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Abstract

Adaptive sampling and reconstruction of Monte Carlo rendering often involves using a G-buffer to estimate the latent
color of an image, by optimizing certain error estimator. Stein’s Unbiased Risk Estimation (SURE) was shown to be
suitable for being such error estimator. In this note, I show that SURE can and should be modified to take the correlation
between the noise in G-buffer and color, and the correlation between color channels into account.

1 Motivation

Monte Carlo rendering generates photorealistic images but also takes days to compute them. Adaptive sampling and
reconstruction methods are powerful variance reduction techniques that significantly reduce the computation time by
adapting the sampling budget to difficult regions and filtering the images using auxiliary information obtained by the
renderer (e.g. per-pixel normal or texture information). An important component of these methods is an error estimator,
which can be used to identify difficult regions and to optimize the hyperparameters of the filters. In the past we showed
that Stein’s Unbiased Risk Estimator (SURE) [2] is suitable for being such error estimator [1]. The formulas in our previous
paper assume the noise between G-buffer and color are uncorrelated. However, the assumption does not hold in general,
since samples in G-buffer are often directly used to compute the color. We also ignored the correlation between color
channels. In this note I derive a new SURE formula taking these correlations into account.

2 Joint Stein’s Unbiased Risk Estimation

We are given a vector x ∈ Rn contaminated by zero mean Gaussian noise nx with covariance Σx:

x́ = x + nx. (1)

We are also given a noisy vector ý ∈ Rm jointly normal distributed with x́. We use Cov(x́i, ýj) to denote the covariance
between i-th component of x́ and j-th component of ý. In our application, x́ is the noisy Monte Carlo color estimation,
and ý is the feature vector (e.g. world position, texture albedo and surface normal). Thanks to central limit theorem, the
noise will behave like normal distribution as we increase the number of samples.

In reconstruction for Monte Carlo rendering, a function f is applied to the color x́ and the feature ý. Our goal is to
estimate the mean square error between the reconstructed color f(x́, ý) and the true latent color x. The error estimation
can then be used for optimizing f ’s hyperparameters or adaptive sampling.

I will show that, for a weakly differentiable function f , the following function g:

g(x́, ý) = ‖f(x́, ý)− x́‖2 + 2

n∑
i=1

n∑
j=1

∂fi(x́, ý)

∂x́j
Cov(x́i, x́j) + 2

n∑
i=1

m∑
j=1

∂fi(x́, ý)

∂ýj
Cov(x́i, ýj)− tr(Σx), (2)

is an unbiased estimator of the mean square error:

E[g(x́, ý)] = E[‖f(x́, ý)− x‖2]. (3)

g only depends on x́, ý, and the covariances, which we can obtain through finite number of Monte Carlo samples. Notice
how g reduces to the original SURE [2] if x́ and ý are uncorrelated and Σx’s non-diagonal elements are zero.

In short, any adaptive sampling and reconstruction method for Monte Carlo rendering using the SURE formula and a
noisy G-buffer can and should replace their error estimator with Eq. 2.

3 Derivation

In this section we derive the aforementioned function g. We expand the expectation in Eq. 3 using the linearity of
expectation and the fact that x́ is Gaussian distributed:

1



E[‖f(x́, ý)− x‖2] = E[‖f(x́, ý)‖2] + E[‖x‖2]− 2E[f(x́, ý)Tx]

= E[‖f(x́, ý)‖2] + E[‖x́‖2]− tr(Σx)− 2E[f(x́, ý)Tx]

= E[‖f(x́, ý)‖2] + E[‖x́‖2]− tr(Σx)− 2
(
E[f(x́, ý)T x́]− E[f(x́, ý)Tnx]

)
= E[‖f(x́, ý)‖2] + E[‖x́‖2]− tr(Σx)− 2

(
E[f(x́, ý)T x́]−

n∑
i=1

Cov(fi(x́, ý), nx,i)

)
.

(4)

By definition of covariance and Stein’s lemma [2], we have:

Cov(fi(x́, ý), nx,i) = Cov(fi(x́, ý), x́i) =

n∑
j=1

E[
∂fi(x́, ý)

∂x́j
]Cov(x́i, x́j) +

m∑
j=1

E[
∂fi(x́, ý)

∂ýj
]Cov(x́i, ýj). (5)

Inserting Eq. 5 back to Eq. 4 with some manipulations gives us:

E[‖f(x́, ý)− x‖2] = E

[
‖f(x́, ý)− x́‖2 + 2

n∑
i=1

n∑
j=1

∂fi(x́, ý)

∂x́j
Cov(x́i, x́j) + 2

n∑
i=1

m∑
j=1

∂fi(x́, ý)

∂ýj
Cov(x́i, ýj)− tr(Σx)

]
= E[g(x́, ý)].

(6)
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