, such as adding or removing shapes or
path segments, rearranging the rendering order, or changing shape
types. As such, applications presented above are limited to fixed
topologies, determined either heuristically, or by preserving the
topology of the input. It is possible to use a recurrent or reinforce-
ment learning model to handle the discrete decisions [Ha and Eck
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(a) a random
target digit

(b) rendering of
vector graphics

(c) pixels of the
output that carry

a gradient

(d) per-pixel loss
magnitude

(e) pixels with
propagated shape

gradients

(f) pixels where
gradient is lost

Fig. 17. In color rendering, shape gradients are only propagated along bound-
aries (c, d), so gradient information is lost in non-boundary pixels (f).

2018; Lopes et al. 2019; Zhu et al. 2018], while additionally benefiting
from being able to compute gradients on continuous parameters.

Sparsity of gradients. In Reynolds’ formulation, the backpropa-
gation of gradients from image space to shape parameters depends
on the shape boundaries. In practice, this means that information
from pixels not incident to the boundaries is lost (Figure 17). In
some cases, this may induce local minima that lead to degenerate
geometries, or even lead to an unrecoverable configuration where
the shape is not rendered on the canvas at all (e.g., due to the entire
shape having moved off-canvas where no gradient signal is avail-
able). This can be mitigated for shape parameters by using larger
pixel filters, or by relying on the analytical prefiltering formula-
tion instead. However, rendering with larger pixel filters is more
expensive, while prefiltering does not address all such local minima.

More vector graphics primitives. Our current implementation does
not support some advanced primitives like diffusion curves [Orzan
et al. 2008] and gradient meshes [Sun et al. 2007]. In their original
form, diffusion curves require differentiating a Poisson equation
solver. However, the ray tracing formulation of diffusion curves [Bow-
ers et al. 2011] would be relatively simple to integrate. Differentiat-
ing gradient mesh rendering requires differentiating their tessella-
tion into triangle meshes. Gradient meshes also contain discontinu-
ities when a patch folds over onto itself [Adobe Inc. 2006].

8 CONCLUSION
We have presented a differentiable rasterizer for vector graphics
capable of converting vector data to a raster representation, while
facilitating backpropagation between the two domains. It facilitates
both direct optimization of vector data based on raster criteria,
and seamless integration of vector graphics components into deep
learning models which rely heavily on image-space convolution.
We hope that this new technique will enable new ways of learning
and optimizing visual data across representations.
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A CLOSEST DISTANCE BETWEEN A POINT AND A
CUBIC BÉZIER CURVE

Given a cubic curvep (t ) = (1−t )3p0+3(1−t )2tp1+3(1−t )t2p2+t3p3
and a pointq ∈ R2, wewant to compute the closest distance between
them. We write down the squared distance as

(
p (t⋆) − q

)2
where

t⋆ is the closest point to q on the curve p:

t⋆ = argmin
t

(p (t ) − q)2 . (11)
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(a) shared edge (b) cyan move right (c) cyan move left

(d) our MC derivative (e) forward difference (f) backward difference

Fig. 18. Rasterization of two primitives with their edges exactly coinciding
a is not differentiable with respect to the vertex positions. Suppose we want
to differentiate with respect to the cyan triangle’s horizontal translation
parameter.When it moves right b, it reduces the coverage of the blue triangle,
making the color brighter. When the cyan triangle moves left c, it reveals
more white background, making the color darker. Therefore forward and
backware differences produce different results (e and f), making the function
non-differentiable. Our method outputs the derivative defined by one-side
of the limit, where the cyan triangle occludes the blue triangle d.

To solve for t⋆, we take the derivative of the squared distance
with respect to t and set it to zero:

2 (p (t ) − q) · p′(t ) = ρ (t ) = 0. (12)

This is a 5th order polynomial (p is 3rd order and p′ is 2nd order)
and does not have a closed-form solution. To solve for all real roots
of the 5th order polynomial, we use a standard hybrid Newton-
Raphson bisection method [Press et al. 2007]. This requires us to
identify the intervals of all the real roots. To achieve this, we use
the technique of isolator polynomial [Sederberg and Chang 1994].
Given a polynomial ρ (t ) (in our case a 5th order polynomial) and its
derivative ρ ′(t ), the long division of them yields two lower-order
polynomials a(t ) and b (t ):

a(t ) = ρ (t ) − b (t )ρ ′(t ). (13)

It turns out the real roots of a and b isolate the roots of ρ. To see this,
consider any two adjacent real roots of ρ, r0 and r1 (if ρ only has
one or zero real root, we know t is bounded by [0, 1]). We can show
that there must be a root of either a or b in [r0, r1]. Since ρ (r0) =
ρ (r1) = 0, we know a(r0)a(r1) = b (r0)b (r1)ρ ′(r0)ρ ′(r1). Since r0
and r1 are roots of ρ, ρ ′(r0)ρ ′(r1) ≤ 0. Thus either a(r0)a(r1) ≤ 0
or b (r0)b (r1) ≤ 0. See Sederberg and Chang’s paper for remarks on
multiple roots.

We can construct a 5th order polynomial ρ (t ) = t5 + Bt4 +Ct3 +
Dt2 + Et + F by rearranging Equation 12. By doing a long division
between ρ and ρ ′, we obtain

a(t ) =

(
2C
5
−
4B2

25

)
t3 +

( 3D
5
−
3BC
25

)
t2 +

( 4E
5
−
2BD
25

)
t + F −

BE

25

b (t ) =
t

5
+

B

25
.

(14)
Since a is a cubic polynomial and b is linear, we can solve for all the
real roots of a and b between (0, 1). This forms at most 5 intervals,

and we can then find all roots of ρ within these intervals using the
hybrid Newton-Raphson bisection method.

B PARALLEL EDGES AND NON-DIFFERENTIABILITY OF
RASTERIZATION

Rasterization is not technically differentiable in the degenerate case
of the parallel edges (Figure 18). In this case, the integral is discon-
tinuous with respect to the vertices’ movement: moving the top
primitive to one direction reveals the background, and moving it to
the other direction occludes the other primitive, thus the two sides
of the limit are not the same. Since we only compute the topmost
contribution when evaluating the scene function f , our method out-
puts the derivative corresponding to the limit that does not involve
the background, ignoring the effect of the background.
In the presence of the parallel edge, our multisampling anti-

aliasing would still output one side of the limit, which we argue
is the correct behavior in this situation. Our analytical prefiltering
would generate conflation artifacts (Figure 8).

C NETWORK ARCHITECTURES AND TRAINING
DETAILS

The encoder network of our MNIST VAE (§6.3) maps an input image
to a latent vector. The encoder is a sequence of convolution layers
with leaky ReLU activations (with a negative slope of 0.2). We use 3
convolution layers with 3 × 3 filters and progressively increasing
feature channels: 64, 128, and 256. In the GAN setting, the latent
vector is sampled from a multivariate normal distribution.

In the VAE experiment, our decoder is a fully-connected network
with SELU activations [Klambauer et al. 2017]. It consumes a latent
vector and outputs the parameters of N cubic Bézier segments:
positions, stroke widths, and opacity. We use a hyperbolic tangent
as the last activation to obtain positions in [−1, 1], and a sigmoid
function for stroke widths and opacity in [0, 1]. The decoder uses 3
fully-connected layers, all with 1024 hidden units.
The generator in both the QuickDraw and MNIST GAN exper-

iments is also a SELU, fully-connected network. It uses 5 fully-
connected layers with 32, 64, 128, 256, 256 hidden units respectively.
The discriminator has a structure similar to the VAE’s encoder,
with two modifications: it uses spectral normalization [Miyato et al.
2018] between the convolution layers, and outputs a single scalar
instead of a latent vector. It has 8 convolution layers with 3 × 3
filters and 64, 128, 128, 256, 256, 512, 512, 512, 512 channels, with a
fully-connected network for the final real/fake classification output.
All convolutions, except the first two, use spectral normalization.

We use the Adam optimizer [Kingma and Ba 2015], with learning
rate set to 0.0001 and β1 = 0.5, β2 = 0.9. In the GAN experiments,
we schedule the learning rate to decay exponentially with factor
0.9999. The gradient penalty is set to 10, and we clip gradients with
norm larger than 1.
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