
page 1

A Case for Goal-oriented Programming Semantics

Umar Saif, Hubert Pham, Justin Mazzola Paluska, Jason Waterman, Chris
Terman, Steve Ward

{ umar, hubert, jmp, jwaterman, cjt, ward} @mit.edu

Abstract. Contemporary pervasive computing environments demand mechanism for co-
herently addressing high-level user needs despite changing availability of resources. We
propose the formalization of goals as the semantic basis for this mechanism, and sketch a
system architecture that separates policy-rich goals-level planning code from a policy-neu-
tral component assembly model.

I. INTRODUCTION

Pervasive computing systems immerse their users in a triad of sensors, invisible serv-
ers and mobile devices that work together to satisfy user requirements according to the
facilities available in her environment. Such a system must be self-managing: it must be
able to continuously monitor changes in user locations and needs, respond both to compo-
nent failures and newly available devices, and maintain continuity of service as the set of
available resources change.

As a simple example of such a pervasive computing environment, consider a user
involved in a video-conference with a colleague as she wanders about a well-equipped
campus. As she moves from one room to another, her video may switch from the small
LCD display of her handheld to a wall-mounted plasma screen as the latter comes into
view; networking technologies might shift between 802.11b and CDMA depending on
resource availability, and video may degrade or disappear altogether as communication
bandwidth warrants.

Such adaptation in a pervasive computing environment entails more than traditional
load-balancing or resource-management at a single host; it necessitates a certain degree of
planning involving continuous reevaluation of available alternatives, as well as heuristic
compromises to best address the user requirement using imperfect resources in the chang-
ing environment of the user.

Conventional techniques for constructing distributed applications, in which a top-level
function is decomposed into statically-partitioned sub-functions, each affixed to a particu-
lar API, makes such adaptation exceedingly difficult to program. Adaptation in a perva-
sive computing environment requires planning at a macro-level, possibly involving a
wholesale re-structuring of the application. If there is a change in available resources or
user priorities, it is often insufficient simply to reconsider how to implement the function
specified at each API: it is necessary to reconsider the reason that API was selected, and
whether an alternative function and API has now become more appropriate.

A more promising approach is to have the user express their requirements as an
abstract high-level goal, and then let the system automatically satisfy this goal by assem-
bling, on-the-fly, an implementation that utilizes the resources currently available to the
user. The high degree of dynamism in the environment requires that the resolution of a
goal not be a static one time process. Instead, the system must be able to continuously
monitor the environment so that it may respond opportunistically to changes in connectiv-

page 2

ity and available devices, assembling new implementations to sustain the high-level goal
in the changing conditions.

While a growing number of projects[1][2][3] discussed in section 4 show how conven-
tional distributed computing paradigms may be extended to handle the heterogeneity and
dynamism of a pervasive computing environment, we believe that a new set of abstrac-
tions would greatly reduce the complexity of creating applications for this environment.

To this end, we are building an experimental system, O2S, to explore two architectural
principles:

• The formalization of goals as an explicit semantic construct to express abstract high-
level intentions. A goal takes the form of a generic procedure call and represents the
stimulus for a planning process which can be invoked repeatedly to produce successive
implementations as available resources evolve.

• The stratification of application-level software into two distinct layers: a planning
layer that embodies the mechanism for assembling and adapting implementations to be
executed by the computation layer. The computation layer provides reasonably general
mechanisms for constructing and monitoring a network of generic modules operating
in parallel on different hosts. The two layers are an attempt to tease apart software for
complex, adaptive systems into cognitive and reflexive components: the former focus-
ing on application-specific policies, and the latter on efficient deployment and moni-
toring of commodity computation.

By following these two architectural principles, O2S offers a general-purpose architec-
tural framework for engineering goal-oriented adaptive systems. The approach of separat-
ing the adaptation mechanism from individual code modules leads to the following useful
properties: 1) adaptation could be performed at a macro-level, allowing wholesale restruc-
turing of the application-code in response to changes in the system, 2) policies, algorithms
and mechanisms of adaptation can be engineered and evolved independently of any partic-
ular application.

II. GOALS AND PLANNING

In the planning layer of O2S, goals are formalized as a language construct and used to
guide the automatic construction of a component-based system. Syntactically, goals are
similar to generic procedure calls: they involve a named generic service (the goal name) as
well as an arbitrary number of typed parameters. Thus, TeleConference(Alice, Bob) is a
high-level goal whose satisfaction requires a teleconference link between Alice and Bob,
each a parameter of type Person.

Unlike procedure calls, however, goals are disembodied from any block of code to be
invoked during their execution. Rather, the system approaches the resolution of a goal by
searching for one or more techniques, each of which constitutes a recipe for resolving a
class of goals. Each technique specifies a pattern to be matched against a target goal,
optional sub-goals that must be satisfied for that technique to proceed, and code to be run
in order to cause the target goal to be satisfied once the specified subgoals have been
achieved. Satisfaction of a top-level goal thus involves, at least conceptually, (a) the enu-
meration of applicable techniques; (b) evaluation of each of the candidate techniques; (c)
the heuristic selection of one technique for implementation; and (d) implementation of the
chosen plan. Any of these steps may fail, possibly resulting in the system’s failure to sat-
isfy the specified goal.

page 3

Since techniques can require subgoals to be satisfied, step (b) in
the above sequence may involve the recursive evaluation of an
entire tree of goals and subgoals. In practice, O2S builds a goal
tree (shown in figure 1) representing a (perhaps partial) universe
of candidate choices, and heuristically selects a path through this
tree based on an estimate of the most acceptable implementation
choice (as outlined in more detail subsequently). The resulting
goal tree, however, is saved after the implementation choices are
made; it serves as a record of the assumptions and logic leading to
each decision made in the heuristic selection, allowing each deci-

sion to be reconsidered should new information become available.

Goal Resolution

The planning layer of O2S is implemented as a distributed network of contexts, each of
which contains a local repository of techniques, often customized to the preferences of
some logical entity in the system. For instance, an individual will typically maintain a per-
sonal context whose techniques reflect her preferences (e.g., a GetMyAttention goal is sat-
isfied by a local technique that causes her cell phone to vibrate); however, the personal
context may defer to a context maintained by her employer to specify default techniques
for the satisfaction of many goals. The principal function performed by a context is the
resolution of a goal instance provided as a parameter in a satisfy request. As noted above,
the approach to goal resolution is expected to evolve; indeed, the O2S architecture is
intended to provide a framework for that evolution. In this section, we describe the
approach taken by our early prototypes.

Both contexts and techniques are implemented as object instances and their external
interfaces take the form of method-call APIs. The structure of the goal resolution take the
form of a choreographed interaction between the context and a selection of the techniques
it houses, roughly as diagrammed in Figure [2].

A target top-level goal (typically derived from a user command, either typed or spo-
ken) is first matched against the local store of techniques. Each technique is matched
against the target goal; if the match succeeds, the technique is retained for evaluation. If

Figure 1: O2S Goal Tree

� � � � � � �

� � � � 	
 � � �
� � � � � � � �

� � � � � � � �

� � � � � � � �
� � � � � � � �

� � � � � � � � � � � �

� � � � � � ! "

$ % & � � � � '

$ % & � � � � (

) * � � $ � ! � '

� # � ! + � , � - ! + �

) . � - $! � (
/

0 1 2 3 4 5
6 7 8 9 : ; < = 7

> ? @ � @ 2 A B 4 2 C 1

D E F G � 2 A B 4 2 C 1

H I 2 A E 2 � @ � ?

H J 1 3 E � @ � ?

Figure 2: Context/Technique negotiation

page 4

no matches are found, the satisfy request reports failure (but the failure may be recover-
able, as discussed below).

Each matching technique returns an instance of a Planlet object used to cache the state
of subsequent negotiation relating to that technique’s suitability to satisfy the specified
goal. The set of planlets are collected by the context into a plan, recording the state of the
search which will eventually lead to the heuristic selection of one planlet as the path of
choice. The plan, and its child planlet instances, constitute one layer of the unfolding goal
tree devoted to choosing an implementation strategy for the incoming goal instance.

Additional layers of the goal tree are built by interrogating each planlet for subgoals,
and repeating the above construction of a plan (with subordinate planlets) for each. The
resulting tree is structured as alternating layers of plan and planlet nodes, which represent
conceptually disjunctions and conjunctions of their inferiors. Each plan can succeed if
one of its inferiors – the use of some suitable technique – leads to success; each planlet can
succeed only if all of its inferiors, each corresponding to a requisite subgoal, is successful.

The next step in the goal resolution process is the heuristic selection of a subtree that
represents, by some criterion, the best implementation choice given currently available
information. To make this determination, our current approach involves assignment of a
scalar satisfaction metric to each node of the tree, and the local selection at each plan of
the inferior planlet with maximal satisfaction. This primitive approach involves the
encapsulation of all value judgments pertaining to a choice, including both its cost and the
desirability of its outcome, onto a single dimension. Currently the metric is computed are
by code within each technique, which is asked by the context to estimate the satisfaction
of its outcome based on goal parameters and the results (including satisfaction) of the res-
olution of each of its subgoals. Standards for such value judgments are thus embedded in
techniques, and the choices made by a context in the realization of incoming goals may be
heavily colored by the selection of techniques it comprises.

The evaluation of a planlet is required to be idempotent, and may be done repeatedly
during its lifetime. This allows flexibility in the evaluation algorithm used by a context, as
well as providing the ability for the subsequent re-evaluation of any subtree should some
incoming event suggest that its result might change. The plan, and the substructure that
constitutes its goal tree, persists while the chosen implementation is active. Various exter-
nal events, such as an error condition or change in the location of a principal, may be used
to trigger re-evaluation of all or part of the tree; this may, in turn, result in a (partial) reim-
plementation of the solution.

It is worth mentioning that the specific heuristics of our current planning system,
including the use of scalar satisfaction metric, are early steps in an ongoing research
agenda. We view our architecture as defined by its network APIs rather than, say, the body
of code that implements key heuristics such as goal resolution. We anticipate that alterna-
tive implementations of contexts (incorporating different approaches to planning) might
interoperate simultaneously within a continuously-running O2S environment, allowing
incremental evolution of the planning subsystem. Among many other possibilities, we are
exploring the use of current SAT-based planning techniques [4] as an alternative to the
PROLOG-style planning described here.

page 5

III. COMPONENT ASSEMBLY

A target goal is satisfied at conclusion of the iteration of the planning process by
dynamically assembling a set of generic components (called pebbles) to implement the
high-level function encoded by the goal. A pebble is a lightweight, policy-neutral distrib-
uted component that conforms to a standardized API. Pebbles typically implement a single
function and are designed to be standalone components with well-defined, explicit ports of
communication with other components. Keeping the pebbles focussed on a single opera-
tion makes it easy to reuse them in many different applications. For example, typical peb-
bles in our prototype system include a voice-recognition pebble, which takes an audio-
stream on an input port and produces corresponding recognized text on its output port, an
audio-source pebble which reads /dev/dsp and forwards that on its output port, an audio-
sink pebble which accepts an audio-stream on its input port and writes to /dev/dsp of the
host machine.

Component (“ Pebbles”) API

The API presented by
our component model is
designed to hide certain
complexities of a highly
parallel, distributed sys-
tem of interconnected
components under the
veneer of a simple,
sequential, and localized
system. Although our
design is motivated by
the implementation
needs of our goal-ori-
ented planning layer, the

pebbles-based computation layer is designed to be usable by (and of potential interest to)
those following more conventional approaches to distributed application design.

The basic API provides a mechanism for instantiating a collection of pebbles on vari-
ous hosts, interconnecting them into a network, and monitoring the operation of the result-
ing composite via a stream of high-level events generated by the pebbles and connections.
Events are used to report component failures, user inputs, or various pebble-specific noti-
fications.

The health of devices hosting pebbles (and the communication paths between them) is
transparently monitored by keep-alive connections; pebble state updates and debugging
output are collected, filtered, and serialized for presentation to the caller; and disconnected
or abandoned component processes are automatically garbage-collected. The intent is to
minimize the tedium of developing and maintaining distributed applications, allowing a
high-level application to focus on a simple sequential model for its “cognitive” delibera-
tions, while the compute-intensive “ reflexive” components are managed largely automati-
cally (refer to figure 3).

Abst
rac

tio
n:

composite
s

SpkrSpkrSpkr

GUIGUIGUI

MIKEMIKEMIKE

Planning Layer: Goals

Component
Layer: Pebbles

Figure 3: Layers of abstraction in O2S

page 6

This approach is similar to architectural models proposed as a basis for evolvable and
self-repairing software [5]. The pebbles system exports a simple architectural model in
which the application is represented as a graph of connected components. This representa-
tion is also adopted by a number of architecture description languages, e.g Acme [6]. By
the same token as a software-architectural model provides the generic abstraction for
applying analytical models to the overall architecture of a distributed application, the peb-
bles’ composite serves as the generic abstraction for planning the assembly and adaptation
of code modules to satisfy user goals.

Connections
Pebbles are modeled as stream-processing objects [9], and communicate using stan-

dardized communication end-points. An application connects two pebbles by requesting
the system to establish a communication channel that joins their appropriate service-
access-points, dubbed as connectors [10]. A connector defines a unidirectional interface
for message passing, analogous to a UNIX one-way socket. All connectors are derived
from a common super-class and hence provide a standardized, well-known interface for
sending and receiving messages. The use of a standardized, low-level communication
interface avoids the interface compatibility issues associated with conventional RPC-
based distributed components, making it easy to join arbitrary pebbles. Where connectors
are akin to UNIX sockets as a well-known message passing interface, the communication
model supported by connectors enforces a strict distinction between policy and mecha-
nism: a pebble only declares a connector when defining an external service access-point,
while the actual connections between pebbles are established by the planning layer to
compose an application. This allows pebbles to offer a service without dictating their role
in the overall distributed computation, permitting a wholesale restructing of the applica-
tion by reconnecting the pebble connections.

It is noteworthy that a connector declaration only defines a service access point and
dictates neither the pebble to be connected to the connector nor the attributes or the proto-
col to be used for the transport of messages sent via the connection. These architectural
principles, often referred to as “ laws of blind communication” in the software engineering
literature [5], ensure that a pebble can be used to satisfy a variety of high-level goals, that
a pebble is independent of the semantics of the connectors to which it is attached, and that
a pebble composite can be re-wired on the fly in response to changes in user priorities or
needs.

IV. RELATED WORK

A number of recent architectural approaches to pervasive computing share elements
with our work. Several of the most relevant are discussed below.

MIT’s Intentional Naming System (INS) [3] addresses these challenges at the stage of
discovering and routing of network messages. Applications in INS express their intent as a
set of properties required in a suitable resource and the INS overlay locates and routes
intentional datagrams (network messages tagged with user intent) to the most appropriate
resource in the environment of the application. This approach of pushing intent-driven
adaptation down to the primitives of network communication enables conventionally-
engineered applications to opportunistically access resources in a dynamically changing
pervasive environment, and provides a runtime alternative to the top-level goals of O2S. It

page 7

does not, however, automate the internal structuring of an implementation, e.g. by the
decomposition of goals into lower-level subgoals.

CMU’s Aura [2] distributed computing environment defines an high-level abstraction,
termed a task, layered atop individual applications. This task layer, called prism, provides
a placeholder to capture user intent, and employs various resource monitoring artifacts in
the Aura system to monitor and adapt underlying applications to opportunistically carry
out the high-level task. Aura’s architecture is focused on adaptation and migration of con-
ventionally-engineered applications rather than on automatic assembly of distributed com-
ponents.

The Gaia computation environment from UIUC [7] defines a programming environ-
ment based on the Model-View-Controller abstraction. Using this abstraction, applications
in Gaia are partitioned into four parts; a model to encode the logic of the application, a
view to expose the model's state, a controller to map events in the environment of the
application as input messages to the model, and a coordinator responsible for storing the
bindings of different components in the application's model as well as mechanisms to
access and alter these bindings. While this conceptual framework reflects a philosophy
similar to that of O2S in which the application-logic is separated from individual compo-
nents, the Gaia architecture defines a basis for modeling user-driven context-aware appli-
cations, rather than automatic composition and runtime adaptation of distributed
applications.

The Ninja Paths architecture [11] from University of California Berkeley takes a simi-
lar approach to O2S for automatically assembling a stream-conversion application. Given
a source and a destination stream format, the NINJA Paths architecture strings together a
path of stream-processing elements, dubbed as operators, which converts the stream from
one format to another. Operators describe their properties, including the ingress and egress
stream formats, in an XML file which is used by the NINJA Paths creator to discover the
appropriate operators. Operators communicate using well-defined ports of communication
which can be dynamically rewired in response to operator failures.

The Pebbles’ composite API is reflective of the architecture-based software-engineer-
ing models, in which the architectural model of the software is maintained at runtime and
used as a basis for software evolution and verification. Oriezy et al. [5] present a data flow
based approach to compose and adapt a network of distributed components, called
Weaves. Much like a pebbles composite, a weave is constructed by connecting a network
of tool fragments using transport services. However, the Weaves system does not provide
any explicit support for representing change policies to compose and adapt a weave.
Weave designers use an interactive, graphical editor to visualize and directly reconfigure a
weave during runtime.

Cheng et al. [6] argue for the suitability of software architectural models as a basis for
analyzing and verifying self-adaptive applications in a pervasive computing environment.
Much as O2S defines a layered architecture to separate the concerns of goal-resolution
and planning from component assembly, Cheng et al. propose a dichotomy which sepa-
rates analytical methods for evaluating the properties of the system’s architectural design
from individual code modules. Though similar to Pebbles in its architectural consider-
ations, Cheng. et al. propose their system as a basis for analyzing and verifying the overall
structure of an distributed application against programmer-defined constraints rather than
goal-driven planning and assembly of distributed components.

page 8

V. CONCLUSION

We propose goals as an explicit semantic construct for programing a pervasive com-
puting environment. Goals encode high-level intentions, take the form of a generic sub-
routine call and initiate a planning process which may persist during a succession of
implementation choices -- each potentially involving different design approaches, recom-
pilation of code, and revised user-visible performance. Each iteration of the planning pro-
cess satisfies the target goal by assembling a network of pebbles (modular components)
and communication channels. The pebbles component system is based on an explicit dis-
tinction between mechanism and policy; individual pebbles offer a mechanism without
dictating the policy specifying the role of the pebble in the overall logic of an application.
Pebbles are intended for reuse in implementing a variety of applications. The API offered
by the pebbles layer provides simple means by which the caller can instantiate a collection
of pebbles on various hosts, interconnect them into a network and monitor the operation of
the application via a stream of events generated by the pebbles and connections and adapt
its structure in response to the changes in the system.

VI. REFERENCES

[1] Robert Grimm et al., Systems directions for pervasive computing. Proceedings of the 8th IEEE
Workshop on Hot Topics in Operating Systems (HotOS-VIII), pages 147-151, 2001.

[2] David Garlan, Dan Siewiorek, Asim Smailagic, and Peter Steenkiste. Project Aura: Towards
Distraction-Free Pervasive Computing. IEEE Pervasive Computing, April-June 2002.

[3] William Adjie-Winoto, Elliot Schwartz, Hari Balakrishnan, and Jeremy Lilley. The design and
implementation of an intentional naming system. Symposium on Operating Systems Principles,
Kiawah Island, USA, December 1999.

[4] Kautz, H., and Selman, B., BLACKBOX: A New Approach to the Application of Theorem Prov-
ing to Problem Solving, In Working notes of the Workshop on Planning as Combinatorial
Search, AIPS-98 Pittsburg, PA, (1998) 58--60.

[5] Oriezy, P., Gorlick, M.M., Taylor, R.N., Johnson, G., Medvidovic, N., Quilici, A., Rosenblum,
D., and Wolf, A. An Architecture-Based Approach to Self-Adaptive Software. IEEE Intelligent
Systems 14(3):54-62, May/Jun. 1999.

[6] Shang-Wen Cheng et al, Software Architecture-based Adaptation for Pervasive System. Interna-
tional Conference on Architecture of Computing Systems (ARCS’02): Trends in Network and
Pervasive Computing, April 8-11, 2002.

[7] Manuel Roman, Christopher K. Hess, Renato Cerqueira, Anand Ranganathan, Roy H. Camp-
bell, and Klara Nahrstedt. Gaia: A Middleware Infrastructure to Enable Active Spaces, In IEEE
Pervasive Computing, pp. 74-83, Oct-Dec 2002.

[8] Robert Grimm, et al. Programming for pervasive computing environments. Technical report
UW-CSE-01-06-01, University of Washington.

[9] Peyman Oreizy and Richard N. Taylor. On the Role of Software Architectures in Runtime Sys-
tem Reconfiguration, Peyman Oreizy and Richard N. Taylor. Proceedings of the International
Conference on Configurable Distributed Systems (ICCDS 4). 1998.

[10] Peyman Oreizy, David S. Rosenblum, Richard N. Taylor. On the Role of Connectors in Model-
ing and Implementing Software Architectures. Technical Report UCI-ICS-98-04, Department of
Information and Computer Science, University of California, Irvine, February 1998.

[11] Steven D. Gribble et al. The Ninja Architecture for Robust Internet-Scale Systems and Services,
To appear in Special Issue of Computer Networks on Pervasive Computing

