

Communication Primitives for Ubiquitous Systems or RPC Considered

Harmful

Umar Saif, David J. Greaves

Computer Laboratory, University of Cambridge.
{ us204, djg} @cl.cam.ac.uk

Abstract

RPC is widely used to access and modify remote
state. Its procedural call semantics are argued as
an efficient unifying paradigm for both local and
remote access. Our experience with ubiquitous
device control systems has shown otherwise.
RPC semantics of a synchronous, blocking
invocation on a statically typed interface are
overly restrictive, inflexible, and fail to provide
an efficient unifying abstraction for accessing
and modifying state in ubiquitous systems. This
position paper considers other alternatives and
proposes the use of comvets (conditional,
mobility aware events) as the unifying generic
communication paradigm for such systems.

Keywords: RPC, RMI, Events, Comvets,
CORBA, Jini

1 Introduction

Ubiquitous environments or active spaces are the
next generation of device control networks. A
user interacts with an active space by using novel
interfaces like speech and gesture input [1] to
control her environment, and the system interacts
with the user using audio/video output. The user
can discover and use the environment resources
and export the resources she is carrying to the
environment [2]. One of best-known application
of such systems is Home or Office automation
[3]. Our research group has been researching
Home Area Networks for the last 5 years [4].
This paper is based on our experience with the
communication primitives for such a system.
 Although, it is quite well understood in
our group that RPC is not a suitable paradigm for
such systems [5, 23, 31, 32], we feel that a large

portion of the community in both research and
industry is stil l using RPC (or its newer
implementation like ROI, RMI) even when it is
harmful. For example, UpnP, Easyliving and
others have recently devised SOAP [6], based on
RPC semantics, for home automation. Likewise,
even notable mobile agent systems like Ajanta
[7] solely rely on java-RMI for agent interaction.
More astonishingly, distributed Event
architectures of even the mainstream systems
like CORBA [8] and Jini [29] have been
implemented on top of RPC (RMI), which,
although alleviates the applications from RPC
semantics, leads to an inefficient implementation
at the system level.
 This position paper is motivated by
pervasive use of RPC in pervasive systems,
which, as we show, is harmful.

2 What is a ubiquitous system?

A ubiquitous system is a sensor/actuator rich
environment that provides both mobility-
transparent [9] and context aware (or adaptive)
access to system resources [2], depending on the
requirements. Resources can be mobile;
communication channels have varying
characteristics, and network partitions are a
possibility [10]. Resources can fail, enter or
leave the network, and ad-hoc topologies without
any backbone connection are possible [12]. Data
exchanged between systems resources can vary
from short one-way discrete messages to
multiparty continuous media streams. The
interfaces to a resource might not be known at
compile time. Finally, as many
sensors/resources/indicators collaborate to define
a ubiquitous environment, interactions frequently
involve more than two parties.

3 . What is RPC?

Remote Procedure Call (and Remote Object
Invocation) was proposed [33] as a simple,
efficient and unifying paradigm to transfer data
and control to remote resources. RPC promised
to achieve this goal by abstracting away the
syntactic and semantic gap between local and
remote cases, by allowing remote resources to be
accessed by a simple procedural invocation just
like the local case. To be able to use the RPC
facility, server side software needs to be
compiled by a special RPC compiler that
generates a stub and a skeleton. Traditionally, the
stub (or its interface) needs to be in the client
address space at compile time, leveraging strong
(static) typing. Methods invoked on remote
object are intercepted by the client side stub that
forwards the call to the server side skeleton to
give an il lusion of a local invocation to the client
application. Remote objects are referenced using
interface numbers and version numbers (unique
IDs) [12] that provide a (rigid) contract between
a client and a server. The RPC runtime system
hides the transport details from the client and
server stubs, manages the interface IDs, and
implements the scheduling policies for server
side resources.

4 So what is wrong with RPC?

Some of the semantic inconsistencies in the RPC
abstraction of remote access have been discussed
in [13]. The authors of that paper conclude that it
may be better in many circumstances to use a
non-transparent abstraction rather than a
transparent one like RPC. While that paper is
concerned mainly with traditional distributed
computing applications, we focus on the lack of
support in RPC for new forms of applications
made possible with the advent of ubiquitous
systems.
 To be able to understand why RPC is
harmful, we first need to analyze the RPC syntax
and semantics. RPC dictates the semantics of a
a) blocking, b) synchronous invocation and has
the syntax of a statically bound procedural
invocation where the procedure acts on an
ordered list of formal parameters and returns a
result.
This makes RPC overly restrictive, inflexible
and inefficient for the communication
requirements of ubiquitous systems in the
following ways.

4.1 Logical and physical mobility

One of the key aspects of ubiquitous systems is
mobility, both logical (mobile agents or
processes) and physical (device mobility)[14].

Logical mobility, or process mobility
serves for three purposes in ubiquitous systems.
1) It provides for load balancing, and hence
better utilization of system resources, 2) it
provides fault tolerance by replication and/or
migration and 3) it can be used to dynamically
extend the capabilities of the participating
resources to enable them to participate in the
ubiquitous system. Due to the complexity and
overhead of strong migration [15], and relatively
limited utility [16], trend in process migration
has been towards mobile agents [17]
implemented on weakly mobile frameworks [7].
Weak mobility basically reduces the context
state to an instruction pointer at a subroutine
entry point [17]. Therefore any blocking call
would essentially prevent the process (or mobile
agent) from migrating (as execution context
would need to be saved at an arbitrary point).
Although, most of the system calls can be
implemented with non-blocking semantics to
facilitate weak migration, remote interactions, if
modeled after the RPC paradigm, restrict
mobility to instances when no remote
interactions are outstanding. Even for a strongly
mobile system, pure RPC semantics do not allow
for the return value to be delivered to a different
host or process than the one who made the
invocation. This severely limits relocation
decisions for load balancing or fault tolerance in
a communication oriented system like a device
control ubiquitous system [4]. Consequently,
applications like follow me audio/video that need
to deliver data to a mobile object cannot be
implemented efficiently using the RPC
semantics. Implementations like M-RPC [18]
violate the end-to-end semantics of RPC, and
could only be viewed as ad-hoc fixes to a broken
paradigm.

Wireless links can be asymmetric in
nature [10]. Asymmetry can be in space i.e.
bandwidth, throughput, BER or in time i.e.
disconnected operation. RPC’s bi-directional
semantics mean that the properties (QoS or
otherwise) of messages in either direction cannot
be changed independently. Hence, this feature
has not been implemented in any of the RPC
packages. For instance, a link might be more
error prone in one direction than the other one.
Reliability parameters e.g. number of retries, or
QoS parameters like priority, can be changed for

such a link with an abstraction that, unlike RPC,
does not enforce bi-direction semantics.
Likewise, disconnected operation could be
supported with an abstraction that, unlike RPC,
does not enforce bi-directional blocking
semantics. The reply to a request can be
delivered when the connection is resumed,
without “hanging-up” the application on either
side. For instance, wireless devices usually
operate in suspend mode to save battery power,
waking up periodically to see if any event of
interest has happened. With RPC semantics, this
would result in orphan processes [13]. Primitives
that permit the decoupling of messages in either
direction can employ a solution like a docking
station [19] to temporarily hold the results for the
mobile host and can deliver it to the mobile host
when it comes up.

4.2 Device control applications

Our experience with ubiquitous device control
systems [4] has shown that most of the remote
interactions in such a system are either one way
“do this” commands to the device or “ this has
happened” notifications in the opposite direction.
For instance, “switch on the light” or “notify the
alarm system if someone breaks into the house” .
 RPC enforces a tightly coupled bi-
directional interaction. The synchronous,
blocking semantics mean that the calling thread
is suspended even for interactions that do not
require a return value to continue with their
operation (as mentioned above). Although it
might appear that these semantics provide an
implicit acknowledgement, the reliability
semantics implemented by this implicit
acknowledgment mechanism are fixed and are
hidden by the RPC runtime system (at least once,
or at most once) irrespective of the application
requirements. This mechanism actually violates
the end-to-end arguments for system design [20].
A better approach would be to make this explicit
by notifying the application about any
“abnormal” occurrence, and leaving the
reliability semantics to it. This is not only more
efficient but, at times, is necessary for correct
operation. For instance, most of the device
control operations are idem-potent e.g. “ turn off
the toaster” and it is more efficient to just have
at-least-once semantics, whereas some other
complex computation might require the
complexity of at-most-once semantics for correct
operation.
 As pointed out by [13], the same
limitation stops RPC from being used in parallel

programming. One possible solution to get
around this inherent limitation in RPC semantics
is to use multiple threads for a task, but this
solution is neither elegant nor efficient, and adds
extra burden of thread management even for
situations when it is not warranted.

4.3 Multimedia communication

In addition to the one-way device control
commands, a large part of the device control
architecture is concerned with managing
multimedia (A/V) streams [21,22]. After all,
ubiquitous environments interact with people,
more precisely, with their audio/video sensors.

As stated above, RPC has tightly
coupled bi-directional semantics i.e. a discrete
request in one direction followed by a discrete
reply in the opposite one, delivered to the same
process which sent out the request. With
multimedia communications, the reply is no
longer a discrete message, but a continuous
media stream, and it might need to be sent to a
different destination than the one requesting the
media flow to be set up [23]. Therefore, RPC
semantics are not a general solution for
multimedia communications. Instead an
abstraction outside of RPC is employed to
augment the distributed system to accommodate
media streams. Usually explicit bindings are
used to represent the media flows. These
bindings provide a number of stream
management functions in addition to the facility
to add new end points [24] or processing
modules [25] to the stream.

An abstraction that does not enforce
synchronous bi-directional interaction can more
easily be used to model multimedia
communications.

4.4 Multi-party interaction

Ubiquitous environments are sensor rich where
many sensors/resources/actuators collaborate to
provide a service [26]. For instance, “when I
enter the room, please notify the Hifi (so that it
can play music), dim the lights, and draw the
curtains” . In this case, the notification from the
door read-switch sensor needs to be delivered to
three (and possibly) more sensors. For more
applications, refer to [26]. As pointed out by
[13], RPC is not well suited for group
communication, and hence is not a good choice
for collaborative sensor rich ubiquitous
environments.

4.5 Interface Definition

RPC models all remote interactions as
procedural invocations on strongly typed
interfaces defined in a (quasi-) formal
description language such as IDL [27]. This
interface is then used to provide the language
level mappings and to consequently generate the
client and server side stubs. Therefore the client
must know the exact method signature of the
remote service at compile time to be able to use
it.
 Ubiquitous environments are loosely
coupled, with different components designed and
implemented separately at different points of
times. Hence, it not possible to have the remote
interfaces of all the services at compile-time.
Further, one of the key aspects of ubiquitous
systems is agility or context aware adaptation.
Services must be able to discover and bind to
new interfaces as they move in the ubiquitous
environment [2]. Our experience has shown that
RPC’s static typing is overly restrictive, and does
not allow the desired interoperability. In such
environments, it is often very useful to be able to
use a “nearest-match” service that fulfi lls some
but perhaps not all of the criteria for a remote
interaction. For example, “make the ambient
light very dim” could be carried out as “switch
off the light” in an environment where lights do
not have the facility to be dimmed. Or “display
this colored video on the nearest screen” can be
carried out as “display this video on the nearest
screen” where only a mono-colored screen is
available in the environment. This facility can be
useful for graceful degradation of services, as
well. Clearly, strongly typed static interfaces are
not the right paradigm for such a system. This
has, indeed, been recognized by recent
middleware systems that now have facilities for
dynamic invocations [28] and use reflection [29],
essentially changing the semantics to message
passing and pushing the problem to dynamic
typing.

5 So what is the alternative?

To recap, what is needed is a set of primitives
that allow the decoupling of messages in either
direction, both in space i.e. to a different host or
process with independent properties, and in time,
alleviating from the synchronous blocking
semantics. The primitives should be generic,
allowing interoperability, and type checking
should be done at runtime. All in all, it should
provide a unifying, efficient abstraction for all

the ubiquitous device control functions
mentioned above.

This criterion leads to an already well-
understood paradigm of asynchronous events [5]
implemented on top of message passing. Quite
intuitively, ubiquitous device control is all about
handling events; “ this has happened” , “please do
this” , “start your video stream on a particular
channel” , “ there was an error in executing your
command” etc.

An event architecture models a system
as a set of producers, consumers and moderators
(channel) of events. Producers of events
advertise their events, and producers of events
can register interest in them. The architecture can
include a general-purpose event channel or
moderator that serves as an event bus [30].
Registration and notification of events are
decoupled operations, and do not restrict the
interaction to one discrete message in either
direction (there could be more than one
notifications for one registration), which could
be used to accommodate continuous streams.
The clients only need to know about one
interface REGISTER, and the servers only need
to know about the NOTIFY interface. Most of
the type checking is done dynamically. This
lends itself naturally as a unifying paradigm for
federating heterogeneous systems [31] like
ubiquitous systems.

Unfortunately the traditional event
architectures are not rich enough [30,29] to
support all of the above requirements. What we
need is an event architecture that supports the
following features.

- Generic interfaces for event registration,

generation and/or notification by dynamic
type checking of the event streams, instead
of static type checking of remote interfaces,
to support federation of heterogeneous
systems.

- Conditional notification of events expressed
in extended event algebraic expressions
(e.g. “sound the alarm if someone enters the
main door and it is later than 10:00pm”)

- QoS support for event delivery, to allow
QoS sensitive data, e.g. multimedia streams,
to be modeled as continuous delivery of
events.

- Mobility support for event notification by
allowing events to be delivered to a different
host/process than the one registering interest
in it i.e. by allowing the notification object
to be set explicitly (and changed if need be).

6 Practical work

Although a few existing event architectures have
some of the attributes listed above [29,30,5],
none of them addresses all the issues. Among
those CORBA Notification architecture comes
closer to the above requirements, but its
conditional notification framework has not been
fully specified or implemented.
 Our research group [4] has implemented
an evolving framework to use events in home
networking device control. We are currently
working to extend the Cambridge Event
Language [5] to make it a general-purpose event
algebraic language to be used for ubiquitous
device control environments. As these events
include support for Mobility, and Conditional
notification, we call them comvets. The events
language provides event fi ltering, aggregation,
federation, archiving and query services [23].
We have already prototyped a system using
GENA architecture [32] and we are working on
an implementation to use XML to encode the
meta-data typing information of events to allow
flexibility needed for interoperation.
 The basic API offered by Comvets is
the same as CEA [5], with additional support for
QoS and mobility. Comvets API includes two
methods, SUBSCIBE and NOTIFY.
SUBSCRIBE is used by the clients to register
interest in the specified events types, whereas
NOTIFY is used by the server to notify the
clients about the happening of an event matching
a specified condition. Conditional expressions
are specified in an XML encoding of CEL.
Mobility is supported by two additions to the
basic framework. First, clients explicitly specify
the host to be notified when subscribing to
events; the host notified is not necessarily the
host subscribing to events. Second, DEST
method is added to the basic API that can be
used to change the destination of a notification
subscribed for another host. QoS is supported by
allowing additional QoS specific parameters to
be specified with SUBSCRIBE requests. These
QoS parameters are read by a QoS agent that
negotiates and maintains reservation of resources
to deliver future notifications.

We also note that implementing RPC
semantics on top of our events architecture is a
simple matter of modeling event generators and
handlers as procedure calls, allowing
applications written with RPC semantics to be
accommodated without any modification. We
have found that implementing RPC semantics on

top of the events paradigm is both more efficient
and offers the above stated flexibility.

7. Conclusion

We have shown in this paper that RPC is a
harmful paradigm for ubiquitous device control
systems. Its tightly coupled bi-directional
semantics are overly restrictive, inflexible and
fail to provide a unifying paradigm that satisfies
the needs of such a system. We argue that
instead of trying to fit these semantics in
inefficient ways, such as use of multithreading,
another, more generic paradigm should be used
that satisfies all the requirements of such a
system. We propose the use of asynchronous
events paradigm, with support for conditional
notification and mobility awareness – what we
call comvets.

Acknowledgements

We would like to thank Jean Beacon for her
insightful comments that helped us improve the
paper. We would also like to acknowledge
contribution from Daniel Gordon in
implementation of the GENA prototype and his
comments on an earlier draft of the paper. This
paper also benefited from comments of the
IWSAWC reviewers.

References

[1] Weiser, M. 1993b. “Ubiquitous Computing” . IEEE

Computer, 26(10):71--72.
[2] T. Hodes, R. H. Katz, E. Servan-Schreiber, L. A.

Rowe, "Composable Ad-Hoc Mobile Services for
Universal Interaction," Third ACM Mobicom
Conference, Budapest, Hungary, (September
1997)

[3] Easy living project, MSR.
http://www.research.microsoft.com/easyliving/

[4] AutoHan Project, University of Cambridge,
Computer Laboratory.

http://www.cl.cam.ac.uk/Research/SRG/netos/han/
[5] J. Bacon et al. “Generic Support for Distributed

Applications” , IEEE Computer, March 2000:68-
76.

[6] D. Box et al. “Simple Object Access Protocol 1.1” ,
http://www.w3.org/TR/SOAP

[7] A. Tripathi, N. Karnik, M. Vora, T. Ahmed and R.
Singh. “Mobile Agent Programming in Ajanta", In
Proceedings of the 19th International Confernce
on Distributed Computing Systems (ICDCS '99)

[8]OrbixEvents Programmers guide,
http://www.iona.com/docs/manuals/orbix/33/html/
orbixevents33_pguide/index.html

[9] P. Sewell, P. Wojciechowski and B. Pierce,
"Location-Independent Communication for Mobile
Agents: a Two-Level Architecture", Internet
Programming Languages, LNCS 1686, April 1999

[10] B. Raman, R. H. Katz, A. Joseph, "Providing
Extensible Personal Mobility and Service Mobility
in an Integrated Communication Network," 3rd
IEEE Workshop on Mobile Computing Systems
and Applications (WMCSA2000), Monterey, CA,
(December 2000).

[11] J. Broch, D. A. Maltz, D. B. Johnson, Y. C. Hu,
and J. Jetcheva. “A Performance Comparison of
Multi-Hop Wireless Ad Hoc Network Routing
Protocols” . In Proc. of the ACM/IEEE MobiCom,
October 1998.

[12] Sun Microsystem Inc. “Remote procedure call;
protocol specifications” , RFC1050.

[13] A. S. Tanenbaum and R. van Renesse, "A
Critique of the Remote Procedure Call
Paradigm," in EUTECO ’88 Proceedings,
Particpants Edition, (Amsterdam, Netherlands),
pp. 775-783, North-Holland, 1988.

[14] G. P. Picco et al."Lime: A Middleware for
Physical and Logical Mobility". Technical Report
WUCS-00-05, February 2000, Washington
University in St. Louis, MO, USA.

[15] Tanenbaum, A., van Renesse, R., van Staveren,
H., and Sharp, G. 1990. “Experiences with the
Amoeba distributed operating system” .
Communications of the ACM , 336--346.

[16] A. S. Tenenbaum. “Distributed Operating
Systems” , Prentice Hall, 1995.

[17] Wong D., Paciorek N., Walsh T, “Concordia: An
Infrastructure for Collaborating Mobile Agents” ,
in Rothermel K., Popescu-Zeletin R. (eds), Mobile
Agents (Proc. 1st Int. Workshop), Springer-
Verlag, LNCS 1219, 1997, pp 86-97

[18] Bakre, A., Badrinath, B.R.: “M-RPC: A Remote
Procedure Call Service for Mobile Clients” ,
Proceedings of the 1 st ACM Mobicom
Conference, 1995, pp. 2-11

[19] Baumann J., Hohl F., Rothermel K., Straßer M.,
“Mole - Concepts of a Mobile Agent System” , to
appear in: WWW Journal, Special issue on
Applications and Techniques of Web Agents,
1998

[20] J. H. Saltzer, D. P. Reed, and D. D. Clark. “End-
to-end arguments in system design” . ACM
Transactions on Computer Systems, pages
277288, 1984.

[21] Home Audio Video Interoperability, “White
paper” ,

http://www.havi.org/techinfo/whitepaper.html
[22] D. J. Greaves, R. J. Bradbury. “Warren: A low-

cost Home Area Network” , IEEE Network,
12(1):44-56, January 1998.

[23] M. Spiteri and J. Bates, "An Architecture for the
Storage and Retrieval of Events". Proceedings of
Middleware'98, September 1998

[24] S. Mungee, N. Surendran and D.C. Schmidt.
“ The Design and Performance of a CORBA
Audio/Video Streaming Service” , Hawaii
International Conference on System Sciences
(HICSS), Minitrack on Multimedia DBMS and the
WWW, Hawaii, January 1999

[25] Andy Hopper Stuart Wray, Tim Glauert. “The
medusa applications environmen” t. Technical
Report 94-3, Olivetti Research Ltd, 1994.

[26] H. Balakrishnan, S. Seshan, P. Bhagwat, and
F.Kaashoek “Self-Organizing Collaborative
Environments” , NSF/DARPA/NIST Workshop on
Smart Environments, Atlanta, GA, July 1999.

[27] Object Management Group. “CORBA Language
mapping specification” ,
http://www.omg.org/technology/documents/forma
l/corba_language_mapping_specifica.html

[28] Object Management Group. “CORBA/IIOP
Specifications, Dynamic Invocation Interface” ,
http://www.omg.org/technology/documents/new_f
ormal/corba.htm

[29] Edwards, W. K. , 1999. Core Jini. Prentice Hall
[30]Object Management Group. “Notification Service

Specification” ,
http://www.omg.org/technology/documents/new_f
ormal/notification_service.htm

[31] . Bates, J. Bacon, K. Moody and M. Spiteri,
"Using Events for the Scalable Federation of
Heterogeneous Components". Proceedings of
ACM SIGOPS European Workshop, September
1998.

[32] U. Saif, D. J. Gordon, D. J. Greaves, “ Internet
Access to the Home Area Network” , IEEE Internet
Computing, 54-63: Vol. 5, No. 1,
January/February 2001

[33] .D. Birrell and B.J. Nelsen. “ Implementing remote
procedure call” . ACM Transactions on Computer
Systems, 2(1), 1984.

