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Abstract

We describe an approach to automate certain high-
level implementation decisions in a pervasive appli-
cation, allowing them to be postponed until run time.
Our system enables a model in which an application
programmer can specify the behavior of an adaptive
application as a set of open-ended decision points. We
formalize decision points as Goals, each of which may
be satisfied by a set of scripts called Techniques. The
set of Techniques vying to satisfy any Goal is additive
and may be extended at runtime without needing to
modify or remove any existing Techniques. Our system
provides a framework in which Techniques may com-
pete and interoperate at runtime in order to maintain
an adaptive application. Technique development may
be distributed and incremental, providing a path for the
decentralized evolution of applications. Benchmarks
show that our system imposes reasonable overhead
during application startup and adaptation.

1. Introduction

Ubiquitous and pervasive computing environments
are characterized by a richness and heterogeneity of
resources far greater than traditional computing envi-
ronments. In addition to the variety of devices, there
is a high turn-over rate as existing devices leave the
environment, either due to failure or voluntary with-
drawal when new, potentially better, devices enter the
environment. Applications executing in ubiquitous en-
vironments are expected to discover relevant resources,
evaluate resources, and monitor utilized resources for
failure.

Therefore, the ability to somehow adapt to new
situations is a key requirement of applications in these
environments. In particular, such adaptive systems
share two main requirements:

1) They must be able to make implementation de-
cisions at runtime, rather than at design-time or
compile-time.

2) They must be able to consider new information
at runtime and potentially revise previously made
implementation decisions.

In traditional applications, these requirements man-
ifest themselves as a monitor loop that discovers
changes in the computing environment (such as new
components or changes in the status of already known
components) and a set of application-specific decision
functions that choose what combinations of compo-
nents are appropriate. While the application program-
mer may use design patterns, recursive decomposition,
or other design techniques to encode decision logic,
the problem remains that whatever code ships with the
application enumerates all known ways of adapting the
program.

1.1. Examples of Adaptive Systems

Much systems-level work in the pervasive and ubiq-
uitous computing field strives to replace application-
level decision logic with application-level dependency
declarations. In these systems, application program-
mers declare “what” they need and a runtime system
determines “how” to satisfy each requirement. For ex-
ample, INS [1] and other systems like it [2], [3] provide
intentional sockets whose descriptions are resolved by
the network layer. Intentional sockets provide extensi-
ble decision logic because new services can be added
that match existing intentional names.

Above the network layer, component systems like
PCOM [4] or RUNES [5] allow programmers to de-
clare dependencies as COM- and CORBA-like interfaces
while runtime systems discover and match appropriate
components to the required interfaces. In PCOM, com-
ponents can depend on other components — allowing
a form of hierarchical decomposition of application



functionality — and provide component-specific code
that aids in resource selection.

1.2. Additional Requirements

The approaches to adaptivity represented by these
example systems share the characteristic that the range
of possible choices — e.g. of candidate devices and
ways in which they are used — is embedded in code
at either the application or system level. Extension of
application behavior requires modifying existing code,
which in turn demands privileged access to the code to
be modified. The constraint of adaptive behavior to that
anticipated by a centrally-maintained codebase limits
the evolution of adaptivity, and hence ultimately limits
adaptivity itself.

This deficiency led us to realize an additional, subtle,
requirement for pervasive applications:

3) Decision-making logic must be open-ended.
Adding a new device or implementation choice
to the environment should not require modifica-
tion of already-existing code in the system.

In the rest of this paper, we explore a model for
open-ended decision logic as a means of programming
adaptive applications.

1.3. Open-ended Decision Making

Our work focuses on providing application program-
mers with a way of managing implementation deci-
sions and component writers with an extensible way
of expressing particular implementation plans in a way
that allows extensible, but domain-specific, evaluation
of alternatives.

Our system relies on two main concepts. First, Goals
explicitly identify certain critical implementation de-
cision points, as well as describe the problem to be
solved by the selected implementation choice. Second,
Techniques are scripts describing alternative ways of
satisfying Goals. Techniques serve two purposes: (1)
they provide indirection between the known Goals
interface and wide variety of hardware and software
interfaces we would like to use and (2) they implement
domain-specific evaluation code that lets our system
compare alternative Techniques.

Our approach offers three salient features:
1) Hierarchical Decomposition with Extensible

Constrained Evaluation Techniques may de-
clare multiple prerequisite sub-Goals but provide
code that constrains how the Planner chooses to
satisfy the sub-Goals.

2) An Additive Universe of Code Modules New
Techniques can be added to the system without

needing to change existing code, aiding the in-
troduction of new device classes and new imple-
mentation strategies.

3) Separation of Decision Logic from Compo-
nents Techniques are separate from the com-
ponents they describe, allowing both to evolve
independently.

In addition to these points, our architecture includes
two details aimed at lowering user-perceived latency:
we allow incremental evaluation of decision logic,
which permits our system to make decisions on early
estimates of component performance, and we cache
decision-making, which lets our system react to typical
component failures and re-plan in less than 250 ms.

2. Programming Model

Goals are bound to Techniques at runtime by the
Planner. Application programmers use the Planner to
manage adaptive state, while component programmers
write Techniques interpreted by the Planner.

2.1. Goals and Goal Properties

A Goal is an abstraction of a parameterized decision
point that describes what functionality is needed with-
out specifying how to implement that functionality.
The Goal’s parameters serve to restrict the semantics
of the Goal, e.g., reducing a generic “play any movie”
Goal to the playing of a particular movie specified
by the name parameter. An application asserts a Goal
(with bound parameters) when the application needs to
have a certain condition maintained by the Planner.

Concretely, a Goal refers to a specification file that
describes the formal parameters of the Goal as well as
what Properties any Technique that satisfies the Goal
must provide. Properties are simple key-value pairs
that describe qualities of the implementations behind
the Goal. The Planner uses Properties to compare
Techniques competing to satisfy the same Goal.

We adopt standard procedural syntax for the param-
eterization and assertion of Goals; thus, a Goal may
be viewed as a disembodied generic procedure whose
parameters, Properties, and behavior are described by
its specification. The assertion of a Goal may similarly
be viewed as an invocation of the disembodied proce-
dure, leaving to the Planner the task of locating an
appropriate body of code (Technique) to be executed
in order to satisfy the Goal.

2.2. Techniques

A Technique is a small script mixing declarative
and arbitrary imperative code broken up into a series



1 to PlayMovie(name, language): via RTPStreams:
2
3 ##### Exploratory Stages #####
4 subgoals:
5 source = RTPAVSource(goal.name, goal.language)
6 sink = RTPAVSink()
7
8 eval:
9 # check for compatibility

10 if (subgoals.source.stream format not in
11 subgoals.sink.supported stream formats):
12 planner. fail ()
13 eval:
14 # set properties this combination will provide
15 props.resolution = min(subgoals.source.resolution,
16 subgoals.sink.resolution)
17 props.screen size = subgoals.sink.screen size
18 props.stream format = subgoals.source.stream format
19 props. bitrate = subgoals.source.bitrate
20
21 ##### Commit Stages #####
22 exec:
23 subgoals.sink.resource.enqueue(uri=subgoals.source.uri)
24
25 update source from old source:
26 subgoals.sink.resource.stop(subgoals.old source.uri)
27 subgoals.sink.resource.enqueue(subgoals.source.uri)
28
29 shutdown:
30 subgoals.sink.resource.quit ()

Listing 1. A Technique that satisfies the PlayMovie
Goal by linking an RTP source stream to an RTP
output device.

of stages. Techniques are not appropriate for directly
implementing application functionality; instead, they
are used to wrap existing code modules and resources
so that the Planner can use and compare these re-
sources. Listing 1 shows one Technique that satisfies
the PlayMovie Goal by connecting an RTP source to an
RTP output device.

A Technique’s stages may include:

1) Sub-Goal Declarations Sub-Goals are sub-
decision-points that must be satisfied for the
Technique to succeed. They are declared in sub-
goals stages and provide a simple way of hierar-
chically decomposing application functionality.

2) Evaluation Code eval stages compute the value
of the resources or strategies that the Technique
represents and export its computations as Proper-
ties. eval stages may contain arbitrary code but,
since they might be re-run as the environment
changes, they must be idempotent.

3) Commit Code Commit stages configure and
instantiate, update, and shutdown application
components.

The stages are run (and potentially re-run) in a sched-
ule determined by the Planner, subject to the constraint
that a stage cannot run before all of its predecessors
have run at least once. When the last evaluation stage

1 plan = Planner.plan(”PlayMovie”, name=”SimpsonsMovie”)
2 # ”plan” is the object containing the Goal Tree for the
3 # top−level Goal explored in this thread.
4 while plan.is running ():
5
6 # explore() blocks until a viable Plan is found
7 new snapshot = plan.explore()
8
9 # if the new plan is better or if the current plan has

10 # failed , commit to the new plan.
11 if is better (new snapshot):
12 if plan.is running ():
13 # update something already running
14 plan.update()
15 else:
16 # Start a new implementation
17 plan.commit()
18
19 # Continue to the next iteration of the while loop to
20 # see if anything has changed.

Listing 2. Application code from a movie player
that uses the Planner.

Figure 1. A partially explored Goal Tree for the
PlayMovie Goal. Yellow boxes are Goals and show
the Goal parameters. Red circles are Techniques
and are displayed with their exported Properties.
Thick lines represent the chosen Plan for the Play-
Movie Goal.

completes, the Planner considers the Technique ready
for commitment. Techniques may have many subgoals
and eval stages, allowing the Technique programmer to
incrementally estimate and refine Property values.

2.3. Goal Lifecycles and the Planner

Applications invoke the Planner and are responsible
for deciding when the Planner may make changes
to the application’s runtime configuration. Listing 2
shows typical application code while Figure 1 illus-
trates how the Planner expands the PlayMovie Goal.

In Listing 2, an application first asks the Planner to
assert a Goal; in return the application gets a handle
to the planning process associated with that Goal.



Next, the application asks the Planner to explore() the
possible ways of satisfying the Goal.

2.3.1. Goal Exploration. Goal exploration consists of
building a Goal Tree and evaluating Techniques. The
Planner builds the Goal Tree by finding Techniques
that satisfy the asserted Goals and recursively matching
the sub-Goals of each Technique it finds. Figure 1
illustrates the Goal Tree for a top-level PlayMovie Goal.

The Goal Tree represents all known strategies for
implementing the top-level Goal. A “path” from the
root Goal node to leaf Techniques represents a par-
ticular strategy that implements the Goal. The Goal
Tree is an and-or tree: a Goal can be satisfied by any
child Technique, but a Technique requires satisfaction
of all of its sub-Goals. The Planner runs Technique
eval stages to extract Properties from each Technique.
These properties allow the Planner to heuristically
choose a “best” Technique, called the chosen Tech-
nique, for each Goal. In Figure 1, the bold-faced
path shows the chain of chosen Techniques that best
implement the top-level PlayMovie Goal. We call this
best path the Plan for the Goal.

Although the Planner is required to make heuris-
tic choices among the Techniques competing to sat-
isfy each Goal in the tree, it does so by a simple,
application-generic process that maps Property values
reported by each Technique to a single scalar value;
the chosen Technique is simply the Technique that
maximizes this value. (Section 3.1 elaborates on this
process.) The actual heuristics and application-specific
policies are dictated by Goal specifications and Tech-
nique code, allowing the evolution of these relatively
transient aspects of the system without changes to the
Planner or the system architecture surrounding it.

2.3.2. Goal Commitment. If a Plan is found, the
application may ask the Planner to commit the Plan.
Commitment of the Plan proceeds by running the exec
stages of chosen Techniques in a bottom-up fashion.
This way, the exec stages of higher-level Techniques
can rely on already-configured components supplied by
lower-level Techniques. Techniques whose exec stages
have been run are said to be committed. After commit-
ment, the application may continue to call explore() to
cause the Planner to explore, expand, and update its
Goal Tree without affecting the committed Plan.

2.3.3. Goal Monitoring and Shutdown. Once gen-
erated, the Goal Tree serves as a cache of available
implementation strategies: startup, failover, upgrade,
or shutdown of components in the system simply be-
comes the activation or deactivation of branches of the

Goal Tree. The Planner updates the Goal Tree cache
for as long as the top-level Goal is active, permitting
rapid re-evaluation of alternative implementations of a
Goal throughout the lifetime of the top-level Goal.

The application may also modify the arguments to
the Goal to better reflect its changing needs. If a new
set of Techniques better satisfies the Goal than the
current Plan or if a Technique in the current Plan fails,
the Planner notifies the application, which may ask
the Planner to upgrade the currently committed Plan.
The application has complete control over the upgrade
process so that upgrades do not happen at sensitive
times.

When the application decides to quit, it tells the
Planner to shutdown the Goal: the shutdown stages of
committed Techniques are called, and the Goal Tree is
garbage collected.

3. Architecture

Our system allows (1) an additive universe of Tech-
niques, (2) appropriate selection of Techniques with
inter-dependent sub-Goals, (3) runtime adaptivity, and
(4) separation of decision logic from components with-
out restricting the open-ended nature of Goals.

3.1. Additivity

We deliberately avoid constraints on the set of
Techniques applicable to each Goal in order to support
a conceptual model of that set as a strictly “addi-
tive” universe. Each Technique describes a way of
achieving some Goal — a way which may become
unused (either because its sub-Goals fail or because
competing Techniques promise better results) but is
never “wrong”. An advantage of this additive universe
is that we can extend the behavior of our system
without changing any existing code, but by simply
making new Techniques available.

In order to create our additive universe, our decision-
making algorithm must be generic, i.e., it cannot
explicitly enumerate and choose Techniques. Instead,
our system computes a score called Satisfaction for
each Technique based on the Technique’s self-reported
Properties. Thus, Properties can be viewed as the
multi-dimensional cost using the Technique and the
Satisfaction calculation as a dimension-reducing func-
tion to produce a scalar score to allow easy, open-
ended competition [6] among alternative Techniques
addressing each Goal. The Planner need only choose
the Technique with the highest Satisfaction score at
each Goal decision point.



Each Goal specification provides a default formula
for computing its Satisfaction from Properties reported
by Techniques. However, local policy may dictate a
different Satisfaction scheme — e.g., users may prefer
higher resolution video at a lower frame rate while
the Goal specification may prefer the reverse. For this
reason, the Planner includes an API to change the
Satisfaction formula for a particular Goal instance at
runtime to accommodate local policy variation.

We require Goals to be immutable, as the semantics
of a Goal are built into Technique code and changes
to the Goal specification will render Techniques obso-
lete. Consequently, evolution of a Goal’s specification
requires that a new specification with a new Goal
name be created. The new specification may note it
as a replacement for the old Goal, that the latter
is now deprecated, or even that the new version is
strictly narrower than the old (in the sense that any
Technique satisfying the new Goal is guaranteed to
satisfy its predecessor). Existing Techniques citing the
old Goal will continue to use the (possibly deprecated)
version until updated, although some updates could be
automated in certain cases.

3.2. Technique sub-Goal Search and Selection

The planning process of building and evaluating
Goal Trees discussed in Section 2.3 is essentially
a search through a hierarchical Technique space for
“paths” through the Goal Tree that best satisfy the top-
level Goal. The Planner, by default, uses a heuristic
search algorithm where each Goal is independently
bound to the Technique with the highest Satisfaction
value, until forced by a subsequent failure, or other
event, to expand the search. If two or more sub-Goals
are incompatible, eval stages in Techniques call fail()
to signal to the Planner that the current set of sub-
Goals is unacceptable. For example, the RTPStreams
Technique of Listing 1 calls fail() on line 12 if the
source and sink do not support mutually acceptable
stream formats. fail() terminates exploration of the
corresponding subtree.

Often this declaration of failure is too radical. In the
present example, there may be source-sink pairs with
compatible formats which will be neglected simply
because the pair reflecting the highest Satisfactions
happened to be incompatible. Thus, the approach rep-
resented in Listing 1 suffers from a combination of
deficiencies: (1) that the heuristic choice of sub-Goals
does not reflect critical dependencies between sub-
Goals; and (2) that a single bad combination of sub-
Goal choices will occlude the exploration of lower-
rated but potentially viable solutions using this Tech-

1 to PlayMovie(name, language): via RTPStreams2:
2
3 subgoals:
4 source = RTPAVSource(goal.name, goal.language,
5 stream format=”H.264”)
6 sink = RTPAVSink(stream format=”H.264”)

Listing 3. Goal parameters passed down the Goal
Tree limit sub-Goals to H.264-compatible streams
only.

Figure 2. The RTPStreams Technique sets the
stream format parameter to H.264, causing both
MPEG-2 Techniques to fail.

nique. The following paragraphs describe mechanism
for guiding the search breadth.

3.2.1. Search-narrowing Goal parameters. Instead
of checking for mis-matched parameters after the fact,
one simple alternative involves making decisions high
in the Goal Tree and passing search-narrowing param-
eters down the tree for each subgoal. Listing 3 sketches
a revised search for a source and sink, each specifying
H.264 as the media format (restricting solutions to
devices that accept or emit this media type). Such
Techniques lead to a Goal Tree of the form of Figure
2. If multiple formats are to be explored, this approach
requires that an alternative node be established for each
plausible format combination, each requiring a separate
Technique.

3.2.2. Dependent Subgoal Binding. We may improve
sub-Goal search performance by ordering sub-Goal
searches. For example, we might (1) search for a
source emitting an arbitrary format, and then (2) search
for a sink whose format is compatible with that of
the source we’ve found. To that end, we allow mul-
tiple subgoals stages within a single Technique. The
attributes of sub-Goal bindings from earlier stages may
be used to direct searches in subsequent ones. Listing
4 illustrates the use of this mechanism to constrain the
search of our example. Figure 3 shows the resulting
Goal Tree.



1 to PlayMovie(name, language): via RTPStreams3:
2
3 subgoals:
4 source = RTPAVSource(goal.name, goal.language)
5 subgoals:
6 sink = RTPAVSink(
7 stream format=subgoals.source.stream format
8 )

Listing 4. The second subgoals stage can use
Properties from the first to guide the Planner’s
Technique search.

Figure 3. The RTPStreamsTechnique passes the
stream format Property of its source sub-Goal as a
parameter to its sink sub-Goal, causing the Laptop
Technique to fail and forcing selection of the HDTV.

Figure 4. Goal Tree with cloned Techniques. The
RTPStreams Technique is cloned for each com-
bination of source and sink. The two pairs with
matching stream formats succeed while the other
two fail.

3.2.3. Tree Search and Exploration. Alternatively,
the Planner may alter the search for an acceptable set
of Goal/Technique bindings from the default single-
pass heuristic to exhaustive exploration of all possible
choices. Full search involves testing each combina-
tion of sub-Goal bindings. However, instead of test-
ing each combination sequentially, the Planner uses

a Goal Tree manipulation called Node Cloning to
search all sub-Goal combinations while maintaining
a record of the Satisfactions of each combination.
Node Cloning allows the Planner to revisit particular
sub-Goal combinations as the computing environment
changes without running through the entire sequence
of combinations. During Node Cloning, the Planner
makes a copy of a Technique node but binds its sub-
Goals to particular Techniques rather than to an open-
ended Goal node. Figure 4 illustrates Node Cloning
with the original RTPStreams Technique from Listing
1. The RTPStreams Technique is cloned four times,
once for each combination of its sub-Goal bindings.
Two choices have matched stream format parameters
that allow their clones to succeed; the other two clones
fail.

Of course, the Planner’s overuse of Node Cloning
may lead to a worst-case exponential explosion in the
number of choices, so complete combinatorial search
is only feasible for small Goal Trees. For large Goal
Trees, the Planner only clones small, heuristically
chosen sub-Trees, increasing the number of choices
available without affecting running time adversely.

3.3. Runtime Adaptivity

Techniques are sequential scripts, yet they need to
respond to changes in Properties of sub-Goals forced
by the environment and changes in Goal parameters
forced by the top-level application. For example, a
video Technique must respond to requests for new
titles as well as bitrate changes of its sub-Goals.
A naı̈ve apparoach to this problem is to simply re-
run the Technique from its first stage; however, this
has performance implications for Techniques with a
large number of stages or stages that must access the
network.

Instead, the Planner keeps track of what Goal pa-
rameters and sub-Goal Properties each stage of each
Technique uses and rolls-back the Technique only
as far as it needs to account for changes in these
tracked variables. In order to implement roll-back, the
Planner saves the pre-execution state of each stage in
the Technique. When a tracked variable changes, the
Planner finds the first stage that depends on the variable
and resets the state of the Technique to whatever pre-
execution state was associated with that stage. Thus
reset, the Planner re-runs the stage and any subsequent
stages. For example, in Listing 1, a change to the sink’s
resolution property will only re-run the Technique
starting at line 13. We find this roll-back strategy saves
computation and network traffic and contributes to the



1 def monitor entity loop( tf , # Technique Factory
2 type): # extra arg passed by sub−Goal
3
4 finder = find entities of type (type)
5 known resources = {}
6 # now update as things change
7 while True:
8 event = finder .get event()
9 if (event.type == ’new device’):

10 vteq = tf .new teq()
11 known resources[event.resource] = vteq
12 vteq.resource = resource
13 vteq. resolution = resource.resolution
14 vteq.liveness = ’ alive ’
15 vteq. notify ()
16 elif (event.type == ’dead device’)
17 vteq = known resources[event.resource]
18 vteq.liveness = ’dead’
19 vteq. fail ()
20 else:
21 pass
22
23 to FindRTPSink(stream format): via VLCHost:
24
25 subgoals:
26 vlc host = TechniqueFactory(code=monitor entity loop,
27 type=’VLCHost’)
28
29 eval:
30 if subgoals.vlc host.liveness != ’ alive ’ :
31 planner. fail ( ”%s not alive” % subgoals.vlc host)
32 ...

Listing 5. The monitor entity loop function creates
Techniques for each resource it finds.

Figure 5. The VLCHost Technique uses the Techniq-
ueFactory to call discovery system code. The Plan-
ner clones the VLCHost Technique for each Tech-
nique the TechniqueFactory’s code creates. The
laptop represented by CODE#2 has disappeared,
causing the created Technique to fail.

Planner’s ability to quickly switch among different
Plans in the Goal Tree.

3.4. Technique Factories and External Events

While Techniques may call arbitrary code in their
eval stages, these calls are “one-shot” — their changes
are not tracked by our roll-back system. However, for

certain kinds of code, including resource discovery
and monitoring, outside changes should propagate to
the Planner and cause re-evaluation of Techniques.
To handle these cases, we provide a special sub-Goal
called TechniqueFactory that allows external code to
create and control Techniques directly. For example,
Listing 5 shows how our VLCHost Technique uses the
monitor entity loop function to create Techniques for
resources found with a long-running discovery system.

The external code has complete control over the
Techniques it creates with its factory. The code may
set and re-set its virtual Technique’s Properties as
well as fail Techniques that are no longer applicable.
In contrast to “one-shot” function calls, changes to
the code-based Technique Properties are tracked like
normal sub-Goal Properties, invoking the Planner’s
Technique restart mechanism.

If the code associated with the TechniqueFactory
sub-Goal creates more than one Technique, rather than
choosing the best Technique, the Planner clones the
TechniqueFactory sub-Goal to expose all of its Tech-
niques to higher-level Techniques. Figure 5 illustrates
how the Goal Tree changes.

4. Applications

In order to test the general applicability of Goals and
Techniques, we built several applications. Some rely
entirely on the Planner to make all decisions, while
other use the Planner only for parts of the application
that need to be adaptive.

4.1. JustPlay Audio and Video

The JustPlay Audio [7] and Video application is an
adaptive media player designed to reduce the amount
of configuration users must do in order to use their
various A/V-capable devices. Users control the system
through a simple “voice shell” application that uses
speech recognition to translate voice commands into
top-level Goals. These Goals are then passed to the
Planner, which continually monitors for changes in the
environment and user commands that alter the top-level
Goal. The JustPlay system started as audio-only, but
as we built a video infrastructure, we were able to add
Techniques that made the Planner aware of these new
capabilities.

The Techniques used as examples in this paper
come from the JustPlay application because JustPlay
includes many of the technical challenges we sought
to solve. For example, our video selection Technique
uses sequential sub-Goal binding to more clearly define
what combinations of A/V streams are acceptable for



the system. We also make use of the TechniqueFactory
sub-Goal to connect the Planner to discovery sub-
systems. In a testament to the additivity of our system,
the JustPlay application has worked with two distinct
discovery systems — one with a custom in-house
protocol and one based on DNS-SD — with slightly
different APIs and semantics. Changing between the
systems just required creating new low-level “finder”
Techniques (like Listing 5). Moreover, Techniques
for both systems could co-exist in the same Planner
process, making it easy to gradually introduce the new
discovery system.

4.2. User Proxies

We have also used the Planner to maintain user-
level applications in the face of changing hardware,
similar to the aims of Gaia [8], [9] and Aura [10]. In
particular, we tested this with a text chat application
and a teleconference application. Users modified the
system by adding new Techniques that better suited
their desires. For this application, a trusted machine
runs a network-exported Planner that maintains user
Goals. As the Planner discovers client devices (stan-
dard desktops as well as PDAs), it re-configures the
text chat and/or teleconference applications to use the
resources of new devices: if a user turned on his PDA
after leaving his office, the system would reconnect his
chats and allow him to continue as though he were still
at his office computer.

4.3. Other Applications

The Planner also powers a few other applications
outside of the pervasive computing field. Our crisis
management application simulates several crises af-
fecting a small city. The crisis management application
benefits from the open-ended nature of the Planner
because it allows new strategies to be added to the
system as crises unfold. We also implemented a Recipe
application that uses the Planner to choose among
recipes depending on (1) what ingredients are available
and on (2) the user’s food preferences. Each recipe is
written as a Technique, with sub-Goals for each utensil,
appliance, and ingredient that the recipe requires. A
GUI allows users to alter the Planner’s choices by
explicitly rejecting certain ingredients (which cause
Techniques depending on those ingredient sub-Goals
to fail) or by altering the Satisfaction formula to
favor certain Properties (like caloric content, flavor, or
cooking time).

Finally, we are currently exploring the use of the
Planner in a hardware design “compiler”. We use Goals

to represent each class of hardware element, such as
an adder or register, and Techniques to provide ways
of stitching the circuits together. The final output is
Verilog code. The Planner allows us to explore alter-
native implementations of the same circuit, test their
performance in simulation, and more rapidly iterate
hardware designs.

5. Implementation and Performance Eval-
uation

The Planner is written in pure Python and has
been tested on GNU/Linux, Apple os x, and Microsoft
Windows (under cygwin).1 The Planner can run as both
a stand-alone command-line tool as well as be linked
into traditional applications. Applications that import
the Planner have access to an extended API that lets
the application more finely control the execution of the
Planner, as well as integrate the Planner’s evaluation
loop with its own mainloop and/or threads.

5.1. Latency Evaluation

The Planner does not interpose itself in the data
streams between individual components, so it does not
slow down an application once it is running. However,
the Planner necessarily takes part in application start-
up and adaptivity since the Planner drives the decision
making of these phases; the rest of this section details
the user-visible latency that the Planner adds to the
application.

All tests were run on a desktop Pentium 4/3.2GHz
with 1 GiB of RAM running GNU/Linux 2.6.22 and
Python 2.5.1.

Our start-up latency test measures how long it takes
the Planner to build, evaluate, and execute trees of
various sizes. After the Planner has converged on a
solution and idled, we introduce a variety of satis-
faction changes to the leaf nodes to simulate failures.
Our swap latency test measures how long the Planner
takes to converge to a new plan after the failures are
introduced.

5.2. Results

Figure 6 summarizes our latency tests. Overall,
startup latency scales linearly with the number of nodes
in the Goal Tree. On normal size trees (≈50 nodes),

1. Full source code to the Planner is available under a free license
from http://o2s.csail.mit.edu/. A small library of Goal specifications
(as well as an HTML interface to the specs) can be found at http:
//o2s.csail.mit.edu/system.html.
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Figure 7. Goal Tree swap latency, separated by
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of Techniques we failed in order to induce the
change.

the Planner adds 1 s of startup latency. In real-world
applications, we find that the Planner’s startup latency
is dwarfed by service discovery latencies.

In early tests, we found that performance of the
Planner is tied to the order in which the Planner runs
the evaluation stages of Techniques. We developed
two stage schedulers: one that maintained a simple
work queue (called the queue scheduler) and another,
the precqueue scheduler, that would only schedule
Techniques higher in the tree after lower-level Tech-
niques finished evaluation. The precqueue scheduler
was usually about 14% faster.

Figure 7 shows how long the Planner takes to
react to changes in its environment and swap in new
Techniques, using our precqueue scheduler. Note that
this does not measure average application downtime,

but rather how long the Planner takes to determine
what changes need to be made and then instantiate
those changes. We found that even a large, 255-node
tree could be updated in less than 250 ms. We attribute
this fast speed to our Goal Tree cache and roll-back
mechanism.

6. Related Work

Many systems provide abstractions that ease the
burden of programming adaptive applications. At the
network level are systems like MIT’s Intentional Nam-
ing System [1], Service-oriented Network Sockets [2],
and Lightweight Adaptive Network Sockets [3]. These
systems allow applications to opportunistically connect
to the best resources in a given environment and leave
adaptation to the application.

Other frameworks provide high-level abstractions.
CMU’s Aura system [10] uses tasks to capture user-
level intent. Aura uses tasks to map user intent to
available resources without requiring user interaction
and to optimize resource allocation according to user-
specified QoS parameters. Similarly, UIUC’s Gaia [8]
provides event and context services for managing ap-
plications in “ActiveSpaces”. We concentrate on the
lower level of composing applications once context and
intent have been discovered. Olympus [9] extends Gaia
with a programming model for writing code portable
between ActiveSpaces. Our system and Olympus solve
slightly different problems. Olympus maps abstract de-
scriptions to ActiveSpace entities using hierarchically
defined ontologies in order to avoid the tedium of link-
ing entities manually (as is required by Gaia). Goals,
on the other hand, are a generic programming construct
aimed at allowing open-ended decision making about
any component, algorithm, or resource a pervasive
application may need.

Semi-automatic service composition systems such
as NinjaPaths [11] or SWORD [12] complement our
approach. Such systems can be used to generate Tech-
niques and aid in rapid development of Technique-
based applications.

Declarative and implicative programming ap-
proaches, especially rule-based systems [13] and event-
condition-action (ECA) systems, provide programming
constructs at levels of abstraction similar to our system.
For example, InterPlay [14] uses a derivative of the
Jess rule system [15] to provide a pseudo-English user
interface to a consumer electronics environment. The
scope of InterPlay is different than our work — it does
not target adaptive applications, but rather concentrates
on ease of use. Our work may benefit from the UI
innovations of InterPlay.



SOCAM [16] and Chisel [17] are ECA frameworks
for managing events in context-aware applications.
ECA systems are designed to react to changes in
the environment or context while our system aims to
evaluate available choices in the environment to fulfil
abstract requirements. ECA systems may provide an
alternative user interface to invoking Goals, e.g. “when
I arrive at home, invoke PlayMusic(genre=Jazz)”.

7. Conclusion

Emerging computing environments require new ab-
stractions that permit increased levels of runtime
adaptivity while still maintaining extensibility. Goals
and Techniques meet both requirements by providing
a structured way of decomposing adaptive applica-
tions. Goals represent open-ended choice points that
can be compared by an application-generic Planner.
Techniques provide specially prepared code modules
that embody domain-specific knowledge. Our sys-
tem allows hierarchical decomposition of applica-
tions through Technique-declared sub-Goals, but unlike
competing systems, provides programmers a frame-
work for declaring dependencies between sub-Goals.
Our system is additive: new Techniques can be added
without requiring changes in existing Techniques. In
order to evaluate our system, we implemented four
widely-varying applications using Goals and Tech-
niques. In performance testing, we found that our sys-
tem adds only a small amount of latency to application
start-up and fail-over.

We are currently working on ways for users to cus-
tomize the Planning process without needing to resort
to programming. We are approaching this problem in
two ways. First, we are working on a Satisfaction plug-
in that lets users customize the Satisfaction calculation.
Second, we are implementing a GUI “sand box” where
users can explicitly reject choices the Planner has
made, providing an easy-to-use interface to device
configuration.
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