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Fig. 1. Our system automatically derives and optimizes gradient code for general image processing pipelines, and yields state-of-the-art performance on both
CPUs and GPUs. This enables a variety of imaging applications, from training novel neural network layers (a), to optimizing the parameters of traditional
image processing pipelines (b), to solving inverse reconstruction problems (c). To support these applications, we extend the Halide language with features
to automatically and efficiently compute gradients of arbitrary programs. We also introduce a new automatic performance optimization that can handle
the specific computation patterns of gradient computation. Using our system, a user can easily write high-level image processing algorithms, and then
automatically derive high-performance gradient code for CPUs, GPUs, and other architectures. Images from left to right are from MIT5k dataset [Bychkovsky
et al. 2011], ImageNet [Deng et al. 2009], and deep demosaicking dataset [Gharbi et al. 2016], respectively.

Gradient-based optimization has enabled dramatic advances in computa-
tional imaging through techniques like deep learning and nonlinear opti-
mization. These methods require gradients not just of simple mathematical
functions, but of general programs which encode complex transformations
of images and graphical data. Unfortunately, practitioners have traditionally
been limited to either hand-deriving gradients of complex computations, or
composing programs from a limited set of coarse-grained operators in deep
learning frameworks. At the same time, writing programs with the level of
performance needed for imaging and deep learning is prohibitively difficult
for most programmers.

We extend the image processing language Halide with general reverse-
mode automatic differentiation (AD), and the ability to automatically opti-
mize the implementation of gradient computations. This enables automatic
computation of the gradients of arbitrary Halide programs, at high per-
formance, with little programmer effort. A key challenge is to structure
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the gradient code to retain parallelism. We define a simple algorithm to
automatically schedule these pipelines, and show how Halide’s existing
scheduling primitives can express and extend the key AD optimization of
“checkpointing.”

Using this new tool, we show how to easily define new neural network
layers which automatically compile to high-performance GPU implemen-
tations, and how to solve nonlinear inverse problems from computational
imaging. Finally, we show how differentiable programming enables dra-
matically improving the quality of even traditional, feed-forward image
processing algorithms, blurring the distinction between classical and deep
methods.
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1 INTRODUCTION
Optimization and end-to-end learning are driving rapid progress in
graphics and imaging, by viewing either the output image or large
sets of pipeline parameters as unknowns, e.g. [Barron and Poole
2016; Gharbi et al. 2017; Heide et al. 2014; Jaderberg et al. 2015]. Key
to this progress is the surprising power of gradient-based optimiza-
tion methods to find solutions to nonlinear objectives over large sets
of unknowns. Unfortunately, the computation of gradients remains
a challenge in the general case, especially when performance is
paramount such as for training neural networks or when solving
for images via optimization. Practitioners have to either manually
derive gradients or they are limited to the composition of building
blocks offered by deep learning libraries. The result is often ineffi-
cient, and when users decide to stray from existing operators, the
implementation of fast GPU derivative code is a major undertaking.
At first glance, modern machine learning frameworks like Py-

Torch, TensorFlow or CNTK [Abadi et al. 2015; Paszke et al. 2017;
Yu et al. 2014] seem like appealing environments for new gradient-
based graphics algorithms. When limited to their walled-gardens
of pre-made, coarse-grained operations, these frameworks provide
high-performance kernel implementations and automatic differenti-
ation (AD) through chains of operations. As general programming
languages, however, they are a poor fit for many imaging applica-
tions. Building new algorithms requires contorting a problem into
complex and tangled compositions of existing building blocks. Even
when done successfully, the resulting implementation is often both
slow and memory-inefficient, saving and reloading entire arrays of
intermediate results between each step, causing costly cache misses.

Consider the following example. A recent neural network-based
image processing approximation algorithm was built around a new
“bilateral slicing” layer based on the bilateral grid [Chen et al. 2007;
Gharbi et al. 2017]. At the time it was published, neither PyTorch
nor TensorFlow was even capable of practically expressing this
computation.1 As a result, the authors had to define an entirely
new operator, written by hand in about 100 lines of CUDA for the
forward pass and 200 lines more for its manually-derived gradient
(Fig. 2, right). This was a sizeable programming task which took
significant time and expertise. While new operations—added in just
the last six months before the submission of this paper—now make
it possible to implement this operation in 42 lines of PyTorch, this
yields less than 1/3rd the performance on small inputs and runs
out of memory on realistically-sized images (Fig. 2, middle). The
challenge of efficiently deriving and computing gradients for custom
nodes remains a serious obstacle to deep learning.

This pattern is ubiquitous. New custom nodes require major effort
to implement correctly and efficiently, making it hard to experiment.
Similarly, general image processing pipelines often do not map well
to deep learning toolboxes. As a result, most researchers limit them-
selves to consider only operations which are already well-supported
by existing frameworks, while NVIDIA and the framework develop-
ers must constantly expand the set of native operations. (There are
currently at least 12 different kinds of convolution operator, alone,
in TensorFlow.) The only alternative is to invest orders of magnitude

1Technically, TensorFlow graphs are Turing-complete, thanks to their inclusion of a
while loop node. However, implementing the algorithm at this level would be both
incredibly complex and run at least thousands of times slower.

#include <THC/THC.h>
#include <iostream>
#include "math.h"

extern THCState *state;

__device__ float diff_abs(float x) {
  float eps = 1e-8;
  return sqrt(x*x+eps);
}

__device__ float d_diff_abs(float x) {
  float eps = 1e-8;
  return x/sqrt(x*x+eps);
}

__device__ float weight_z(float x) {
  float abx = diff_abs(x);
  return max(1.0f-abx, 0.0f);
}

__device__ float d_weight_z(float x) {
  float abx = diff_abs(x);
  if(abx > 1.0f) {
    return 0.0f;
    // return abx;
  } else {
    return d_diff_abs(x);
  }
}

__global__ void BilateralSliceApplyKernel(
    int64_t nthreads,
    const float* grid, const float* guide, const float* input,
    const int bs, const int h, const int w, 
    const int gh, const int gw, const int gd,
    const int input_chans, const int output_chans,
    float* out)
{
  // - Samples centered at 0.5.
  // - Repeating boundary conditions

  int grid_chans = (input_chans+1)*output_chans;
  int coeff_stride = input_chans+1;

  const int64_t idx = blockIdx.x*blockDim.x + threadIdx.x;
  if(idx < nthreads) {
    int x = idx % w;
    int y = (idx / w) % h;
    int out_c = (idx / (w*h)) % output_chans;
    int b = (idx / (output_chans*w*h));

    float gx = (x+0.5f)*gw/(1.0f*w);
    float gy = (y+0.5f)*gh/(1.0f*h);
    float gz = guide[x + w*(y + h*b)]*gd;

    int fx = static_cast<int>(floor(gx-0.5f));
    int fy = static_cast<int>(floor(gy-0.5f));
    int fz = static_cast<int>(floor(gz-0.5f));

    // Grid strides
    int sx = 1;
    int sy = gw;
    int sz = gw*gh;
    int sc = gw*gh*gd;
    int sb = grid_chans*gd*gw*gh;

    float value = 0.0f;
    for (int in_c = 0; in_c < coeff_stride; ++in_c) {
      float coeff_sample = 0.0f;
      for (int xx = fx; xx < fx+2; ++xx) {
        int x_ = max(min(xx, gw-1), 0);
        float wx = max(1.0f-abs(xx+0.5-gx), 0.0f);
        for (int yy = fy; yy < fy+2; ++yy)
        {
          int y_ = max(min(yy, gh-1), 0);
          float wy = max(1.0f-abs(yy+0.5-gy), 0.0f);
          for (int zz = fz; zz < fz+2; ++zz)
          {
            int z_ = max(min(zz, gd-1), 0);
            float wz = weight_z(zz+0.5-gz);
            int grid_idx =
              sc*(coeff_stride*out_c + in_c) + sz*z_ + sx*x_
                                             + sy*y_ + sb*b;
            coeff_sample += grid[grid_idx]*wx*wy*wz;
          }
        }
      } // Grid trilinear interpolation
      if(in_c < input_chans) {
        int input_idx = x + w*(y + input_chans*(in_c + h*b));
        value += coeff_sample*input[input_idx];
      } else { // Offset term
        value += coeff_sample;
      }
    }
    out[idx] = value;
  }
}

__global__ void BilateralSliceApplyGridGradKernel(
    int64_t nthreads,
    const float* grid, const float* guide, const float* input,
    const float* d_output, const int bs, const int h, const int w, 
    const int gh, const int gw, const int gd,
    const int input_chans, const int output_chans,
    float* out)
{
  int grid_chans = (input_chans+1)*output_chans;
  int coeff_stride = input_chans+1;

  const int64_t idx = blockIdx.x*blockDim.x + threadIdx.x;
  if(idx < nthreads) {
    int gx = idx % gw;
    int gy = (idx / gw) % gh;
    int gz = (idx / (gh*gw)) % gd;
    int c = (idx / (gd*gh*gw)) % grid_chans;
    int b = (idx / (grid_chans*gd*gw*gh));

    float scale_w = w*1.0/gw;
    float scale_h = h*1.0/gh;

    int left_x = static_cast<int>(floor(scale_w*(gx+0.5-1)));
    int right_x = static_cast<int>(ceil(scale_w*(gx+0.5+1)));
    int left_y = static_cast<int>(floor(scale_h*(gy+0.5-1)));
    int right_y = static_cast<int>(ceil(scale_h*(gy+0.5+1)));

    // Strides in the output
    int sx = 1;

    int sy = w;
    int sc = h*w;
    int sb = output_chans*w*h;

    // Strides in the input
    int isx = 1;
    int isy = w;
    int isc = h*w;
    int isb = output_chans*w*h;

    int out_c = c / coeff_stride;
    int in_c = c % coeff_stride;

    float value = 0.0f;
    for (int x = left_x; x < right_x; ++x)
    {
      int x_ = x;

      // mirror boundary
      if (x_ < 0) x_ = -x_-1;
      if (x_ >= w) x_ = 2*w-1-x_;

      float gx2 = (x+0.5f)/scale_w;
      float wx = max(1.0f-abs(gx+0.5-gx2), 0.0f);

      for (int y = left_y; y < right_y; ++y)
      {
        int y_ = y;

        // mirror boundary
        if (y_ < 0) y_ = -y_-1;
        if (y_ >= h) y_ = 2*h-1-y_;

        float gy2 = (y+0.5f)/scale_h;
        float wy = max(1.0f-abs(gy+0.5-gy2), 0.0f);

        int guide_idx = x_ + w*y_ + h*w*b;
        float gz2 = guide[guide_idx]*gd;
        float wz = weight_z(gz+0.5f-gz2);
        if ((gz==0 && gz2<0.5f) || (gz==gd-1 && gz2>gd-0.5f)) {
          wz = 1.0f;
        }

        int back_idx = sc*out_c + sx*x_ + sy*y_ + sb*b;
        if (in_c < input_chans) {
          int input_idx = isc*in_c + isx*x_ + isy*y_ + isb*b;
          value += wz*wx*wy*d_output[back_idx]*input[input_idx];
        } else { // offset term
          value += wz*wx*wy*d_output[back_idx];
        }
      }
    }
    out[idx] = value;
  }
}

__global__ void BilateralSliceApplyGuideGradKernel(
    int64_t nthreads,
    const float* grid, const float* guide, const float* input,
    const float* d_output, const int bs, const int h, const int w,
    const int gh, const int gw, const int gd,
    const int input_chans, const int output_chans,
    float* out)
{
  int grid_chans = (input_chans+1)*output_chans;
  int coeff_stride = input_chans+1;

  const int64_t idx = blockIdx.x*blockDim.x + threadIdx.x;
  if(idx < nthreads) {
    int x = idx  % w;
    int y = (idx / w) % h;
    int b = (idx / (w*h));

    float gx = (x+0.5f)*gw/(1.0f*w);
    float gy = (y+0.5f)*gh/(1.0f*h);
    float gz = guide[x + w*(y + h*b)]*gd;

    int fx = static_cast<int>(floor(gx-0.5f));
    int fy = static_cast<int>(floor(gy-0.5f));
    int fz = static_cast<int>(floor(gz-0.5f));

    // Grid stride 
    int sx = 1;
    int sy = gw;
    int sz = gw*gh;
    int sc = gw*gh*gd;
    int sb = grid_chans*gd*gw*gh;

    float out_sum = 0.0f;
    for (int out_c = 0; out_c < output_chans; ++out_c) {

      float in_sum = 0.0f;
      for (int in_c = 0; in_c < coeff_stride; ++in_c) {

        float grid_sum = 0.0f;
        for (int xx = fx; xx < fx+2; ++xx) {
          int x_ = max(min(xx, gw-1), 0);
          float wx = max(1.0f-abs(xx+0.5-gx), 0.0f);
          for (int yy = fy; yy < fy+2; ++yy)
          {
            int y_ = max(min(yy, gh-1), 0);
            float wy = max(1.0f-abs(yy+0.5-gy), 0.0f);
            for (int zz = fz; zz < fz+2; ++zz)
            {
              int z_ = max(min(zz, gd-1), 0);
              float dwz = gd*d_weight_z(zz+0.5-gz);

              int grid_idx = sc*(coeff_stride*out_c + in_c) + sz*z_ + sx*x_
                                                            + sy*y_ + sb*b;
              grid_sum += grid[grid_idx]*wx*wy*dwz;
            } // z
          } // y
        } // x, grid trilinear interp

        if(in_c < input_chans) {
          in_sum += grid_sum*input[input_chans*(x+w*(y+h*(in_c+input_chans*b)))];
        } else {  // offset term
          in_sum += grid_sum;
        }
      } // in_c

      out_sum += in_sum*d_output[x + w*(y + h*(out_c + output_chans*b))];
    } // out_c

    out[idx] = out_sum;
  }
}

__global__ void BilateralSliceApplyInputGradKernel(
    int64_t nthreads,
    const float* grid, const float* guide, const float* input,
    const float* d_output, const int bs, const int h, const int w,
    const int gh, const int gw, const int gd,
    const int input_chans, const int output_chans, 
    float* out)
{
  int grid_chans = (input_chans+1)*output_chans;
  int coeff_stride = input_chans+1;

  const int64_t idx = blockIdx.x*blockDim.x + threadIdx.x;
  if(idx < nthreads) {
    int x = idx % w;
    int y = (idx / w) % h;
    int in_c = (idx / (w*h)) % input_chans;
    int b = (idx / (input_chans*w*h));

    float gx = (x+0.5f)*gw/(1.0f*w);
    float gy = (y+0.5f)*gh/(1.0f*h);
    float gz = guide[x + w*(y + h*b)]*gd;

    int fx = static_cast<int>(floor(gx-0.5f));
    int fy = static_cast<int>(floor(gy-0.5f));
    int fz = static_cast<int>(floor(gz-0.5f));

    // Grid stride 
    int sx = 1;
    int sy = gw;
    int sz = gw*gh;
    int sc = gw*gh*gd;
    int sb = grid_chans*gd*gw*gh;

    float value = 0.0f;
    for (int out_c = 0; out_c < output_chans; ++out_c) {
      float chan_val = 0.0f;
      for (int xx = fx; xx < fx+2; ++xx) {
        int x_ = max(min(xx, gw-1), 0);
        float wx = max(1.0f-abs(xx+0.5-gx), 0.0f);
        for (int yy = fy; yy < fy+2; ++yy)
        {
          int y_ = max(min(yy, gh-1), 0);
          float wy = max(1.0f-abs(yy+0.5-gy), 0.0f);
          for (int zz = fz; zz < fz+2; ++zz)
          {

            int z_ = max(min(zz, gd-1), 0);

            float wz = weight_z(zz+0.5-gz);

            int grid_idx = sc*(coeff_stride*out_c + in_c) + sz*z_ + sx*x_
                                                          + sy*y_ + sb*b;
            chan_val += grid[grid_idx]*wx*wy*wz;
          } // z
        } // y
      } // x, grid trilinear interp

      value += chan_val*d_output[x + w*(y + h*(out_c + output_chans*b))];
    } // out_c
    out[idx] = value;
  }
}

// -- KERNEL LAUNCHERS ---------------------------------------------------
void BilateralSliceApplyKernelLauncher(
    int bs, int gh, int gw, int gd, 
    int input_chans, int output_chans,
    int h, int w,
    const float* const grid, const float* const guide,
    const float* const input, float* const out)
{
  int total_count = bs*h*w*output_chans;
  const int64_t block_sz = 512;
  const int64_t nblocks = (total_count + block_sz - 1) / block_sz;
  if (total_count > 0) {
    BilateralSliceApplyKernel<<<
      nblocks, block_sz, 0, THCState_getCurrentStream(state)>>>(
        total_count, grid, guide, input,
        bs, h, w, gh, gw, gd, input_chans, output_chans, 
        out);
    THCudaCheck(cudaPeekAtLastError());
  }
}

void BilateralSliceApplyGradKernelLauncher(
    int bs, int gh, int gw, int gd, 
    int input_chans, int output_chans, int h, int w,
    const float* grid, const float* guide, const float* input, 
    const float* d_output,
    float* d_grid, float* d_guide, float* d_input)
{
  int64_t coeff_chans = (input_chans+1)*output_chans;
  const int64_t block_sz = 512;
  int64_t grid_count = bs*gh*gw*gd*coeff_chans;
  if (grid_count > 0) {
    const int64_t nblocks = (grid_count + block_sz - 1) / block_sz;
    BilateralSliceApplyGridGradKernel<<<
      nblocks, block_sz, 0, THCState_getCurrentStream(state)>>>(
        grid_count, grid, guide, input, d_output,
        bs, h, w, gh, gw, gd,
        input_chans, output_chans,
        d_grid);
  }

  int64_t guide_count = bs*h*w;
  if (guide_count > 0) {
    const int64_t nblocks = (guide_count + block_sz - 1) / block_sz;
    BilateralSliceApplyGuideGradKernel<<<
      nblocks, block_sz, 0, THCState_getCurrentStream(state)>>>(
        guide_count, grid, guide, input, d_output,
        bs, h, w, gh, gw, gd,
        input_chans, output_chans, 
        d_guide);
  }

  int64_t input_count = bs*h*w*input_chans;
  if (input_count > 0) {
    const int64_t nblocks = (input_count + block_sz - 1) / block_sz;
    BilateralSliceApplyInputGradKernel<<<
      nblocks, block_sz, 0, THCState_getCurrentStream(state)>>>(
        input_count, grid, guide, input, d_output,
        bs, h, w, gh, gw, gd,
        input_chans, output_chans, 
        d_input);
  }
}

308 lines
CUDA

2270 ms (4 MPix)
430 ms (1 MPix)
Runtime

xx = Variable(th.arange(0, w).cuda().view(1, -1).repeat(h, 1))
yy = Variable(th.arange(0, h).cuda().view(-1, 1).repeat(1, w))
gx = ((xx+0.5)/w) * gw
gy = ((yy+0.5)/h) * gh
gz = th.clamp(guide, 0.0, 1.0)*gd
fx = th.clamp(th.floor(gx - 0.5), min=0)
fy = th.clamp(th.floor(gy - 0.5), min=0)
fz = th.clamp(th.floor(gz - 0.5), min=0)
wx = gx - 0.5 - fx
wy = gy - 0.5 - fy
wx = wx.unsqueeze(0).unsqueeze(0)
wy = wy.unsqueeze(0).unsqueeze(0)
wz = th.abs(gz-0.5 - fz)
wz = wz.unsqueeze(1)
fx = fx.long().unsqueeze(0).unsqueeze(0)
fy = fy.long().unsqueeze(0).unsqueeze(0)
fz = fz.long()
cx = th.clamp(fx+1, max=gw-1);
cy = th.clamp(fy+1, max=gh-1);
cz = th.clamp(fz+1, max=gd-1)
fz = fz.view(bs, 1, h, w)
cz = cz.view(bs, 1, h, w)
batch_idx = th.arange(bs).view(bs, 1, 1, 1).long().cuda()
out = []
co = c // (ci+1)
for c_ in range(co):
  c_idx = th.arange((ci+1)*c_, (ci+1)*(c_+1)).view(\
              1, ci+1, 1, 1).long().cuda()
  a = grid[batch_idx, c_idx, fz, fy, fx]*(1-wx)*(1-wy)*(1-wz) + \
           grid[batch_idx, c_idx, cz, fy, fx]*(1-wx)*(1-wy)*(  wz) + \
           grid[batch_idx, c_idx, fz, cy, fx]*(1-wx)*(  wy)*(1-wz) + \
           grid[batch_idx, c_idx, cz, cy, fx]*(1-wx)*(  wy)*(  wz) + \
           grid[batch_idx, c_idx, fz, fy, cx]*(  wx)*(1-wy)*(1-wz) + \
           grid[batch_idx, c_idx, cz, fy, cx]*(  wx)*(1-wy)*(  wz) + \
           grid[batch_idx, c_idx, fz, cy, cx]*(  wx)*(  wy)*(1-wz) + \
           grid[batch_idx, c_idx, cz, cy, cx]*(  wx)*(  wy)*(  wz)
  o = th.sum(a[:, :-1, ...]*input, 1) + a[:, -1, ...]
  out.append(o.unsqueeze(1))
out = th.cat(out, 1)

out.backward(adjoints)
d_input = input.grad
d_grid = grid.grad
d_guide = guide.grad

PyTorch
42 lines

Runtime
1440 ms (1 MPix)
out of memory (4 MPix)

// Slice an affine matrix from the grid and
// transform the color
Expr gx = cast<float>(x)/sigma_s;
Expr gy = cast<float>(y)/sigma_s;
Expr gz =
  clamp(guide(x,y,n),0.f,1.f)*grid.channels();
Expr fx = cast<int>(gx);
Expr fy = cast<int>(gy);
Expr fz = cast<int>(gz);
Expr wx = gx-fx, wy = gy-fy, wz = gz-fz;
Expr tent =
  abs(rt.x-wx)*abs(rt.y-wy)*abs(rt.z-wz);
RDom rt(0,2,0,2,0,2);
Func affine;
affine(x,y,c,n) +=
  grid(fx+rt.x,fy+rt.y,fz+rt.z,c,n)*tent;
Func output;
Expr nci = input.channels();
RDom r(0, nci);
output(x,y,co,n) = affine(x,y,co*(nci+1)+nci,n);
output(x,y,co,n) += 
  affine(x,y,co*(nci+1)+r,n) * in(x,y,r,n);

// Propagate the gradients to inputs
auto d = propagate_adjoints(output, adjoints);
Func d_in = d(in);
Func d_guide = d(guide);
Func d_grid = d(grid);

Halide Runtime
24 lines 64 ms (1 MPix)

165 ms (4 MPix)

Fig. 2. Implementations of the forward and gradient computations of the bilateral slicing layer [Gharbi et al. 2017] in Halide, PyTorch, and CUDA. Using our
automatic differentiation and scheduling extensions, the Halide implementation is clear, concise, and fast. The PyTorch implementation is modestly more
complex, but runs 20× slower on a 1k × 1k input, fails to complete (out of memory on a 12GB NVIDIA Titan Xp) on a 2k × 2k input, and is only possible thanks
to new operators added to PyTorch since the original publication. The CUDA implementation, developed by the original authors, is not only complex (an order
of magnitude larger than either Halide or PyTorch), but is dominated by hand-derived gradient computations. It is faster than PyTorch and scales to larger
inputs, but is still about 10× slower than the Halide version. Note: code size includes a few lines beyond the core logic shown for both Halide and PyTorch.
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more effort in developing custom operations, hand-deriving, reim-
plementing, and debugging gradient code for every change during
the development of a new algorithm.

Recently, the Halide domain-specific language [Ragan-Kelley et al.
2012, 2013] has enabled the implementation of high-performance
image-processing pipelines. It is an effective solution to implement-
ing custom nodes and general image processing pipelines, but it
still requires the manual derivation of gradients. Furthermore, our
experience shows that the computation pattern of derivatives dif-
fers from that of forward code, which causes existing automatic
performance optimizations in Halide to fail. Critically, the current
built-in Halide autoscheduler does not support GPU schedules.

In this paper, we extend Halide withmethods to automatically and
efficiently compute the gradients of arbitrary Halide programs using
reverse-mode automatic differentiation (Sec. 4). This transformation
supports all existing features in the language.

Building atop Halide has several advantages. It provides a concise,
natural language in which to express image processing computa-
tions, and for which there is already a library of existing algorithms.
The Halide compiler portably targets numerous processor and ac-
celerator architectures, from mobile CPUs, to image processing
DSPs, to data center GPUs, and supports compilation to very high-
performance code. Finally, Halide’s existing language and schedul-
ing constructs compose with reverse-mode AD to naturally express
and generalize essential optimizations from the traditional AD liter-
ature (Sec. 4.3). Key to making our compiler transformation work
are a scatter-to-gather conversion algorithm which preserves par-
allelism (Sec. 4.2.1), and a simple automatic scheduling algorithm
specialized to the patterns that appear in generated gradient code
(Sec. 4.4). Halide’s existing system of powerful dependence analyses
is essential for both. In contrast to traditional Halide, automatic
scheduling is critical given the complexity of the automatically-
generated gradient code.
Using our new automatic gradient computation and automatic

scheduler, we show how we can easily implement three recently-
proposed neural network layers using code that is both faster and
significantly simpler than the authors’ original custom nodes writ-
ten in C++ and CUDA (Sec. 5.1). For example, the aforementioned
bilateral slicing layer is expressed in 24 lines of Halide (Fig. 2, left),
including just four lines to compute and extract its gradients, while
compiling automatically to an implementation about 10× faster than
the authors’ original handwritten CUDA, and 20× faster than a more
limited version in PyTorch. We believe that this ease of implementa-
tion and performance tuning will dramatically facilitate prototyping,
by delivering both automatic gradients and high performance at the
outset of experimentation, not after-the-fact once the usefulness of
a node has been established, but as soon as experimentation begins.

We also argue that this approach of gradient-based optimization
through arbitrary programs is useful outside the traditional deep
learning applications which have popularized it. Our vision is that
any image-processing pipelines can benefit from an automatic tun-
ing of internal parameters. Currently, this step is usually done by
hand through user trial-and-error. The availability of automatic
derivatives makes it possible to systematically optimize any inter-
nal parameter of an image processing pipeline, given some output
objectives. This is especially appealing when gradients are available

in the same language used for high-performance code deployment.
We show how to significantly improve the performance of two tra-
ditional image processing algorithms by automatically optimizing
their key parameters and filters (Sec. 5.2). We also implement a
novel joint burst demosaicking and superresolution algorithm by
inverting a forward image formation model including warps by
unknown homographies, solving for the image and homographies
simultaneously (Sec. 5.3). Finally, we show the versatility of our ap-
proach and implement a lens design optimization by differentiating
an optical simulator (Sec. 5.4).

2 RELATED WORK

2.1 Automatic differentiation
Automatic differentiation is a collection of techniques to numerically
evaluate the derivatives of a computer program [Griewank and
Walther 2008]. Automatic differentiation is distinct from both finite
differences and symbolic differentiation. It exploits the structure of
the computation graph by recursively applying the chain rule, and
it synthesizes a new program that computes the derivatives, instead
of closed-form algebraic expressions. To compute the gradient of a
scalar output, traversing the computation graph backwards from
the output to propagate the adjoints to all the inputs gives the same
time complexity as the original program (e.g. [Linnainmaa 1970;
Werbos 1982]. Automatic differentiation has been rediscovered as
“backpropagation” for neural networks [Rumelhart et al. 1986]).

Although the time complexity of the gradient computationmatches
that of the original program, the backward traversal can use signifi-
cantly more memory than the forward pass. Traditional automatic
differentiation systems trade off between memory and run time us-
ing a checkpointing strategy [Volin and Ostrovskii 1985]. Our system
allows the user to explore the space of trade-offs using scheduling
mechanisms provided by the Halide language (Sec. 4.3).

Many automatic differentiation frameworks have been developed
for general programming languages [Bischof et al. 1992; Griewank
et al. 1996; Hascoet and Pascual 2013; Hogan 2014; Wiltschko et al.
2017], but general programming languages can be cumbersome for
image processing applications. Writing efficient image processing
code requires enormous efforts to take parallelism, locality, and
memory consumption/bandwidth into account [Ragan-Kelley et al.
2012]. These difficulties are compounded when we also want to
compute derivatives. Other recent packages provide higher level,
highly optimized differentiable building blocks for users to assemble
their program [Abadi et al. 2015; Bergstra et al. 2010; Paszke et al.
2017; Yu et al. 2014]. These packages are efficient when the algorithm
to be implemented can be conveniently expressed by combining
these building blocks. But it is quite common for users to write
their own custom operators in low-level C++ or CUDA to extend a
package’s functionalities. This means that users have to write code
for both the forward program and its gradients, and make sure they
are correct, consistent and reasonably efficient. This can be tedious,
error-prone and challenging to maintain. Using our approach, one
can simply write the forward program. Our algorithm generates
the derivatives and, thanks to Halide’s decoupling of algorithm and
schedule and our automatic scheduler, provides convenient handles
to easily produce efficient code.
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2.2 Image processing languages
Our work builds on the Halide [Ragan-Kelley et al. 2012] image
processing language, which we briefly introduce in Sec. 3.

The Opt language [Devito et al. 2017] focuses on nonlinear least
squares problems. It provides language constructs to describe least
squares cost and automatically generates solvers. It uses the D* algo-
rithm [Guenter 2007] to generate derivatives. The ProxImaL [Heide
et al. 2016] language, on the other hand, focuses on solving inverse
problems using proximal gradient algorithms. The language pro-
vides a set of functions and their corresponding proximal operators.
It then generates Halide code for optimization. Our system can be
used to generate the adjoints required by new ProxImaL operators.
These languages focus on a specific set of solvers, namely nonlinear
least squares and proximal methods, and provide high-level inter-
faces to them. On the other hand, we deal with any problem that
requires the gradient of a program. Our system can also be used
to solve for unknowns other than images, such as optimizing the
hyperparameters of an algorithm or jointly optimizing images and
parameters. Sec. 5.3 demonstrates this with some examples.
Recently, there have been attempts to automatically speed-up

image processing pipelines [Mullapudi et al. 2016, 2015; Yang et al.
2016]. We developed a new automatic scheduler in Halide with
specialized mechanisms for parallel reductions [Suriana et al. 2017],
which often occur in the derivatives of image processing code. Our
system could further benefit from future developments in automatic
code optimization.

2.3 Learning and optimizing with images
Gradient-based optimization is commonly used in image processing.
It has been used for image restoration [Rudin et al. 1992], image
registration [Zitova and Flusser 2003], optical flow estimation [Horn
and Schunck 1981], stereo vision [Barron and Poole 2016], learn-
ing image priors [Roth and Black 2005; Ulyanov et al. 2017] and
solving complex inverse problems [Heide et al. 2014]. Our work alle-
viates the need to manually derive the gradient in such applications,
which enables faster experimentation. Deep learning has revital-
ized an interest in building differentiable forward image processing
pipelines whose parameters can be tuned by stochastic gradient
descent. Successful instances include image restoration [Gharbi et al.
2016; Zhang et al. 2017], photographic enhancement [Xu et al. 2015],
and applications such as colorization [Iizuka et al. 2016; Zhang et al.
2016], and style transfer [Gatys et al. 2016; Luan et al. 2017]. Some
of these methods call for custom operators [Gharbi et al. 2017; Ilg
et al. 2017; Jaderberg et al. 2015], typically not available in main-
stream frameworks. For these custom operators, the forward and
gradient operations are implemented manually. Our work provides
a convenient way to explore new custom computations.

3 THE HALIDE PROGRAMMING LANGUAGE
Our system extends the Halide programming language. We will give
a brief overview of the constructs in Halide that are relevant to our
system. For more detail on Halide, see the original papers [Ragan-
Kelley et al. 2012, 2013] and documentation.1

1http://halide-lang.org/

Halide is a language designed to make it easy to write high-
performance image- and array-processing code. The key idea in
Halide is the separation of a program into the algorithm, which
specifies what is computed, and the schedule, which dictates the
order of computation and storage. The algorithm is expressed as
a pure functional, feed-forward pipeline of arithmetic operations
on multidimensional grids. The schedule addresses concerns such
as tiling, vectorization, parallelization, mapping to a GPU, etc. The
language guarantees that the output of a program depends only
on the algorithm and not on the schedule. This frees the user from
worrying about low-level optimizations while writing the high-level
algorithm. They can then explore optimization strategies without
unintentionally altering the output.
By adding automatic differentiation to Halide, we build on this

philosophy. To create a differentiable pipeline, the user no longer
needs to worry about the correctness and efficiency of the gradient
code. With the sole specification of a forward algorithm, our system
synthesizes the gradient algorithm. Optimization strategies can then
be explored for both, either manually or with an auto-scheduler.
The following code shows an example Halide program that per-

forms gamma correction on an image and computes the L2 norm
between the output and a target image:

Param<float> g; // Gamma parameter
Buffer<float> im, tgt; // 2−D input and target buffers
Var x, y; // Integer variables for the pixel coordinates
Func f; // Halide function declarations
// Halide function definition
f(x, y) = pow(im(x, y), g);
// Reduction variables to loop over target's domain
RDom r(tgt);
Func loss; // We compute the MSE loss between f and tgt
loss() = 0.f; // Initialize the sum to 0
Expr diff = f(r.x, r.y) − tgt(r.x, r.y);
loss() += diff * diff; // Update definition

Halide is embedded in C++. Halide pipeline stages are called func-
tions and represented in code by the C++ class Func. Each Halide
function is defined over an n-dimensional grid. The definition of a
function comprises:

• an initial value that specifies a value for each grid point.
• optional recursive updates that modify these values in-place.

The function definitions are specified as Halide expressions (objects
of type Expr). Halide expressions are side-effect-free, including arith-
metic, logical expressions, conditionals, and calls to other Halide
functions, input buffers, or external code (such as sin or exp).

Reduction operators, such as summation or general convolution,
are implemented through recursive updates of a Halide function.
The domain of a reduction is represented in code as an RDom, which
implies a loop over that domain. All loops in Halide are implicit,
whether over the domain of a function or a reduction.

Scheduling is expressed through methods exposed on Func. There
are many scheduling operators, which transform the computation
to trade off between memory bandwidth, parallelism, and redundant
computation. Halide lowers the schedule and algorithm into a set
of loop nests and kernels. These are then compiled to machine code
for various architectures. We use the CUDA and x86 backends for
the applications demonstrated in this paper.
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Fig. 3. Overview of our compiler. The user writes a forward Halide program as they would normally. Then, they specify the set of outputs and gradients the
system should produce. Our automatic differentiation generates new Halide functions that implement the requested gradients. The user can either manually
schedule the pipeline or use our automatic scheduler. Finally, the Halide compiler generates machine code for the scheduled forward and backward algorithms.

4 METHOD
To use our system, a programmer first writes a forward Halide
algorithm. They then may request the derivative of some scalar loss
with respect to any Halide function, image buffer, or parameter in
the pipeline. Our automatic differentiation system visits the graph
of functions that describes the forward algorithm and synthesizes
new Halide functions that implement the gradient computation
(Sec. 4.1). The programmer can either specify the schedule for these
new functions manually or use our automatic scheduler (Sec. 4.4).
Unlike Halide’s built-in auto-scheduler [Mullapudi et al. 2016], ours
recognizes patterns that arisewhen reversing the computation graph
(Sec. 4.2.1). Figure 3 illustrates this workflow.

4.1 High-level strategy
We assume we wish to compute the derivatives of some scalar
L, typically a cost function to be minimized. Our system imple-
ments reverse-mode automatic differentiation, which computes the
gradient with the same time complexity as the forward function
(e.g. [Griewank and Walther 2008]). We propagate the adjoints ∂L

∂д
to each function in the forward pipeline д, until we reach the inputs.
The adjoints of the inputs are the components of the gradient.

Specifically, given a Halide program represented as a graph of
Halide functions, we traverse the graph backwards from the output
and accumulate contributions to the adjoints using the chain rule.
Halide function definitions are represented as expression trees, so
within each function we perform a similar backpropagation through
the expression tree, propagating adjoints to all leaves.

A key difference between our algorithm and traditional automatic
differentiation arises when an expression is a Halide function call.
We need to construct a computation which accumulates adjoints
onto the called function in the face of non-trivial data dependencies
between the two functions. Sec. 4.2 describes this in detail.

We illustrate our algorithm on the simple example in Sec. 3, which
performs gamma correction on an image and computes the L2 dis-
tance between the output and some target image. To compute the
gradients of the L2 distance with respect to the input image and the
gamma parameter, one would write:

// Obtain gradients with respect to image and gamma parameters
auto d_loss_d = propagate_adjoints(loss);
Func d_loss_d_g = d_loss_d(g);
Func d_loss_d_im = d_loss_d(im);

Throughout the paper, we use the convention that prefixing a
function’s namewith d_ refers to the gradient of that Halide function.
We added a key language extension, propagate_adjoints, to Halide. It
takes a scalar Halide function and generates gradients in the form
of new Halide functions for every Halide function, buffer, and real
number parameter the output depends on. Our system can also be
used as a component in other automatic differentiation systems
that compute gradients. In this case the user can specify a non-
scalar Halide function and a buffer representing the adjoints of
the function. Figure 3 shows the computational graph for both the
forward and backward (gradient) computations.

4.2 Differentiating Halide function calls
A key difference between automatic differentiation in Halide and
traditional automatic differentiation is that Halide functions are de-
fined on multi-dimensional grids, so function calls and the elements
on the grids can have non-trivial aggregate interactions.

Given each input-output pair of Halide functions, we synthesize
a new Halide function definition that accumulates the adjoint of the
output function onto the adjoint of the input. For performance, we
want these new definitions to be as parallelizable as possible.

4.2.1 Scatter-gather conversion. Two cases require special care
for correctness and efficiency. The first and most important case
occurs when each output element reads and combines multiple
input values. This happens for example in the simple convolution
of Figure 4(a). We call this pattern a gather operation.
When computing gradients in reverse automatic differentiation,

the natural reverse of this gather is a scatter operation: each input
writes to multiple elements of the output. Scattering operations,
however, are not naturally parallelizable since they may lead to race
conditions on write. For this reason, we want to convert scatters
back to gathers whenever possible. We do this by shearing the itera-
tion domain (e.g. [Lamport 1975]). To illustrate this transformation,
consider the following code that convolves a 1D signal with a kernel,
also illustrated in Figure 4(a):

Func output;
output(x) = input(x − r.x) * kernel(r.x);

Assume that we are interested in propagating the gradient to input.
This is achieved by reversing the dependency graph between the
input and output variables as shown in Figure 4(b). In code, this
transformation would yield:

RDom ro;
d_input(ro.y − ro.x) += d_output(ro.y) * kernel(ro.x);
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where ro.x iterates over the original r.x, and ro.y iterates over the
domain of output. For each argument in the calls to input, we replace
the pure variables (x here) with reduction variables that iterate over
the domain of the output (in this case ro.y). r.x is renamed to ro.x

so we can merge the reduction variables into a single reduction
domain ro.

This new update definition cannot be computed in parallel over ro.
y since multiple ro.y − ro.xmay write to the same memory location.
Amore efficient way to compute the update, illustrated in Figure 4(c),
is to rewrite the same computation as follows:

d_output(x) = select(x >= a && x < b, d_output(x), 0.f);
d_input(x) += d_output(x + r.x) * kernel(r.x);

where a and b are the bounds of output. By shearing the iteration do-
main with the variable substitution x = ro.y − ro.x, we have made
d_input parallelizable over x. Because Halide only iterates over rect-
angles, and the sheared iteration domain is no longer a rectangle,
we add a zero-padding boundary condition to d_output, and iterate
over a conservative bounding box of the sheared domain:

ro.y x 

<

a

>b

We use Halide’s equation-solving tools to deduce the variable substi-
tution to apply. For each argument in a function call, we construct
an equation e.g. u = x − rx and solve for x . Importantly, we solve
for the smallest interval of x where the condition holds, since x may
map to multiple values. This may introduce new reduction variables,
as in the following upsampling operation:

output(x) = input(x/4);

Since x is an integer, 4 values in input are used to produce each value
of output. Accordingly, our converter will generate the following
adjoint code:

RDom r(0, 4); // loops from 0 to 3
d_output(x) = d_input(4*x + r.x)

If any step of this procedure fails to find a solution, we fall back to
a general scattering operation. It is still possible to parallelize general
scatters using atomics. We added atomic operations to Halide’s GPU
backend to handle this case. A general scatter with atomics usually
remains significantly less efficient than our transformed code. For
instance, the backward pass of a 2D convolution layer applied to a
16 × 16 × 256 × 256 input takes 68 ms using atomics and 6 ms with
our scatter-to-gather conversion.

Listing 1 shows some derivatives our system would generate for
the bilateral slicing example in the left of Figure 2.

4.2.2 Handling partial updates. The second case which requires
special care arises when reversing partial updates to a function. For
example, consider the following forward code:

g(x) = f(x);
g(1) = 2.f; // update to f that overwrites a value
h(x) = g(x);

When backpropagating the adjoints, we need to propagate correctly
through the chain of update definitions. While h(x) depends on f(x)

for most x (via g(x)), this is not true for x==1. The update definition
to g hides the previous dependency on f(1). The corresponding
gradient code is:

parallel gather parallel gather

(a) forward 1D
convolution

(b) backward
general sca�er

(c) backward with 
our gather conversion

race condition

Fig. 4. Our scatter-to-gather conversion enables efficient, parallel code. In
this example of a 1D 3-tap convolution, each dot represents a value in the
input (resp. output) array. The forward computation (a) produces an output
value from three inputs (the faded dots account for boundary conditions).
This 3-tap reduction can easily be run in parallel over the output buffer (green
dots). Computing the adjoint operator by simply reversing the dependency
graph (b), that is by looping in parallel over the output nodes (orange), leads
to race conditions since two inputs might need to write to the same location
in the input’s adjoint buffer (highlighted in red). This is a common issue
with general scattering operations. Using our scatter-to-gather conversion,
we convert this backward operation to a reduction over d_out (the adjoint
of a convolution is a correlation). In turn, this transformed computation is
readily parallelized over d_out’s domain (c).

d_g_update(x) = d_h(x); // Propagate to the first update
d_g(x) = d_g_update(x); // Propagate to the initial definition
d_g(1) = 0.f; // Mask unwanted dependency
d_f(x) = d_g(x); // Propagate to f

In general, if we detect different update arguments between two
consecutive function updates (in the example above, g(1) is different
from g(x)), we mask the adjoint of the first update to zero using the
update argument of the second update.

4.3 Checkpointing
Reverse-mode automatic differentiation on complex pipelines must
traditionally deal with a difficult trade-off. Memoizing values from
the forward evaluation to be reused in the reverse pass saves com-
pute, but costs memory. Even with unlimited memory, bandwidth is
limited, so it can be more efficient to recompute values. In automatic
differentiation systems this trade-off is addressed with checkpoint-
ing [Volin and Ostrovskii 1985], which reduces memory usage by
recomputing parts of the forward expressions. However, this is just a
specific instance of the general recomputation-vs-memory trade-off
already addressed by Halide’s scheduling primitives.

For each function, we can decide whether to create an intermedi-
ate buffer for later reuse (the compute_root() construct), or recompute
values at every call site (the compute_inline() construct). We can also
compute these values at some intermediate granularity, i.e., by set-
ting its computation somewhere in the loop nest of their consumers
(the compute_at() construct). Halide also allows checkpointing across
different Halide pipelines by using a global cache (the memoize() con-
struct). This is useful when the forward pass and backward pass are
in separately-compiled units.

As an example, consider the following 2D convolution implemen-
tation in Halide:

RDom rk, rt;
convolved(x, y) = 0.f;
convolved(x, y) += in(x − rk.x, y − rk.y) * kernel(rk.x, rk.y);
loss() = 0.f; // define an optimization objective
loss() += pow(convolved(rt.x, rt.y) − target(rt.x, rt.y), 2.f);
auto d = propagate_adjoints(loss);
Func d_in = d(in);
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Listing 1 Derivatives generated by our algorithm for the bilateral
slicing code in the left of Fig. 2.

// We start with d_output, which contains the adjoint of output
// We propagate the derivatives from d_output to in and affine:
RDom ri(0, nci, 0, adjoints.channels());
d_in(x, y, ri.x, n) +=

d_output(x, y, ri.y, n) * affine(x, y, ri.y * (nci + 1), n);
d_affine(x, y, ri.y*(nci+1)+ri.x, n) +=

d_output(x, y, ri.y, n) * in(x, y, ri.x, n);
// Variable co is converted into a reduction variable rco.
RDom rco(0, adjoints.channels());
d_affine(x, y, rco*(nci+1)+nci, n) += d_output(x, y, rco, n);

// The derivatives are then propagated from affine to grid.
RDom rg(0, 2, 0, 2, 0, 2, 0, sigma_s, 0, sigma_s);
Expr inv_x = (x − rg[0]) * sigma_s + rg[3];
Expr inv_y = (y − rg[1]) * sigma_s + rg[4];
d_grid(x, y, fx + rg[2], c) +=

d_affine(inv_x, inv_y, c, n) * d_tent;
// d_tent is tent with (x, y) replaced by (inv_x, inv_y).
// The scattering operation is transformed by solving
// x == inv_x/sigma_s+rt.x and y == inv_y/sigma_s+rt.y
// for inv_x and inv_y.

// Finally, and less obviously, affine also depends on guide.
RDom rgu(0, 2, 0, 2, 0, 2, adjoints.channels());
Expr wxy = abs(rgu[0] − wx) * abs(rgu[1] − wy);
Expr wz = select(rgu[2] − wz > 0.f, 1.f, −1.f);
d_guide(x, y, n) +=

select(guide(x, y, n) >= 0.f && guide(x, y, n) <= 1.f,
d_affine(x, y, rgu[3], c, n)*wxy*wz*grid.channels(), 0.f);

We are interested in d_in, the gradient of losswith respect to in. It
is given by a correlation of 2*(convolved−target) with kernel, which
depends on the values of convolved. Using the scheduling handles
provided by Halide, we can easily decide whether to cache the values
of convolved for the gradient computation. For example, if we write:

convolved.compute_root();

the values of convolved are computed once and will be fetched from
memory when we need them for the derivative d_in. On the other
hand, if we write:

convolved.compute_inline();

the values of convolved are computed on-the-fly and no buffer is
allocated to store them. This can be advantageous when the con-
volution kernel is small (say 2 × 1) since this preserves memory
locality, or when the pipeline is much longer and we cannot afford
to store every intermediate buffer.

Halide provides scheduling primitives that are more general than
binary checkpointing decisions. Fine-grained control over the sched-
ule allows exploration of memory/recomputation trade-offs in the
forward and gradient code. For instance, we can interleave the com-
putation and storage of convolved with the computation of another
Halide function that consumes its value (in this case d_in). The fol-
lowing code instructs Halide to compute and store a tile of convolved
for each 32× 32 tile of d_in computed. This offers a potentially faster
balance between computing all of convolved before backpropagation,
or recomputing each of its pixels on-demand:

d_in.compute_root().tile(x, y, xi, yi, 32, 32);
convolved.compute_at(d_in, x); // compute at each tile of d_in

We timed the three schedules above by computing d_in. With
multi-threading and vectorization on a CPU, on an image with size
of 2560 × 1600 and kernel size 1 × 5, the compute_inline schedule
takes 5.6 milliseconds while the compute_root schedule takes 10.1

milliseconds and the compute_at schedule takes 9.7 milliseconds. On
the same image but with kernel size 3×5, the compute_inline schedule
takes 66.2 milliseconds while the compute_root schedule takes 18.7
milliseconds and the compute_at schedule takes 12.3 milliseconds.

4.4 Automatic scheduling
Halide’s built-in auto-scheduler [Mullapudi et al. 2016] navigates
performance trade-offs well for stencil pipelines, but struggles with
patterns that arisewhen reversing their computational graph (Sec. 4.2.1).
In particular, it does not try to optimize large reductions, like those
needed to compute a scalar loss. It also does not generate GPU
schedules. We therefore implemented a custom automatic scheduler
for gradient pipelines.
Similar to Halide’s built-in auto-scheduler, we ask the user to

provide an estimate of the input and output buffer sizes. We then
infer the extent of all the intermediate functions’ domains.
Our automatic scheduler checkpoints (compute_root) any stage

that scatters or reduces, along with those called by more than one
other function. We leave any other functions to be recomputed on-
demand (compute_inline). For the checkpointed functions, we tile the
function domain and parallelize the computation over tiles when
possible. Specifically, on CPUs, we split the function’s domain into
2D tiles (16 × 16) and launch CPU threads for each tile, vectorizing
the innermost dimension inside a tile. On GPUs, we split the domain
into 3D tiles (16 × 16 × 4). The tiles are mapped to GPU blocks, and
elements within a tile to GPU threads. In both cases, we tile the first
two (resp. three) dimensions of the function’s domain that are large
enough. We split the domain if its dimensionality is too low.
If the function’s domain is not large enough for tiling, and the

function performs a large associative reduction, we transform it
into a parallel reduction using Halide’s rfactor scheduling primi-
tive [Suriana et al. 2017]. This allows us to factorize the reduction
into a set of partial reductions which we compute in parallel and a fi-
nal, serial reduction. Like before, we find the first two dimensions of
the reduction domain which are large enough for tiling. We reduce
the tiles in parallel over CPU threads (resp. GPU blocks). Within
each 2D tile, we vectorize (resp. parallelize over GPU threads) the
column-wise reductions. We also implemented a multi-level parallel
reduction schedule but found it unnecessary in the applications pre-
sented. When compiling to GPUs, if both the function domain and
the reduction domain are large enough for tiling, but the recursive
update does not contain enough pure variables for parallelism, we
parallelize the reduction using atomics.

To allow for control over checkpointing, the automatic scheduler
decisions can be overridden.We ask the user to provide optional lists
of Halide functions they do or do not want to inline. We currently
do not use compute_at in our automatic scheduler.

5 APPLICATIONS & RESULTS
We generate gradients for pipelines in three groups of applications.
First, we show that our system can be integrated into existing deep
learning systems to more easily develop new, custom operators.
Second, we show that we can improve existing image processing
pipelines by optimizing their internal parameters on a dataset of
training images. Finally, we show how to use our derivatives to solve
inverse imaging problems (i.e., optimizing for the image itself).
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Unless otherwise specified, we use our automatic scheduler (Sec. 4.4)
to schedule all the applications throughout the section (i.e., for both
the forward code and the derivatives we generate). Therefore, our
implementation only requires the programmer to specify the for-
ward pass of the algorithm.

5.1 Custom neural network layers
The class of computations expressible with deep learning libraries
such as Caffe [Jia et al. 2014], PyTorch [Paszke et al. 2017], Ten-
sorFlow [Abadi et al. 2015], or CNTK [Yu et al. 2014] is growing
increasingly rich. Nonetheless, it is still common for a practitioner
to require a new, custom node tailored to their problem. For instance,
TensorFlow offers a bilinear interpolation layer and a separable 2D
convolution layer. However, even a simple extension of these opera-
tions to 3D would require implementing a new custom operator in
C++ or CUDA to be linked with the main library. This can already be
tedious and error-prone. Furthermore, while the forward algorithm
is being developed, the adjoint must be re-derived by hand and kept
in sync with the forward operator. This makes experimentation
and prototyping especially difficult. Finally, both the forward and
backward implementations ought to be reasonably optimized so
that a model can be trained in a finite amount of time to verify its
design.

We implemented a PyTorch backend for Halide so that our deriva-
tives can be plugged into PyTorch’s autograd system. We used this
backend to re-implement custom operators recently proposed in
the literature: the transformation layer in the spatial transformer
network [Jaderberg et al. 2015], the warping layer in Flownet 2.0 [Ilg
et al. 2017], and the bilateral slicing layer in deep bilateral learn-
ing [Gharbi et al. 2017]. The performance of our automatically sched-
uled code matches highly-optimized primitives written in CUDA,
and is much faster than unoptimized code. We compare the runtime
of our method to PyTorch, CNTK, and hand-written CUDA code in
Table 1.

5.1.1 Spatial transformer network. The spatial transformer net-
work of Jaderberg et al.[2015] applies an affine warp to an interme-
diate feature map of a neural network.

The function containing the forward Halide code is 31 lines long
excluding comments, empty lines, and function declarations. Due
to the popularity of this operator, deep learning frameworks have
implemented specialized functions for the layer. The cuDNN li-
brary [Chetlur et al. 2014] added its own implementation in version
5 (2016), a year after the original publication. It took another year for
PyTorch to implement a wrapper around the cuDNN code. We com-
pare our performance to PyTorch’s grid_sample and affine_grid func-
tions which use the cuDNN implementation on GPU. On 512 × 512
images with 16 channels and a batch size of 4, our CPU code is
around 2.3 times faster than PyTorch’s implementation, and our
GPU code is around 20 percent slower than the highly-optimized
version implemented in cuDNN. Currently Halide does not sup-
port texture sampling on GPU, which could be causing some of the
slowdown. We also compare our performance to a CNTK implemen-
tation of spatial transformer using the gather operation. Our GPU
code is around 10 times faster than the CNTK implementation.

Table 1. Performance of our approach for custom neural network operators.
The runtime measures end-to-end latency for forward+backward evaluation.
The spatial transformer transforms a batch of 4×16×512×512. The Flownet
node warps a batch of 4×64×512×512 images with a 2D warping field. The
BilateralSlice layer processes images with size 4 × 4 × 1024 × 1024 and grid
size 4 × 12 × 64 × 64. Measurements were made on an Intel Core i7-3770K
CPU @ 3.50GHz, with 16GB of RAM and a NVIDIA Titan X (Pascal) GPU
with 12 GB of RAM.

operator SpatialTransformer Flownet BilateralSlice

PyTorch (cpu) 1094 ms 4240 ms 19819 ms
ours (cpu) 461 ms 2466 ms 1957 ms

PyTorch (gpu) 11 ms 482 ms 1440 ms
CNTK (gpu) 136 ms 404 ms 270 ms
manual CUDA (gpu) — 181 ms 430 ms
ours (gpu) 13 ms 178 ms 64 ms

Having fixed functions such as affine_grid can be problematic
when users want to slightly modify their models and experiment
with different ideas. For example, changing the interpolation scheme
(e.g., bicubic or Lanczos instead of bilinear), or interpolating over
more dimensions (e.g., transforming volume data) would require
implementing a new custom operator. Using our system, these mod-
ifications only require minor code changes to the forward algorithm.
Our system then generates the derivatives automatically, and our
automatic scheduler provides performance without further effort.

5.1.2 Warping layer. FlowNet 2.0 [Ilg et al. 2017], which targets
optical flow applications, introduced a new 2D warping layer. Com-
pared to the previous spatial transformer layer, this warping layer
is a more general transform using a per-pixel warp-field instead of
a parametric transformation.

The function containing the forward Halide code is 18 lines long.
The original warping function was implemented as a custom node
in Caffe. The authors had to write the forward and reverse code for
both the CPU and GPU backends. In total it comprises more than
400 lines of code1. While the custom node can handle 2D warps
well, adapting it to higher-dimensional warps or semi-parametric
warps would be challenging. Our system makes this much easier. In
addition to PyTorch and CNTK, we also compare the performance
of our GPU code with a highly-optimized reimplementation from
NVIDIA2. The performance of our code is comparable to the highly-
optimized CUDA code.

5.1.3 Bilateral slicing layer. Deep bilateral learning [Gharbi et al.
2017] is a general, high-performance image processing architecture
inspired by bilateral grid processing and local affine color trans-
forms. It can be used to approximate complicated image processing
pipelines with high throughput. The algorithm works by splatting
a 2D image onto a 3D grid using a convolutional network. Each
voxel of the grid contains an affine transformation matrix. A high-
resolution guidance map is then used to slice into the grid and
produce a unique, interpolated, affine transform to apply to each

1FlowNet 2.0: https://github.com/lmb-freiburg/flownet2/blob/master/src/caffe/layers/
flow_warp_layer.cu
2Nvidia Flownet 2.0: https://github.com/NVIDIA/flownet2-pytorch
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input pixel. The original implementation in TensorFlow had to im-
plement a custom node1 for the final slicing operation due to the
lack of an efficient way to perform trilinear interpolation on the
grid. This custom node also applies the affine transformation on
the fly to avoid instantiating a high-resolution image containing all
the affine parameters at each pixel. The reference custom node had
around 300 lines of CUDA code excluding comments and empty
lines. Using the recently introduced general scattering functionality,
we can implement the same operation directly in PyTorch. Figure 2
shows a comparison between our Halide code, reference CUDA
code, and PyTorch code.
The PyTorch and CNTK implementations are modestly more

complex than our code. PyTorch is 20 times slower while CNTK
is 4 times slower on an 1024 × 1024 input with a grid size of 32 ×
32 × 8 and a batch size of 4. CNTK is faster than PyTorch due to
different implementation choices on the gather operations. The
manual CUDA code aims for clarity more than performance, but is
both more complicated and 6.7 times slower than our code.
Gharbi et al. [2017] argue that training on high resolution im-

ages is key to capturing the high frequency features of the image
processing algorithm being approximated. Both the PyTorch and
CNTK code run out of memory on a 2048 × 2048 input with grid
size 64 × 64 × 8 on a Titan GPU with 12 GB of memory. This makes
it almost impossible to experiment with high-resolution inputs. Our
code is 13.7 times faster than the authors’ reference implementation
on this problem size.

5.2 Parameter optimization for image processing pipelines
Traditionally, when developing an image processing algorithm, a
programmer manually tunes the parameters of their pipeline to
make it work well on a small test set of images. When the num-
ber of parameters is large, manually determining these parameters
becomes very difficult.
In contrast, modern deep learning methods achieve impressive

results by using a large number of parameters and many training
images. We demonstrate that it is possible to apply a similar strategy
to general image processing algorithms, by augmenting the algo-
rithm with more parameters, and tuning these parameters through
an offline training process. Our system provides the necessary gra-
dients for this optimization. Users write the forward code in Halide,
and then optimize the parameters of the code using training images.

We demonstrate this with an image demosaicking algorithm based
on the adaptive homogeneity-directed demosaicking of Hirakawa
and Parks [2005], and a non-blind image deconvolution algorithm
based on the sparse adaptive priors proposed by Fortunato and
Oliveira [2014].

5.2.1 Image demosaicking. Demosaicking seeks to retrieve a full-
color image from incomplete color samples captured through a
color filter array, where each pixel only contains one out of three
red, green and blue colors. Traditional demosaicking algorithms
work well on most cases, but can exhibit structured aliasing arti-
facts such as zippering and moiré (Figure 5). Recent methods using
deep learning have achieved impressive results [Gharbi et al. 2016],

1https://github.com/mgharbi/hdrnet/blob/master/hdrnet/ops/bilateral_slice.cu.cc

(a) AHD

19.6 dB 24.7 dB

19.7 dB 21.4 dB

(b) ours, 8 5x5 filters (c) ground truth

Fig. 5. We use our automatic gradients to relax the AHD demosaicking
algorithm (a) by adding more filters to interpolate the green channel (8
instead of 2 here, with 5x5 footprint instead of 5x1). With this simple tweak,
and by optimizing the filters using our automatically generated derivatives,
we can obtain sharper images in difficult cases (b), first row. The small-
footprint of this simple demosaicking method nevertheless inherits some
of the limitations of AHD. In particular, it leads to artifacts in complex,
moiré-prone patterns (second row). Images taken from deep demosaicking
dataset [Gharbi et al. 2016].

Table 2. PSNR for several demosaicking techniques following the evaluation
methodology of Gharbi et al. (higher is better). We implemented a version
of Hirakawa et al.’s AHD demosaicking algorithm with our system. Despite
the simplicity of our approach, by relaxing the algorithm’s specifications (i.e.
adding more filters on the green channel reconstruction with larger foot-
prints) and re-optimizing the parameters, we achieve higher fidelity (over 1
dB better) for a similar computational cost. While our method does not rival
state-of-the-art deep-learning-based techniques, it is significantly faster
and opens up new avenues to optimize more parsimoniously parametrized
algorithms tailored to the problem. (Timings reported for a 1 megapixel
image. (*)Timing for these algorithms is from non-optimizedMATLAB code.)

kodak mcm vdp moiré time

bilinear 32.9 32.5 25.2 27.6 *127ms
Adobe Camera Raw 9 33.9 32.2 27.8 29.8 —
AHD Hirakawa [2005] 36.1 33.8 28.6 30.8 *1618ms
ours (2 filters, 5x5) 36.7 34.7 29.4 31.5 71ms
ours (9 filters, 5x5) 36.8 35.2 29.8 31.7 177ms
ours (15 filters, 7x7) 37.3 35.5 30.1 32.0 324ms
Gharbi [2016] 41.2 39.5 34.3 37.0 2932ms

however, the execution time is still an issue for practical usage. We
relax the adaptive homogeneity-directed demosaicking algorithm
(AHD) [Hirakawa and Parks 2005], variations of which are the de-
fault algorithms in Adobe Camera Raw and dcraw. We increase the
number of filters to interpolate the green channel. We also fine-tune
the chrominance (red-blue) interpolation filters from the AHD ref-
erence. We experiment with different number of filters and filter
sizes to explore the runtime versus accuracy trade-off. We optimized
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blurred ground truth

Fortunato 2014 (25.39 dB) ours (27.37 dB)

Fig. 6. We use automatic gradients to enhance Fortunato and Oliveira’s
non-blind deconvolution algorithm [2014]. We use more iterations and
automatically train the weights, thresholds and filtering parameters. We are
able to get sharper results. On eight randomly selected-images we achieve
an average PSNR of 29.57 dB. Using the original algorithm with its original
parameters the PSNR is 28.51 dB. Image taken from ImageNet [Deng et al.
2009]

the filter weights on Gharbi et al.’s [2016] training dataset using
the gradients provided by our system. The results are illustrated in
Table 2. With this simple modification, we obtain a significant 1 to
1.5 dB improvement on the more difficult datasets (moiré and vdp),
depending on the number of filters used. We also obtain visually
sharper images on many challenging cases, as shown in Figure 5.

With its limited footprint and filtering complexity, our optimized
demosaicking still struggles on moiré-prone textures. Our system
will allow users to experiment with more complex ideas without
having to implement the derivatives at each step. For instance, we
were able to quickly experiment with (and ultimately discard) al-
ternative algorithms (e.g. using filters that take the ratio between
colors into account and 1D directional filters).

5.2.2 Non-blind image deconvolution. The task of non-blind im-
age deconvolution is: given a point spread function and a blurry
image, which is the result of a latent natural image convolved with
the function, recover the underlying image. The problem is highly
ill-posed, therefore the quality of the reconstruction heavily depends
on the priors we place on the image. It is thus important to learn a
good set of parameters for those priors.
We based our implementation on the sparse adaptive prior pro-

posed by Fortunato and Oliveira [2014]. The original method works
in a 2-stage fashion. In the first stage they solve a conventional L2

(a) our output R (b) dcraw (AHD)
single frame

(c) [Gharbi 2016]
single frame

Fig. 7. Automatic gradients can be used for inverse problems such as high-
resolution demosaicking from a burst of images. The user only needs to
implement the forward model. Bursts of RAW images are captured with a
Nikon D810 camera then jointly aligned and demosaicked (13 and 23 images
respectively, only showing crops). We initialize our recontruction to a simple
bilinear interpolation (not shown) and solve an inverse problem to recover
both a set of homographies and a demosaicked image that matches the
captured data when reprojected. Compared to the result of dcraw’s AHD
algorithm (a) and Gharbi et al. [2016] (c), our output (b) is much sharper,
and shows less noise (red square) and color moiré (green square).

deconvolution using a set of discrete derivative filters as the prior.
Then they use an edge-aware filter to cleanup the noise in the image.
In the second stage, another L2 deconvolution is solved for large
discrete derivatives by matching the prior terms to the result of the
first stage, masked by a smooth thresholding function.
We extend the method by increasing the number of stages (we

use 4 instead of 2), and having a different set of filters for the priors
for each stage. We optimize the weights of the prior filters, the
smoothness parameters of the edge-aware filter (we use a bilateral
grid), and the thresholding parameters in the smooth thresholding
functions.

To demonstrate the ability of our system to handle nested deriva-
tives, we implemented a generic non-linear conjugate gradient
solver using a linear search algorithm based on Newton-Raphson to
solve for the L2 deconvolution. Wewrite the conjugate gradient loop
in PyTorch, but implement the gradient and vector-Hessian-vector
product (required in the line search step) in Halide. We also imple-
mented the bilateral grid filtering step in Halide. To optimize the
parameters, we then differentiate through the gradients we used for
the non-linear conjugate gradient algorithm. We train our method
on ImageNet [Deng et al. 2009] and use the point spread function
generation scheme described in Kupyn et al.’s work [2017]. We ini-
tialize the parameters to the recommended parameters described in
Fortunato and Oliveira’s work. Figure 6 shows the result.
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5.3 Inverse imaging problems: optimizing for the image
The derivatives produced by our automatic differentiation algorithm
can be readily employed to solve inverse problems in computational
photography. Using our system, users can quickly experiment with
different forward models or different priors. We demonstrate this
on a burst-demosaicking inverse pipeline.

Given N misaligned Bayer RAW images, our goal is to reconstruct
a full color image as well as estimate the homography parameters
that align our reconstruction to the input data. We do this by mini-
mizing the following cost function:

min
R,Hi

N∑
i=1
| |MHiR − Ii | |

2
2 + λ | |∇R | |1 (1)

whereM decimates the color samples according to the Bayer mosaic
pattern. The homographies Hi align our reconstruction R to the
input data Ii .
Gradient descent can help us minimize the function locally, but

Equation 1 is highly non-convex, so a good initialization is critical.
We initialize the Hi using RANSAC [Fischler and Bolles 1981] and
SIFT-based features [Lowe 2004] in a pairwise fashion. We also
initialize R = I0. This part is implemented in OpenCV1. From this
starting point, we jointly refine the alignment and our estimate of
the full-color image by minimizing the loss function (1). Compared
to any individual image Ii , our reconstruction is sharper, and does
not suffer from color moiré artifacts (Figure 7). We use the ADAM
gradient-descent optimizer [Kingma and Ba 2014] for 300 iterations,
setting the learning rate to 10−2 for R and 10−4 forHi . Our algorithm
provides the gradient of the loss with respect to the reconstructed
image R and homographies Hi . We set λ = 10−3. For 13 2048 × 2048
images, computing the initial homographies takes 44.5s, initializing
the reconstruction 0.1s. Minimizing the cost function takes 179.4s
using the code generated by our automatic scheduler on a Titan X
(Pascal) GPU.

5.4 Lens optimization
While we focus on imaging, Halide can express any feed-forward
pipeline of arithmetic onmulti-dimensional arrays. There are numer-
ous non-imaging applications in this class, and taking derivatives is
useful for many of them. As an example, we implemented a simple
ray-tracer for a system of spherical lenses in Halide, and used our
system to construct derivatives of the sharpness with respect to the
lens positions and curvatures. In Figure 8, we start from an existing
Zeiss design [Lange 1957] and reoptimize it to be more compact
while maintaining the field of view, F-number, and sharpness.

5.5 Future work
As these applications demonstrate, our system automatically deliv-
ers state of the art performance when computing the gradients of
general image processing pipelines. We see two major directions
for future work.
Higher-order derivatives and non-scalar outputs. Some optimiza-

tion methods require derivatives of non-scalar outputs, the full
Hessian matrix, or even higher-order derivatives [Girolami and

1OpenCV: https://github.com/opencv/opencv

Fig. 8. Halide augmented with gradients is useful for a wider range of
applications than just image processing and machine learning. By express-
ing a ray-tracer for an optical system in Halide and taking derivatives of
sharpness with respect to the lens parameters, we can reoptimize a classic
Zeiss lens design [Lange 1957] (above) to be more compact (below) while
maintaining as much sharpness as possible.

Calderhead 2011]. Our system supports repeated or nested applica-
tion of differentiation. However, it only differentiates with respect
to one scalar at a time. When the dimensionality of both the in-
put and the output are high, there are automatic differentiation
algorithms that are more efficient than both forward- and reverse-
mode (e.g., vertex elimination [Griewank and Reese 1991] or the
D* algorithm [Guenter 2007]). Incorporating these algorithms into
our system, and developing better interfaces for non-scalar outputs
and higher-order derivatives, will broaden the range of possible
applications.

Better automatic scheduling.While it is possible to manually sched-
ule the synthesized reverse computation, we found it challenging for
non-trivial examples, and relied on our automatic scheduler entirely
for this work. Its performance is good for gradient pipelines, but
inspecting the generated code reveals plenty of room for further
improvement. We consider the general Halide automatic scheduling
problem still unsolved.

6 CONCLUSION
Gradient-based optimization is revolutionizing many fields includ-
ing image processing, but the efficient computation of derivatives
has so far been difficult, requiring one to either conform to limited
building blocks or to error-prone manual derivation and challenging
performance optimization. In contrast, our method can automati-
cally generate high-performance gradient code for general image
processing pipelines. Our method only requires the implementation
of forward operators in a language that is concise, easy to maintain,
and portable. It then automatically derives the gradient code using
reverse automatic differentiation. We have presented a new auto-
matic performance tuner that handles the particular computation
patterns exhibited by derivatives. Our code compiles to a variety of
platforms such as x86, ARM and GPUs, which is critical both for
final deployment and for efficient training.
We have demonstrated that our work enables several types of

applications, from custom neural network nodes, to the tuning of
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internal image processing parameters, to the solution of inverse
problems. It dramatically simplifies the exploration of custom neural
network nodes by automatically providing a level of performance
that has so far been reserved to advanced CUDA programmers. It
makes it easy to optimize internal weights and parameters for gen-
eral image-processing pipelines, a step that few practitioners feel
they can afford due to the cost of implementing gradients, which is
especially true during the algorithmic exploration stages. Our sys-
tem can also be used for inverse problems (which can even include
unknown imaging parameters in addition to the unknown image).
The user now only needs to worry about implementing the forward
model. Each of the demonstrated applications was implemented
initially in a few hours, and then evolved rapidly, with correct gradi-
ents and high-performance implementation automatically provided
at each step by our method. We believe this will create new op-
portunities for rapid research and development in learning- and
optimization-based imaging applications.
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