
Gigabit Routing on a Software-exposed
Tiled-microprocessor

Umar Saif
umar@mit.edu

James W. Anderson
jwanderson@cs.ucsd.edu

Anthony Degangi
degangi@mit.edu

Anant Agarwal
agarwal@.mit.edu

MIT Laboratory for Computer Science and Artificial Intelligence

ABSTRACT
This paper investigates the suitability of emerging tiled-architectures,
equipped with low-latency on-chip networks, for high-performance
network routing. In this paper, we present the design, implemen-
tation and evaluation of a continuum of software-based routers
on the MIT RAW microprocessor. The routers presented in this
paper explore 1) several design choices for mapping the routing
functions to the RAW tiles, 2) the role and behavior of RAW
on-chip interconnects for transporting and switching packets, and
3) the placement of packet buffers and their interaction with the
RAW on-chip networks. Our experiments evaluate the perfor-
mance benefit of streaming on-chip networks for transporting packet
payloads, effect of buffering on the linecards, and the cost of scal-
ing our design. Our software-based routers on RAW can achieve
a throughput of 15Gb/sec – an order of magnitude improvement
over previous software routers on traditional general-purpose ar-
chitectures and at least four times faster than Intel’s IXP1200 Net-
work Processor.

Categories and Subject Descriptors
C.2.6 [Internetworking]: Routers

General Terms
Design, Performance

Keywords
RAW router, programmable router, tiled architecture

1. INTRODUCTION
Programmability and high-throughput, two traditionally con-

flicting requirements, continuously challenge the network rout-
ing industry. In order to remain competitive in a market charac-
terized by an ever-increasing demand for throughput and func-
tionality, network routers must provide high-throughput without
confounding programmability or scalability of the architecture.
However, existing routing platforms fall short of addressing the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ANCS’05,October 26–28, 2005, Princeton, New Jersy, USA.
Copyright 2005 ACM 1-59593-082-5/05/0010 ...$5.00.

twin requirements of performance and programmability. Net-
work routers built using custom-designed hardware are typically
expensive, offer limited programmability and must be frequently
redesigned to keep up with changes in routing standards, through-
put requirements, and algorithmic innovations. In contrast, general-
purpose architectures offer a greater degree of flexibility for up-
grading and extending the router functionality, but fail to provide
the level of performance warranted by high-performance network
routing.

The performance of a network router depends on the care-
ful exploitation of packet-level parallelism and the efficient flow
of packet streams in the router fabric. In a traditional general-
purpose architecture, not only does an application have little con-
trol over how its parallel tasks are mapped to chip resources, the
only mechanism of communication between an application’s par-
allel tasks is via sequential memory read/write operations. There-
fore, the parallelism of a general-purpose architecture is typically
underutilized, leading to poor performance, and exhibits dimin-
ishing returns, due to the overhead of memory-based communi-
cation. Furthermore, since each IP packet is an independent data
unit, the traditional performance gain from (temporal or spatial)
caching in a memory-hierarchy is irrelevant when processing IP
packet streams.

However, the emerging “all-purpose” tiled-architectures, equipped
with low-latency on-chip interconnection networks, promise to
combine the programmability of general-purpose architectures
with the performance of custom-designed network processors.
Purported as the natural architectural evolution in response to the
increasing significance of wire-delay, tiled-architectures replicate
and distribute the chip resources as a set of interconnected clus-
ters, or tiles, and employ structured low-latency on-chip networks
to route traffic between different tiles. Tiled-architectures like the
MIT RAW microprocessor [4] expose the hardware resources to
the software, affording a degree of flexibility to the software in
how it utilizes the chip’s pin resources. Taking into account the
latency of inter-tile communication, the software fully controls
the partitioning and lay out its parallel tasks on the chip tiles.
Such architectures, therefore, promise to offer a flexible model
for exploiting the parallelism inherent in packet-based network
traffic, as well as an efficient mechanism for transporting packets
within the chip.

This paper explores how traditional network routing functions,
implemented by custom-designed hardware in network proces-
sors, may be mapped to the architectural primitives offered by
the emerging “all-purpose” tiled-architectures to achieve high-
performance.

In this paper, we evaluate the performance of MIT’s RAW
tiled-microprocessor for network routing. We chose the RAW mi-
croprocessor since its tiled-architecture resembles several emerg-

ing network processors, such as Cisco Toaster, and, more impor-
tantly, offers a number of interesting features for network routing.
First, RAW’s tiled-architecture, for instance as a 4x4 grid, offers
several functional units which may be programmed to exploit the
parallelism afforded by Internet packet streams. Second, RAW
offers four on-chip low-latency networks—two statically-routed
streaming networks and two dimension-ordered-routed dynamic
networks (General Dynamic Network, GDN, and Memory Dy-
namic Network, MDN), routed by dedicated switch-processors—
for rich inter-tile communication. Finally, RAW exposes the chip
resources—functional units, pins and on-chip networks—to the
software, affording the software a degree of flexibility over how
routing functions are mapped to the RAW’s tiled-architecture. A
detailed description of the RAW microprocessor is given in [10].

Our design space for network routing on RAW’s tiled-architecture
is characterized by the following three properties that distinguish
it from previous custom-designed network processors.

Processing: Instead of using custom-designed hardware to im-
plement header processing functions, such as lookup and
verification, our router architectures program the RAW tiles
to perform these functions in software.

Switching: Traditional routing architectures use a dedicated switch-
ing artifact, such as a crossbar switch. However, in our
software-router, the RAW on-chip networks are used as the
switching fabric, effectively combining the switching and
processing of packets on a single chip.

Buffering: Often dubbed a store-and-forward switch, a network
router is essentially designed around a packet buffer that
holds the incoming packets waiting to be processed. In
custom-designed network routers, such packet buffers are
central to the design of the router, and are typically ac-
cessed via special-purpose memory controllers over ded-
icated high-bandwidth interconnects. In the RAW micro-
processor, however, packet buffering must be provisioned
externally to the chip, by connecting SDRAMs to the RAW
pins, and accessed over the RAW on-chip networks.

For our evaluation, we implement a basic IPv4 network router,
compliant with RFC 1812, in software. Our routing software
implements four basic functions: address lookup, header veri-
fication, header (TTL) update and checksum recompute. We use
the (software implementation of) two-tiered forwarding table lay-
out proposed by Gupta et al. in [5] for lookup, specifically the
popular DIR-24-8-BASIC scheme. This scheme, typically imple-
mented in hardware, trades space for lookup efficiency and pro-
vides a fair reference point for comparison with hardware-based
router implementations. The header checksum is computed by
taking one’s complement of the header bytes, while we imple-
ment the standard incremental checksum update algorithm, de-
scribed RFC 1141, for updating the outgoing header.

The rest of the paper presents the design, implementation, and
evaluation of a continuum of router architectures that explore: a)
various design choices for mapping the routing functions to the
RAW tiles, b) the role and behavior of RAW on-chip intercon-
nects for transporting and switching packets, and c) the architec-
ture of packet buffers and their interaction with the RAW on-chip
networks.

2. EVALUATION METHODOLOGY
To evaluate our software-based router architectures, we use a

validated cycle-accurate simulator of the RAW chip. The use of a

simulator, instead of actual hardware, permitted us the flexibility
to explore alternative motherboard configurations and simulated
linecards. [4] further describes this simulator. Our simulated in-
put linecards read their input from files containing packets in byte
streams and have a configurable rate at which they send packets to
the RAW processor. If the rate is greater than the saturation point
of RAW, then the linecards simply stall until the RAW proces-
sor is able to accept the next packet. The output linecards write
every byte they receive from the RAW processor to trace files,
which are validated in post-processing scripts to ensure that the
router is routing correctly. For our timing results, we use a RAW
microprocessor clock speed of 425MHz.

In our experimental setup, the input linecards are programmed
to send UDP packets to the routing engine at various rates. We
used two types of input packet data: randomly generated and
real packet traces from the Internet. The randomly generated
packet data comprises 4000 packets with 128 different source
and destination addresses. Each of these 128 source and desti-
nation addresses are randomly assigned to an input and output
port, respectively. For each evaluation, we ran the same config-
uration four times with four different random traces, and aver-
aged the results. We found that there was no difference in per-
formance when using traces longer than 4000 packets or using
more than 128 addresses. The forwarding table is initialized with
32-bit entry prefixes, that is, each address has its own entry in
the forwarding table. The captured Internet trace files (obtained
from http://lever.ucla.edu/ddos/traces) each contain 10,000 pack-
ets. For these real traces, the forwarding table is initialized with
randomly assigned 24-bit entry prefixes, which reflect actual rout-
ing table entries. For the real packet traces, we ignore the timing
data included in the traces, and configured the linecards to send
the packets at the maximum possible rate.

Our evaluation measures the forwarding rate, throughput, and
latency of the router. The forwarding rate, perhaps the most im-
portant measure of a router’s performance, is evaluated by mea-
suring the rate at which a router can forward 64-byte packets
(minimum packet size on the Internet without MTU discovery)
over a range of input rates. Minimum-size packets stress the
router harder than larger packets; the CPU and several other bot-
tleneck resources are consumed in proportion to the number of
packets forwarded. Plotting forwarding rate versus input rate in-
dicates both the maximum loss-free forwarding rate (MLFFR)
and the behavior of the router when overloaded. An ideal router
would emit every input packet regardless of input rate, corre-
sponding to the liney = x.

The throughput, on the other hand, is measured in gigabits per
second using 1500-byte packets – maximum size Ethernet frames
on the Internet. With maximum-sized frames, the throughput
evaluation is dominated by the capacity of the internal bandwidth
of the router i.e. switching and buffering capacity of the router.

Finally, latency is measured to determine how much time the
router delays the packet in the forwarding process. The laten-
cies for both large and small packets are measured. If the router
has high latency and delays a packet for too long, then pack-
ets can arrive at the receiver out-of-order. Out of order packets
can cause problems at the application layer, but should also be
avoided because they can cause TCP to conclude that packets are
being dropped, which will lead to spurious retransmissions and
may lead to congestion.

The evaluation presented in this paper is intended to be self-
contained in that we establish our own baseline case instead of
simply comparing with previous work. However, as a point of
reference, we also compare the performance of our router with
the hugely popular Intel IXP1200 Network Processor. For our

comparison, we use the IXP1200 simulator included with Intel
IXP Developer Workbench. We used the example router pro-
vided by Intel, which has two 1Gbit linecards. To measure the
performance of the IXP1200, we used the sample packet streams
provided with the IXP simulator. The IXP simulator did not al-
low us to set the rate at which packets are sent to the router, so we
plot the saturation point-which is 2,900,000 packets per second-
and interpolate the rest of the curve.

Importantly, since the architectures presented in this paper are
focused on evaluating the suitability of emerging tiled-architecture
and on-chip interconnects for routing network packets, our eval-
uation is focused on what typically constitutes a data plane or
the forwarding engine in a network router, rather than “control-
plane” issues such as quality of service, active queue manage-
ment, scheduling, signaling and route discovery.

3. SOFTWARE ROUTING ON RAW
In this section we describe the evolution of our router archi-

tecture through a series of advancements to optimize the process-
ing, switching and buffering of packets on the RAW’s software-
exposed tiled-architecture.

3.1 Parallelism: RAWRouter Version I
Our first design establishes a baseline case for the performance

of network routing on the RAW microprocessor. In the first ver-
sion, we focus primarily on the performance afforded by the par-
allelism of the RAW’s tiled-architecture, with little attention to
optimize the switching and buffering of packets in the router.

In our baseline case, we use a 16-tile RAW grid (4 x 4) to serve
four network ports. The routing software establishes four parallel
processing paths, each independently mapped to a network port to
enable parallel processing across incoming traffic streams. When
programmed for IPv4-forwarding, each processing path is in turn
divided into a four-stage pipeline to exploit parallelism between
IP header processing operations. In this version, the RAW static
network serves the dual purpose of streaming packets between
the linecards and the packet buffers and as a broadcast channel
for feeding the three stages of the header-processing pipeline.

Figure 1 shows our first design on the RAW 4 x 4 grid. The
four-stage pipeline is mapped to four principal operations in IPv4
forwarding: address lookup, header validation, header update,
and header forwarding. The pipeline stages are organized in “ver-
tical” columns of tiles, with four forwarding rows. The packets
are streamed (broadcast) to the first three stages of the pipeline
over the RAW static-network-1. The first stage performs the route
lookup by cache missing to a forwarding table in an external
DRAM located adjacent to the column. The DIR-24-8-BASIC
scheme used for lookup in our implementation has two tables,
both stored in SDRAM, and makes a trade-off to use more mem-
ory than necessary to store the routing entries in order to mini-
mize the number of memory accesses for a lookup.

The second pipeline stage computes the IP packet header check-
sum. The result of the checksum is a boolean value, indicating
whether the checksum was valid. This result is sent over the dy-
namic network to the Stage 3 tile in the same forwarding column.

The third pipeline stage, in turn, decides whether to discard or
forward the packet and performs the actual routing of the header.
Additionally, the third stage tile receives the output port and pay-
load memory address from Stage 1. Finally, the third pipeline
stage updates the time-to-live (TTL) of the packet. Because it has
changed the bits in the header, it must also recompute the header
checksum and update the checksum bits. Once the TTL has been
updated, the packet header is ready to be routed to the next hop.

The destination of the outgoing message at Stage 3 is deter-
mined by the output port received over the static network from
the first pipeline stage. The Stage 3 tile creates a new dynamic
message destined to the Stage 4 tile output queue connected to
the output port. This message contains the packet header and the
packet payload address.

The fourth pipeline stage queues packet headers and payload
addresses for the output line-cards. When the packet header queue
is empty, a stage four tile performs a blocking read from the dy-
namic network, waiting to receive a header and payload address
over the dynamic network from a third stage tile. If the packet
queue is neither empty nor full, then the tile will perform a non-
blocking read from the dynamic network, periodically polling the
network to check if another packet header has arrived. If so,
this packet header is read from the network and appended to the
queue. If the packet queue is full, then the router is experiencing
network congestion on that output port. The router can be con-
figured to have the tile either discard subsequent incoming packet
headers until there is space in the queue, or to stall the forwarding
column until attempting to send to the output queue.

The output linecard connected to the stage four tile indicates
that it is ready to receive the next packet by sending the tile an
interrupt. The interrupt does not cause the tile to send the next
packet immediately, but rather the interrupt handler sets a flag that
indicates that the linecard is ready for the next packet. The stage
four tile periodically checks this flag. If the flag is set, then the
tile clears the flag and sends the first packet header and payload
address in the queue over the general dynamic network to the
output linecard.

The Version I design sends messages with results of the check-
sum validation and destination port over the static network. Packet
payloads are sent between the third and fourth stages of the pipeline
using the general dynamic network (GDN). In this design, the
first eight words of the packets are sent into the pipeline, and the
remaining packet data is sent directly to two external DRAMs, at-
tached to tiles 2 and 14, for buffering until the packet is ready to
be sent by the linecard. The output linecards retrieve the packet
payloads using a DMA protocol. The orientation for this design
was chosen so that we could use the standard RAW DMA proto-
col for handling the packet payloads.

Figure 3 and 4 show the performance of Version I by com-
paring its Maximum Loss Free Forwarding Rate (MLFFR) with
IXP1200. This basic version performs approximately three times
better than IXP1200. Importantly, the throughput of this version
is simply derived from mapping the IPv4 header processing to
the tile-level parallelism of the RAW microprocessor; with little
attention to optimize on-chip transport and buffering of packets,
this version characterizes a base-line configuration for exploiting
the parallelism of the RAW microprocessor for routing IP pack-
ets.

In fact, the performance of this simple version suffers from
several shortcomings in the way it transports and buffers incom-
ing packets. First, with two memory banks mapped to four in-
put ports, this version is based on a shared-memory architecture.
As a consequence, there is contention for the two packet buffers
as well as on the static-network that maps the incoming streams
to the off-chip memory. Second, the packet buffer in this ver-
sion is half-duplex DRAM, limited to performing either a read
or a write request, but not both simultaneously. Third, since
RAW’s dynamic networks are dimension-order routed, with the
x dimension first, the data paths in this version suffer from con-
tention on both the Memory-Dynamic-Network (MDN) and the
General-Dynamic-Network. The third stage tiles must contend
for the GDN when sending a packet header to the fourth-stage

Figure 1: Architecture of RAW Router Version I Figure 2: Architecture of RAW Router Version II

tile serving the destination network port. Worse, there is severe
contention on the MDN, as output linecards use the memory net-
work to DMA the packet payloads from the packet buffers.

3.2 Buffering and Switching: RAWRouter
Version II

The second version (shown in figure 2) of the RAW router is
focused on exploiting RAW’s software interconnects and pins to
optimize the switching and buffering of packets in the routing
fabric.

In order to reduce the contention for packet buffers, this version
is based on an input-buffering architecture; instead of sharing two
packet-buffers between four network ports, this version employs
four memory banks, connected to tiles 4, 7, 12, and 15, each stat-
ically mapped to an input network port via the static network.
Additionally, this version uses full-duplex SDRAMs for buffer-
ing packets, permitting simultaneous read and write operations.
Finally, both the input and output port linecards and memory in-
teract using the RAW cache miss protocol instead of DMA used
in the first version. The RAW cache miss protocol is similar to the
DMA protocol, in that it communicates with memory eight words
at a time, but is slightly more efficient in that the write requests
do not include a bit mask, since all eight words are written.

To reduce the contention on the memory and general dynamic
networks, this version provisions the parallelism of RAW’s tiled-
architecture such that it can take advantage of the dimension-
ordered-routing of the RAW dynamic networks. Conceptually,
the packet processing pipelines in this version are rotated 90 de-
grees from Version I, so that they are oriented as shown in figure
2. In this orientation, the results from the third stage are sent
across the third stage dynamic network instead of causing con-
tention on GDN in the fourth stage. The placement of packet
buffers on two different rows, each independently mapped to an
input port, not only eliminates the contention on the static net-
work when storing packets, but the corresponding data paths be-
tween the packet buffers and the output ports on the memory net-
work are also free of contention (unless two or more line-cards are
reading from the same packet-buffer). “Out of band communica-
tion” between the first three stages of the pipeline—transmission
of destination address from Stage 1 to Stage 3, and the result of
the verification step from Stage 2 to Stage 3—is done using the
general dynamic network so as not to have to reset the switch
processor on the static network.

Figure 5 and 6 compare the performance of Version II with
Version I and IXP1200.

Version II performs 10% better than Verion I for 64-byte pack-
ets, while our major improvement in the buffering architecture
yields close to 30% increase in throughput with 1500-byte pack-
ets.

3.3 Optimizing Memory Access: Version III
Version II is designed to optimize the flow of packets inside the

routing fabric and incurs the overhead of external memory access
only for packets larger than 64 bytes. However, since the transfer
of packets from a line-card to the packet buffer is accomplished
by cache-missing, larger packets incur the overhead of several
memory transactions, each transferring an eight word (32 byte)
cache line.

Version III maintains the design of Version II but reduces the
overhead of transferring large packets between the line-cards and
the external memory. To accomplish this, Version III employs
streaming memory transactionsto transfer large packet payloads
from the line-cards to the SDRAM packet buffers. Streaming
memory is a memory interface supported by the RAW memory
controllers, in which the processor or a device sets up a transac-
tion with the memory, indicating that it wishes to read or write
an arbitrary given number of data words starting from a given
address. The memory controller is then able to read or write one
word of data per cycle using the pre-configured paths on the RAW
static network. With the streaming memory transaction, packets
need not be fragmented into smaller fragments when written to
the packet buffer.

In our implementation of the streaming memory interface, the
first tile in the packet-processing pipeline manages the packet
memory as a circular buffer. When interrupted by the input linecard,
the first tile configures the memory controller with the address of
the next available memory location, as well as the length of the
packet payload, aligned to a cache-line boundary. As the payload
length passes through each network switch, the switch proces-
sor loads this value into a register. This register is then used to
count the payload words—the switch decrements the value for
every word that it routes, and when the counter reaches zero, the
switch processor branches to begin routing the next packet header
or payload.

The optimized memory interface depends on the streaming prop-
erty of the RAW static network. However, for transfer of pack-
ets from the memory to the outgoing line-card, memory requests
must be routed on a dynamic network. Because the output linecards
cannot know which SDRAMs will hold the packet payloads un-
til they receive the header, static routes cannot be pre-configured
for streaming memory transfers. The overhead of reconfigur-
ing the static network for every packet payload is too expensive,

Figure 3: Throughput comparison of RAW Version I and
IXP1200 with 1500-byte Packets

Figure 4: Comparison of RAW Version I and IXP1200 Forward-
ing Rates with 64-byte packets

Figure 5: Throughput Comparison of RAW Version I, II and
IXP1200 with 1500-byte packets

Figure 6: Comparison of RAW Version I, II and IXP1200 For-
warding Rates with 64-byte packets

Figure 7: Throughput Comparison of RAW Version I, II, III and
IXP1200 with 1500-byte packets

Figure 8: Comparison of RAW Version I,II, III and IXP1200 For-
warding Rates with 64-byte packets

confounding the use of streaming interface. Instead, the out-
put linecards use the standard memory interface, which supports
transactions of eight word cache-line-sized blocks. Although the
amount of memory per request is fixed at 32 bytes, the mem-
ory controllers in Version III supports pipelined requests, with up
to four outstanding memory requests. The output linecards thus
send pipelined requests at the maximum possible rate. These re-
quests and their responses are sent over the memory dynamic net-
work. However, even with the use of pipelined requests, the re-
trieval of packet payloads to the output linecards is the bottleneck
step in this router design for packets with large payloads.

Finally, instead of incurring the cost of accessing an external
packet buffer for every incoming packet, packets are buffered on
the external memory only when “needed”. Specifically, for pack-
ets smaller than 64 bytes in size, constituting more than 40% of
the Internet traffic, the RAW router simply streams the packets
through the pipeline of processing tiles. The choice of 64-byte as
a minimum threshold value for buffering a packet is significant
in two respects. First, a 64-byte frame is large enough to encom-
pass a maximum size IP header, including optional fields. This
ensures that only packet payloads are stored in external buffers,
while headers are processed at line-speed. Second, a 64-byte

frame permits the limited amount of on-chip queuing at the fourth
stage to be used for resolving transient contentions for outgoing
links. Packets smaller than 64 bytes in size are padded with ad-
ditional bits such that the static network routers responsible for
reading the packet header into the pipeline stages are statically
programmed to route 64 bytes into the tile, avoiding the complex-
ity to read the header length field and count-down the number of
bytes to be read into the tile.

Figures 7 and 8 compare the performance of Version III with
Version I and II, as well as with IXP1200. The design improve-
ments in Version III yield a further improvement of 10% for 1500-
byte packets and close to 30% for 64-byte packets (since only
those packets that are larger than 64-bytes incur the overhead of
memory access).

3.4 Buffering on Line-cards: Version IV
The three versions presented so far in the paper make minimal

assumptions about the processing and buffering capacity of the
line-cards using the router fabric. While this permits interoper-
ability with a wide-range of line-cards found in the edge-routing
domain, most high-end line-cards are embedded with sufficient
memory to buffer traffic at line-speed i.e. 250msec of buffer-
ing at the throughput supported by the line-card. With such line-
cards, there is no need to route incoming traffic streams to exter-
nal buffers. In the case of the RAW router, buffering on the line-
cards avoids the cost of accessing off-chip memory, as well as the
congestion on the RAW on-chip networks caused by transporting
the packets to and from the external buffers. The first 64-bytes
of each packet are simply streamed through the router packet-
processing pipelines, as is done in previous versions, while the
rest of the packet is transferred from the input to the output line-
card using the RAW general dynamic network.

Figures 9 and 10 compare the performance of this version with
earlier versions that buffer packets on the off-chip memory, as
well as with IXP1200 as a reference point. By avoiding the cost of
external memory access altogether, this version achieves a through-
put of 15Gb/sec for 1500-byte packets, an improvement of 36%
over Version III. The forwarding rate of the router with 64-byte
packets, however, is not affected since these packets are not buffered
in Version III either.

4. SCALABILITY: VERSION V
In the router architectures presented above, each input port is

served by a dedicated pipeline. This need not be the case when
fewer than four line-cards are connected to the router. Our rout-
ing software detects the number of line-cards at boot-up time and
establishes an appropriate mapping between packet-processing
pipelines and the incoming traffic streams. To accomplish this,
the static router of the tile connected to the input linecard is pro-
grammed to switch incoming packets both towards north, to feed
the its own pipeline, and either east or west depending on which
other pipeline is not connected to a linecard. Correspondingly,
the static router of a first-stage tile not connected to a line-card
is programmed to read packets from another first-row tile rather
than from a line-card. This scheme permits the processing capac-
ity of the router to be mapped to a variable number of line-cards,
much like in network processors such as the IXP1200 and Cisco
Toaster, albeit without bottlenecking the design with the use of a
centralized register or a multiplexing unit. Figure 12 shows the
forwarding rate of the RAW router (Version III) when connected
to only two line-cards as opposed to four line-cards. With each
incoming traffic stream processed by two pipelines, the two-port
version can process minimum-sized packets at a rate 20% faster

than the four-linecard setup. The maximum throughput achieved
with two linecards, 12Gb/sec, represents the processing capacity
of the RAW fabric when packets are not stored on external mem-
ory. For large packets the cost of storing and retrieving packet
payloads from the memory dominates the performance (shown in
figure 11).

However, scaling the router beyond 4 line-cards presents an in-
teresting challenge on the RAW microprocessor. In all previous
versions, the performance of the router is enhanced by the avail-
ability of the RAW static networks to stream incoming packets
to the external packet buffers, as well as a broadcasting channel
to feed the header-processing pipeline. However, routing on the
RAW static network requires that all operands for instructions
to the static switch must be met before the routing instruction
is executed. For example an instruction such asNOP ROUTE
cSi → csti, cWi → cNo, requires input data to be available
on bothcSi andcWi before executing the instruction. This de-
sign has the negative side effect that, given the non-deterministic
arrival rate of Internet traffic, static networks cannot be made to
“cross” when streaming packets from the linecards to the DRAMs.
Therefore, in all previous versions, the routing functions, packet
buffers and line-card are laid out on the RAW matrix such that the
static networks do not ’cross’. However, such a layout cannot be
extended beyond a 4x4 tile-matrix on the RAW microprocessor.

Therefore, scalability of our router architecture beyond a 16-
tile matrix must depend solely on the use of the RAW dynamic
networks for routing data on the chip. This adversely effects the
performance of the router in two respects: 1) Packet Duplica-
tion. Incoming packets cannot be broadcast to the RAW tiles –
incoming packets must be replicated and independently routed
to each stage in the header-processing pipeline. 2) Packet Frag-
mentation: Dynamic networks must be used to transport packet
payloads from the linecards to the external DRAM packet buffers.

In order to understand the performance implications of a dynamic-
networks-only router, we re-implemented Version III (dubbed Ver-
sion III.d) without using static networks (Version IV assumes
buffering on the linecards and hence does not rely on the static
network to stream packets from the linecards to the packet buffers).
Figures 13 and 14 show the performance of Version III.d. The
throughput measured with minimum-sized packets, shown in fig-
ure 14, illustrates the performance degradation caused by the ab-
sence of the static network as a broadcast channel to feed the three
stages of the header-processing pipeline. The 30% throughput
degradation shown in figure 14 illustrates the overhead of repli-
cating and routing the incoming packets independently to each
of the tiles in the header-processing pipeline on the dynamic net-
work.

Figure 13 illustrates the performance degradation in Version
III.d for maximum-sized Ethernet frames. The 10% through-
put degradation characterizes the performance penalty of routing
packet payloads, from the line-cards to the DRAM buffers, as 8-
word chunks on the dynamic network, instead of streaming the
payload on a precomputed path on the static network. However,
since the cost of packet duplication and routing is amortized over
large packets, the performance penalty for maximum-sized pack-
ets is lesser than that for minimum-sized packets.

5. REAL AND IDEAL PERFORMANCE
Our evaluation so far has focused on either 64-byte minimum-

sized TCP packets or 1500-byte maximum-sized Ethernet frames.
By studying these two extremes, we discovered several bottle-
necks and explored a range of design refinements. However, an
important measure of the performance of the router is how well

Figure 9: Throughput Comparison of RAW Version I, II, III, IV
and IXP1200 with 1500-byte packets

Figure 10: Comparison of RAW Version I, II, III, IV and
IXP1200 Forwarding Rates with 64-byte packets

Figure 11: Throughput Comparison of RAW Version III with 2
and 4 Linecards using 1500-bytes packets

Figure 12: RAW Version III Forwarding Rate with 2 and 4
Linecards using 64-bytes packets

Figure 13: Throughput Comparison of RAW Version III and
III.d with 1500-bytes packets

Figure 14: Comparison of RAW Version III and III.d Forward-
ing Rates with 64-bytes packets

it performs with variable-sized packets in a real Internet traffic
trace. Figure 15 shows the throughput of the four basic versions
of our router with variable-sized packets in a real Internet traffic
trace (http://lever.ucla.edu/ddos/traces) containing 10,000 pack-
ets. The average packet size of the trace is around 128 bytes
— equivalent to the average packet size on the Internet. The
peak achieved throughput of our router is 8.9 Gb/sec with exter-
nal buffering and 14 Gb/sec when buffering is done on linecards.
With variable-sized packets, the peak throughput of each version
is slightly lower than the throughput with 64-byte packets due to
the overhead of memory transactions.

Furthermore, so far we have only compared the performance of
our router with IXP1200. With its popularity, IXP1200 provides a
good reference point to put the performance of our architecture in
context. However, in order to understand “how good” is our de-
sign, we compare the performance of our router architecture with
an ideal “null router”, that simply forwards an incoming packet to
the nearest outgoing port (without any processing). The through-
put of the “null router” is plotted in figure 15. The “null router”
achieves a peak throughput of 15.5 Gb/sec, approx 37% better
than our optimized design with external buffering and only about
1% better than the architecture which assumes buffering on the

Figure 15: Throughput Comparison of RAW router Version I,
II, III and IV with a “Null Router” using variable-sized packets
in a captured Internet Traffic Trace

linecards. The performance difference between the “null router”
and our architectures reveals the inefficiency our design resulting
from the overhead of accessing external buffers and contention
on the dynamic network when retrieving the packet payloads.

5.1 Latency Evaluation
Table 1 shows the latency, in both cycles on the RAW pro-

cessor and the corresponding time in nanoseconds, for the RAW
IP router and the “null” implementation. These measurements
were made from RAW cycle count at the beginning of each for-
warding stage, and summing the results for all the stages. For
64-byte packets, the RAW IP router adds only 293ns of latency.
As a comparison, the Click router has a latency of 2798ns for a
64-byte packet [7].

The difference between the latency for 64-byte and 1500-byte
packets shows that moving the packet payload to and from mem-
ory is the router bottleneck for large packets. These results show
that there is additional overhead for processing the packet payload
in addition to just moving the data. There is a difference of 1436
bytes that need to be moved into and out of memory. 1436 bytes
equals 359 4-byte words. Because it takes one cycle to read and
write each word, it should take an additional 718 cycles to read
and write these extra bytes. However, the 5394 cycles needed to
process a 1500-byte packet is much more than 718 cycles more
than the 690 required for a 64-byte packet. The extra 3986 cycles
represent overhead from the memory transactions, the memory
latency, and contention on the memory network. In particular, the
memory dynamic network used by the output linecards to retrieve
the packet payload accounts for the majority of this overhead la-
tency, because it is not able to use the streaming memory interface
used by the input linecards.

Table 2 further breaks down the cost of forwarding a packet
through the RAW router. This table shows that for small packets,
the bottleneck stage is either the table lookup or IP header check-
sum, depending on whether the cache-line(s) containing the result

Router Packet size Cycles Time(ns)
RAW null 64 416 177
RAW IPv4 64 690 293
RAW null 1500 3490 1483
RAW IPv4 1500 5394 2292

Table 1: RAW Latency. Latency of the RAW router for 64
and 1500 byte packets.

for the table lookup are already in the data-cache. The address
prefix length for the lookup does not impact the latency if the
relevant portions of the forwarding table are already cached —
typical for Internet traffic often comprised of packet-trains. How-
ever, if the table entries are not cached, then the lookup takes fifty
percent longer for a long prefix, and is also the bottleneck stage.

6. RELATED WORK
Previous work on software-based high-performance network

routing has largely focused on custom-design network processors
and traditional general-purpose architectures.

Spalink et al [9] describe an extensible software router for the
Intel IXP1200 Network Processor. However, their router is based
on a shared memory architecture, in which micro-engines are stat-
ically partitioned as either input or output processing engines and
communicate using serialized reads and writes to shared DRAM.
The router architecture presented in [9] also does not exploit the
parallelism available within different header processing tasks; an
incoming packet is processed by a single micro-engine rather than
a pipeline of processors. Spalink et al [9] report a peak IPv4 for-
warding rate of 3.47 Mpps, compared to 9.75 Mpps achieved by
our software routers.

In [7] Chen et al evaluate the performance of Click — a mod-
ular, software router — on Pentium Symmetric Multi-Processor
(SMP) using a 4-way PIII SMP clocked at 500 MHz and 1GB
RAM. Chen et al [1] report a peak MLFFR of only 0.5 Mpps.
Interestingly, Chen et al report that their SMP setup did not yield
any noticeable performance improvement beyond 4 processors,
primarily due the overhead of synchronized memory access by
the parallel processors.

Even the general-purpose single-chip parallel architectures, which
offer parallelism akin to custom-designed network processors,
fail to rival the performance of custom-designed network proces-
sors. Crowley et al [3] compare the performance of three different
general-purpose single-chip parallel architectures — 8 processor
single-issue CMP, 4 processor 2-way CMP, and 8-way SMT — all
clocked at 500 MHz, and report a peak throughput of 1.28 Gb/sec
with the 8-way SMT and only 0.92 Gb/sec with the 4 processor 2-
way CMP. Crowley et al also found that increasing the number of
contexts yielded diminishing returns at best due to the overhead
of synchronized access to shared memory and context-switching.

The work presented in this paper follows from an initial investi-
gation of RAW’s tiled-architecture as a high-bandwidth switching
fabric [2]. In this paper we investigate the suitability of RAW as
a general-purpose network router architecture, including switch-
ing, buffering and processing of IP packets. We also study the
scalability and role of RAW on-chip networks for achieving high-
throughput for a variety of network loads.

7. CONCLUSION AND FUTURE WORK
The evaluation of the router architectures presented in this pa-

per reveal the following key insights:

• The replicated core architecture coupled with low-latency
on-chip interconnects provide a much more attractive rout-
ing platform than traditional memory-oriented architectures
like x86.

• The software-level control over chip resources plays an im-
portant role for high-performance routing; the performance
of our routers was primarily derived by how much control
the software had on the layout of routing functions and the
role and behavior of the on-chip networks. For instance,

Stage Task Cycles Time(ns)
1 Forwarding table lookup≤ 24bit prefix 29/∼ 100 12/∼ 42
1 Forwarding table lookup> 24bit prefix 36/∼ 150 15/∼ 64
2 IP header checksum 78 33
3 Update TTL and checksum 26 11
4 Dequeue and send to output linecard 22 9

Table 2: RAW Task Times. The time taken to perform the different packet header processing steps. The first value for the
forwarding table lookup is the time if the result is already in the processor data cache; the second value represents a cache miss.
The time taken to satisfy a cache miss varies based on the tile’s distance from the memory; the averaged value is shown.

the performance of our network router improved by 30%
by changing the layout of the routing functions on the chip
to reduce the contention on the on-chip networks. Simi-
larly, the performance of the router improved by over 15%
by employing the RAW static network and general dynamic
network (GDN) for memory transactions, rather than using
the default RAW memory dynamic network (MDN).

• A fixed routing policy, like Dimension-Ordered-Routing
(DOR) in RAW, may lead to on-chip contention, with a per-
formance penalty of 30-35%, if the routing functions are
not carefully distributed to avoid overlapping data paths.

• While dynamically-routed on-chip networks are imperative
for switching incoming packets to appropriate output ports,
the presence of streaming, static network may lead to a per-
formance gain of 10-30% when used for tile-broadcast and
memory access.

• For large packets, streaming memory transaction, such as
streaming DDR, improve the performance of the router by
approximately 10% over using traditional Direct-Memory-
Access (DMA) over dynamically routed networks.

• Buffering on line-cards avoids external memory transac-
tions, leading to a performance gain of more than 35% over
architectures that require external buffering.

• Given the non-deterministic nature of packet arrival times,
the scalability of our router is adversely affected by the
operand-centric design of the RAW static network which
requires that all operands are met before data may be switched
between tiles.

The work presented in this paper has focused on evaluating
the packet processing and forwarding capacity of the RAW mi-
croprocessor. Hence, we have not discussed issues relating to
the control-plane of the router. Our future work will focus on
scheduling policies, quality of service issues, queue management
strategies and evaluation of high-level network services like NAT,
firewalls and layer-7 switching on the RAW microprocessor. We
are currently exploring decentralized scheduling architectures such
as a buffered-crossbar [8] and two-staged switch [6] to orchestrate
the flow of packets within the routing fabric.

8. REFERENCES
[1] Benjie Chen and Robert Morris. Flexible control of

parallelism in a multiprocessor pc router. InProceedings of
the 2001 USENIX Annual Technical Conference (USENIX
’01), pages 333–346, Boston, Massachusetts, June 2001.

[2] Gleb A. Chuvpilo and Saman Amarasinghe.
High-Bandwidth Packet Switching on the Raw
General-purpose Architecture. In2003 ICPP, 2003.

[3] Patrick Crowley, Marc E. Fluczynski, and Jean-Loup Baer.
On the Performance of Multithreaded Architectures for
Network Interfaces. Technical Memo, UW, 2000.

[4] Michael Bedford Taylor et al. Evaluation of the Raw
Microprocessor: An Exposed-Wire-Delay Architecture for
ILP and Streams. InISCA, 2004.

[5] Pankaj Gupta, Steven Lin, and Nick McKeown. Routing
Lookups in Hardware at Memory Access Speeds. In
INFOCOM (3), pages 1240–1247, 1998.

[6] Isaac Keslassy and Nick McKeown. Maintaining packet
order in two-stage switches. InIEEE INFOCOM, June
2002.

[7] Eddie Kohler, Robert Morris, Benjie Chen, John Jannotti,
and M. Frans Kaashoek. The click modular router.ACM
Transactions on Computer Systems, 18(3):263–297,
August 2000.

[8] Nick McKeown Shang-Tse Chuang, Sundar Iyer. Practical
algorithms for performance guarantees in buffered
crossbars. InIEEE INFOCOM, March 2005.

[9] Tammo Spalink, Scott Karlin, Larry L. Peterson, and
Yitzchak Gottlieb. Building a robust software-based router
using network processors. InSymposium on Operating
Systems Principles, pages 216–229, 2001.

[10] Michael Bedford Taylor. The Raw Processor Specification.
Technical Memo, CSAIL/Laboratory for Computer
Science, MIT, 2004.

	Introduction
	Evaluation Methodology
	Software Routing on RAW
	Parallelism: RAWRouter Version I
	Buffering and Switching: RAWRouter Version II
	Optimizing Memory Access: Version III
	Buffering on Line-cards: Version IV

	Scalability: Version V
	Real and Ideal Performance
	Latency Evaluation

	Related Work
	Conclusion and Future Work
	REFERENCES -2pt

