
This paper is included in the Proceedings of the
13th USENIX Symposium on Operating Systems Design

and Implementation (OSDI ’18).
October 8–10, 2018 • Carlsbad, CA, USA

ISBN 978-1-939133-08-3

Open access to the Proceedings of the
13th USENIX Symposium on Operating Systems

Design and Implementation
is sponsored by USENIX.

REPT: Reverse Debugging of Failures
in Deployed Software

Weidong Cui and Xinyang Ge, Microsoft Research Redmond;
Baris Kasikci, University of Michigan; Ben Niu, Microsoft Research Redmond;

Upamanyu Sharma, University of Michigan; Ruoyu Wang, Arizona State University;
Insu Yun, Georgia Institute of Technology

https://www.usenix.org/conference/osdi18/presentation/weidong

REPT: Reverse Debugging of Failures in Deployed Software

Weidong Cui1, Xinyang Ge1, Baris Kasikci2, Ben Niu1, Upamanyu Sharma2, Ruoyu Wang3, and Insu Yun4

1Microsoft Research
2University of Michigan

3Arizona State University
4Georgia Institute of Technology

Abstract

Debugging software failures in deployed systems is im-
portant because they impact real users and customers.
However, debugging such failures is notoriously hard in
practice because developers have to rely on limited infor-
mation such as memory dumps. The execution history is
usually unavailable because high-fidelity program trac-
ing is not affordable in deployed systems.

In this paper, we present REPT, a practical system
that enables reverse debugging of software failures in
deployed systems. REPT reconstructs the execution his-
tory with high fidelity by combining online lightweight
hardware tracing of a program’s control flow with of-
fline binary analysis that recovers its data flow. It is
seemingly impossible to recover data values thousands
of instructions before the failure due to information loss
and concurrent execution. REPT tackles these challenges
by constructing a partial execution order based on time-
stamps logged by hardware and iteratively performing
forward and backward execution with error correction.

We design and implement REPT, deploy it on Mi-
crosoft Windows, and integrate it into WinDbg. We eval-
uate REPT on 16 real-world bugs and show that it can
recover data values accurately (92% on average) and ef-
ficiently (in less than 20 seconds) for these bugs. We
also show that it enables effective reverse debugging for
14 bugs.

1 Introduction

Software failures in deployed systems are unavoidable
and debugging such failures is crucial because they im-
pact real users and customers. It is well known that ex-
ecution logs are helpful for debugging [28], but nobody
wants to pay a high performance overhead for always-on

logging/tracing when most logs or traces would be dis-
carded for normal runs. As a result, only a memory dump
is captured upon failures in deployed software to enable
post-mortem diagnosis.

Alas, it is challenging for developers to debug memory
dumps due to limited information. The result is that a
significant fraction of bugs is left unfixed [32,59]. Those
that get fixed can take weeks in certain cases [32].

To make matters worse, streamlined software pro-
cesses call for short release cycles [53], which limits
the extent of in-house testing prior to software release.
Frequent releases increase the dependency on debugging
failures reported from deployed software, because these
failure occurrences become the only way to detect cer-
tain bugs. Frequent releases also increase the demand for
quickly resolving bugs to meet short release deadlines.

There exists a rich literature on debugging failures,
which can roughly be classified into two categories:

(1) Automatic root cause diagnosis [16, 37–41, 61] at-
tempts to automatically determine the culprit statements
that cause a program to fail. Due to various limitations
(e.g., requiring code modification [37, 40, 41], inabil-
ity to handle complex software efficiently [37, 61], or
being limited to a subset of failures [37, 39]), none of
these systems are deployed in practice. Moreover, even
though root cause diagnosis can help a developer deter-
mine the reasons behind a failure, developers often re-
quire a deeper understanding of the conditions and the
state leading to a failure to fix a bug, which these sys-
tems do not provide.

(2) Failure reproduction for debugging attempts to en-
able developers to examine program inputs and state that
lead to failures. Exhaustive testing techniques such as
symbolic execution [22] and model checking [21, 58],
or state-space exploration [51] can be used to determine
inputs and state that lead to a failure for the purpose

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 17

of debugging. Unfortunately, these techniques require
heavyweight runtime monitoring [26]. Another popular
technique for reproducing failures is record/replay sys-
tems [46, 48, 50, 52, 56] that record program executions
that can later be replayed to debug failures. This is also
known as reverse debugging [31, 55] or time-travel de-
bugging [44]. On the plus side, reverse debugging allows
a developer to go back and forth in a failed execution to
examine a program’s state (i.e., control and data flow) to
truly understand the bug and devise a fix. On the other
hand, record/replay systems incur prohibitive overhead
(up to 200% for the state-of-the-art system [56]) in mul-
tithreaded programs running on multiple cores, making
them impractical for use in deployed systems.

Due to the limitations of existing techniques, major
software vendors including Apple [17], Google [33], and
Microsoft [30] as well as open-source systems such as
Ubuntu [54] operate error reporting services to collect
data about failures in deployed software and analyze
them. To our knowledge, even the most advanced bug
diagnosis system deployed in production, namely RE-
Tracer [27], is only able to triage failures caused by ac-
cess violations.

To solve the challenge of debugging software failures
in deployed systems, we argue that we need a practical
solution that enables reverse debugging of such failures.
To be practical, the solution must (1) impose a very low
runtime performance overhead when running on a de-
ployed system, (2) should be able to recover the execu-
tion history accurately and efficiently, (3) work with un-
modified source code/binary, (4) apply to broad classes
of bugs (e.g., concurrency bugs).

In this paper, we present REPT1, a practical solution
for reverse debugging of software failures in deployed
systems. There are two key ideas behind REPT. First,
REPT leverages hardware tracing to record a program’s
control flow with low performance overhead. Second,
REPT uses a novel binary analysis technique to recover
data flow information based on the logged control flow
information and the data values saved in a memory
dump. Consequently, REPT enables reverse debugging
by combining the logged control flow and the recovered
data flow.

The main challenge faced by REPT is how to accu-
rately and efficiently recover data values based on the
logged control flow and the data values saved in the
memory dump. To be accurate, REPT must be able to
correctly recover a significant fraction of data values in
the execution history. To be efficient, REPT must incur

1REPT stands for Reverse Execution with Processor Trace and
reads as “repeat.”

low runtime monitoring overhead and should finish its
analysis within minutes. To solve this challenge, we in-
troduce a new binary analysis approach that combines
forward and backward execution to iteratively emulate
instructions and recover data values. REPT uses the fol-
lowing two new techniques for its analysis:

First, we design an error correction scheme to detect
and correct value conflicts that are introduced by mem-
ory writes to unknown addresses. When emulating a
memory write instruction, it is too conservative to mark
all memory values as unknown if the destination address
is unknown. Instead, REPT leaves memory untouched
and relies on detecting a conflict later caused by stale val-
ues in the destination memory. Unlike previous solutions
that use expensive hypothesis tests to decide memory
aliases [57], the error correction scheme enables REPT
to run its iterative analysis efficiently.

Second, we leverage the timing information pro-
vided by modern hardware to determine the order of
non-deterministic events such as races across multiple
threads. Non-determinism has been a long-standing
challenge that hinders the ability of existing record/re-
play systems to achieve high accuracy with low over-
head. REPT can identify the order of accesses to
the same memory location in most cases by using
fine-grained timestamps that modern hardware provides.
When the timing information is not enough, REPT re-
stricts the use of memory accesses whose order cannot
be inferred. This stops their values from negatively af-
fecting the recovery of other data.

We implement REPT in two components. The online
tracing component is a driver that controls Intel Proces-
sor Trace (PT) [36], and has been deployed on hundreds
of millions of machines as part of Microsoft Windows.
The offline binary analysis component is a loadable li-
brary that is integrated into WinDbg [45]. We also en-
hance Windows Error Reporting (WER) service [30] to
control hardware tracing on deployed systems.

To measure the effectiveness and efficiency of REPT,
we evaluate it on 16 real-world bugs in software such
as Chrome, Apache, PHP, and Python. Our experiments
show that REPT can enable effective reverse debugging
for 14 of them, including 2 concurrency bugs. We evalu-
ate REPT’s data recovery accuracy by comparing its re-
covered data values with those logged by Time Travel
Debugging (TTD) [44], a slow but precise record/replay
tool. Our experiments show that REPT can achieve an
average accuracy of 92% and finish its analysis in less
than 20 seconds for these bugs.

18 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

2 Overview

2.1 Problem Statement
The overarching goal of REPT is to enable reverse de-
bugging of failures in deployed software with low run-
time overhead. REPT realizes reverse debugging in two
steps. (1) REPT uses hardware support to log the control
flow and timing information of a program’s execution.
When a failure occurs, REPT saves an enriched memory
dump including both the final program state and the ad-
ditionally recorded control flow and timing information
before the failure. (2) REPT uses a new offline binary
analysis technique to recover data values in the execu-
tion history based on the enriched memory dump.

REPT needs to recover data values because there is
no existing hardware support for efficiently logging all
data values of a program’s execution. However, there
exist hardware features such as Intel PT [36] and ARM
Embedded Trace Macrocell [18] that can efficiently log
the control flow and timing information.

2.2 Design Choices
When designing REPT, we make three design choices.

Memory Dump Only vs. Online Data Capture: We
choose to only rely on the data in a memory dump rather
than logging more data during execution to minimize the
performance overhead for deployed systems. Further-
more, to do online data capture, we would need to mod-
ify the operating system or programs because there is no
existing hardware support for that. We choose not to do
it to minimize intrusiveness.

Binary vs. Source: We choose to do the analysis at
the binary level instead of at the source code level for
three reasons. First, by performing analysis at the in-
struction level, REPT is essentially agnostic to program-
ming languages and compilers. This allows REPT to
support native languages (e.g., C/C++) as well as man-
aged languages (e.g., C#). Second, today’s applications
often consist of multiple modules/libraries from differ-
ent vendors, and not all source code may be available
for analysis [25]. Third, the mapping between the source
code and binary instructions is not straightforward due
to compiler optimizations and the use of temporary vari-
ables, thus converting source-level analysis result back
to the binary-level presents a non-trivial challenge.

Concrete vs. Symbolic: One popular approach to re-
constructing executions is symbolic execution. In sym-
bolic execution, a program is executed with symbolic in-
puts of unconstrained values (e.g., a Boolean can ini-
tially take any of the true or false values) as opposed to

concrete ones. As the program executes, symbolic ex-
ecution gathers constraints on symbolic values. When-
ever an event of interest occurs (e.g., a failure), symbolic
execution uses a constraint solver to determine the pro-
gram inputs that would have led to that failure. Con-
ceptually, symbolic execution may help with recovering
data values. We could treat operands such as registers
and memory locations referenced by each instruction as
variables, and generate constraints among these variables
based on the semantics of the instructions. However,
given a long execution trace, the constraints gathered
on the variables may grow too large (particularly when
memory locations are made symbolic) to solve within a
reasonable amount of time for even state-of-the-art con-
straint solvers. Therefore, we choose to do concrete exe-
cution instead of symbolic execution. REPT keeps con-
crete values for registers and memory locations at each
position in the instruction sequence and analyzes each
instruction to recover concrete values of its operands.

2.3 Challenges
To enable reverse debugging, REPT faces three chal-
lenges when recovering register and memory values in
the execution history.

2.3.1 Irreversible Instructions

This first challenge for REPT is handling irreversible
instructions. If every instruction is reversible (i.e., the
program state before an instruction’s execution can be
fully determined based on the program state after its ex-
ecution), then the design of REPT would be straight-
forward: invert each instruction’s semantics and recover
data values at each position in the instruction sequence.
However, many instructions are irreversible (e.g., xor
rax,rax) and thus information destroying. We solve
this challenge by using forward execution to recover val-
ues that cannot be recovered in backward execution.

2.3.2 Missing Memory Writes

The second challenge for REPT is handling memory
writes to unknown addresses. Most memory addresses
cannot be determined statically. Since the analysis may
not fully recover data values due to irreversible instruc-
tions, REPT may not know the destination of a memory
write during its analysis. When this happens, one op-
tion is to assume that values at all memory locations be-
come unknown. This is too conservative because it may
cause the analysis to miss many data values that are actu-
ally recoverable. If REPT chooses to ignore the memory

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 19

write, the analysis will leave an invalid value at the mem-
ory location, which may propagate into other registers or
memory locations. We solve this challenge by using er-
ror correction.

2.3.3 Concurrent Memory Writes

The third challenge for REPT is correctly identifying the
order of shared memory accesses. In the presence of
multiple instruction sequences from different threads, it
may not be possible to infer the execution order of con-
current memory accesses despite timestamps provided
by hardware. REPT needs to properly handle these mem-
ory accesses, otherwise it may infer wrong values for
these memory locations. We solve this challenge by re-
stricting in the analysis the use of data values recovered
from concurrent memory accesses.

3 Design

In this section, we describe the design of REPT by focus-
ing on how it solves the three key technical challenges
discussed in the previous section.

For brevity, we define an instruction sequence as I =
{Ii|i = 1,2, ...,n} where Ii represents the i-th instruction
executed in the sequence. We assume that the memory
dump is available after the n-th instruction’s execution.
We define a program’s state, S, as a collection of all data
values in registers and memory locations. We define Si
as the program state after the i-th instruction is executed.
Therefore, S0 represents the program state before the first
instruction I1 is executed, and Sn represents the program
state stored in the memory dump. We define a state Si
as complete if all the register and memory values are
known. We define an instruction Ii as reversible if, given
a complete state Si, we can recover Si−1 completely; oth-
erwise we say the instruction is irreversible. The design
of REPT is not limited to a specific architecture, how-
ever, in the rest of the paper, we use x86-64 instructions
in our examples.

In the rest of this section, we present the design of
REPT progressively by describing how it handles in-
creasingly more complex and realistic scenarios.

• A single instruction sequence with only reversible
instructions (Section 3.1).
• A single instruction sequence with irreversible

instructions but without memory accesses (Sec-
tion 3.2).
• A single instruction sequence with irreversible in-

structions and with memory accesses (Section 3.3).

• Multiple instruction sequences with irreversible in-
structions and with memory accesses (Section 3.4).

3.1 Instruction Reversal
REPT’s first mechanism assumes that the input is a single
instruction sequence with only reversible instructions.
Since every instruction is reversible, REPT can reverse
the effects of each instruction to completely recover the
initial program state from the end of the instruction se-
quence to the beginning. For instance, if the instruction
sequence has a single instruction I1 = add rax,rbx
and S1 = {rax=3, rbx=1}, then the analysis can recover
S0 = {rax=2, rbx=1}.

3.2 Irreversible Instruction Handling
REPT’s second mechanism assumes that there is a single
instruction sequence with irreversible instructions, but
the sequence does not include any memory access. In
practice, most instructions are irreversible. For instance,
xor rbx,rbx is irreversible, because rbx’s value be-
fore the instruction is executed cannot be recovered sim-
ply based on this instruction’s semantics and rbx’s value
after the instruction is executed. Therefore, the straight-
forward backward analysis for reversible instructions is
not applicable in general.

The key idea for recovering a destroyed value is to in-
fer it in a forward analysis. As long as the destroyed
value is derived from some other registers and memory
locations, and their values are available, we can use these
values to recover the destroyed value. Extending this
idea, our basic solution is to iteratively perform back-
ward and forward analysis to recover data values until no
new values are recovered.

Conceptually, given the instruction sequence I and the
final state Sn, we first mark all register values as unknown
in program states from S0 to Sn−1. Then we do backward
analysis to recover program states from Sn−1 to S0. After
this step, we perform forward analysis to update program
states from S0 to Sn−1. We repeat these steps until a fixed
point is reached: i.e., no state is updated in a backward
or forward analysis. When we update a program state,
we only change a register’s value from unknown to an
inferred value. Crucially, this analysis will not produce
conflicting inferred values because all the initial values
are correct and no step in the analysis can introduce a
wrong value based on correct values. This also guaran-
tees that the iterative analysis will converge.

We show an example of handling irreversible instruc-
tions in Figure 1. The instruction sequence has three in-
structions, and two of them are irreversible. Since we do

20 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Iteration 1 Iteration 2 Iteration 3
S0 ↑ {rax=?, rbx=?}→ ↓ ↑ {rax=2, rbx=?}

I1 mov rbx, 1 S1 ↑ {rax=?, rbx=?} ↓ {rax=?, rbx=1} ↑ {rax=2, rbx=1}
I2 add rax, rbx S2 ↑ {rax=3, rbx=?} ↓ {rax=3, rbx=1} ↑ {rax=3, rbx=1}
I3 xor rbx, rbx S3 ↑ {rax=3, rbx=0} ↓ {rax=3, rbx=0}→ ↑

Figure 1: This example shows how REPT’s iterative analysis recovers register values in the presence of irreversible
instructions. We use “?” to represent “unknown”. Key updates during the analysis are marked in bold face.

Iteration 1 Iteration 2 Iteration 3
S0 ↑ {rax=?, rbx=?, [g]=3}→ ↑ {rax=?, rbx=?, [g]=2}

I1 lea rbx, [g] S1 ↑ {rax=?, rbx=?, [g]=3} ↓ {rax=?, rbx=g, [g]=3} ↑ {rax=?, rbx=g, [g]=2}
I2 mov rax, 1 S2 ↑ {rax=?, rbx=?, [g]=3} ↓ {rax=1, rbx=g, [g]=3} ↑ {rax=1, rbx=g, [g]=2}
I3 add rax, [rbx] S3 ↑ {rax=3, rbx=?, [g]=3} ↓ {rax=3, rbx=g, [g]=3} ↑ {rax=3, rbx=g, [g]=?}
I4 mov [rbx], rax S4 ↑ {rax=3, rbx=?, [g]=3} ↓ {rax=3, rbx=g, [g]=3} ↑ {rax=3, rbx=g, [g]=3}
I5 xor rbx, rbx S5 ↑ {rax=3, rbx=0, [g]=3} ↓ {rax=3, rbx=0, [g]=3}→

Figure 2: This example shows how REPT’s iterative analysis recovers register and memory values when there exist
irreversible instructions with memory accesses. We use “?” to represent “unknown”, and use “g” to represent the
memory address of a global variable. Some values are in bold-face because they represent key updates in the analysis.
We skip the fourth iteration which will recover [g]’s value to be 2 due to the space constraint.

not have instructions before the first one, we do not ex-
pect to recover rbx in S0. There are three points that are
worth noting in this example. First, we recover rbx’s
value in S1 based on the forward analysis in the second
iteration. Second, we keep rax’s value of 3 in S2 in the
second iteration of forward analysis even though rax’s
value is unknown in S1. Third, we recover rax’s value
of 2 in S1 in the last iteration of backward analysis.

3.3 Recovering Memory Writes

REPT’s third mechanism assumes that there is a single
instruction sequence with irreversible instructions and
with memory accesses. In practice, there are always
instructions that access memory. Unlike registers that
can be statically identified from instructions, the address
of a memory access may not always be known. For a
memory write instruction whose destination is unknown,
we cannot correctly update the value for the destination
memory. A missing update may introduce an obsolete
value, which would negatively impact subsequent analy-
sis. A conservative approach that marks all memory as
unknown upon a missing memory write would lead to an
unnecessary and unacceptable information loss.

Our key insight for solving the missing memory write
problem is to use error correction. The intuition behind
REPT is to keep using the memory values that are possi-
bly valid to infer other values, and to correct the values
later if the values turn out to be invalid based on conflicts.
Before describing REPT’s error correction algorithm, we
first use an example to explain the high-level idea.

The example in Figure 2 has five instructions. There

are three key updates as marked in bold face. In the first
iteration of the backward analysis, since we do not know
rbx’s value in S4, we do not change the value at the ad-
dress g. In the second iteration of the forward analysis,
there is a conflict for rax in S3. The original value is 3,
but the newly inferred value would be 4 (rax + [g] = 1
+ 3 = 4). Our analysis keeps the original value of 3 be-
cause it was inferred from the final program state which
we assume is correct. In the third iteration of the back-
ward analysis, based on rax’s value before and after the
instruction I3, we can recover [g]’s value to be 2.

Next, we describe the algorithm that REPT uses to re-
cover missing memory writes. We first introduce the data
inference graph in Section 3.3.1, and then explain how
we use the graph to detect and correct errors caused by
missing memory writes in Section 3.3.2.

3.3.1 Data Inference Graph

When performing the backward and forward analysis,
REPT maintains a data inference graph. The data infer-
ence graph is different from a traditional data flow graph
in the sense that it tracks how a data value is inferred in
either forward or backward directions while a data flow
graph tracks the program’s data flow in just one direction.

An example data inference graph is shown in Figure 3.
In this example, we use rcx to recover [rax], and then
use the latter to recover rbx. Here we assume that rax’s
value is not changed between I1 and In.

A node in the data inference graph represents a regis-
ter or a memory location that is accessed in an executed
instruction. A node is called a use node if its correspond-

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 21

I1: mov [rax], rbx
...

In: mov rcx, [rax]

[rax]@I1 rbx@I1rax@I1

[rax]@In rcx@Inrax@In

Value edge Address edge

Use node Def node

Figure 3: An example data inference graph in REPT.
The graph indicates that REPT uses rcx@In to recover
[rax]@In, which is further used to recover [rax]@I1
and subsequently rbx@I1.

ing register or memory location is for read. Similarly, a
node is called a def node if it is for write. For instance,
rbx@I1 is a use node, and rcx@In is a def node. If
a register or memory location is accessed for both read
and write in a single instruction, we create two nodes for
it: one use node, and one def node. Finally, REPT treats
data in the memory dump as use nodes because their val-
ues can be propagated backwards like other use nodes.

There are two kinds of directional edges in the data in-
ference graph: value edges and address edges. A value
edge from node A to node B means that REPT uses A’s
value to infer B’s value. An address edge from A to B
means that A’s value is used to compute B’s address.
For instance, the edge from rcx@In to [rax]@In is
a value edge, and the edge from rax@In to [rax]@In
is an address edge. To get or set the value of a mem-
ory location, its address must be known. When setting a
memory node’s value, besides value edges, REPT adds
address edges from register nodes that are used to com-
pute the address of the memory node. A memory node
can have multiple incoming address edges (e.g., a base
register and an index register are used together to specify
the address).

There are two types of value edges. In the first type
of value edges, the connected nodes are from the same
instruction and we call them horizontal edges. Specifi-
cally, in the backward analysis, if a def node’s value is
known and can be used to infer the value of a use node in
the same instruction, we recover the use node’s value and
add a horizontal edge between the two nodes. Similarly,
in the forward analysis, if a use node’s value is known
and can be used to infer the value of a def node in the
same instruction, we recover the def node’s value and add

a horizontal edge between the nodes as well. It is worth
noting that a node may have multiple horizontal incom-
ing value edges. For instance, given add rax,rbx,
the def node of rax can have two incoming value edges
from the use nodes of rax and rbx.

In the second type of value edges, the connected nodes
are from different instructions, but they correspond to the
same register or memory location. Such value edges are
referred to as vertical edges. Intuitively, nodes connected
via vertical edges belong to the same def-use chain (i.e.,
a single def with all its reaching uses). In the back-
ward analysis, we recover values from a use node to the
preceding use node or the def node along the def-use
chain, and add vertical edges in between. Similarly, in
the forward analysis, we recover values from a def or use
node to its subsequent use node along the def-use chain
and add corresponding vertical edges as well. In other
words, a def node’s value can only be propagated for-
wardly while a use node’s value can be propagated on
both directions.

For every node in the data inference graph, REPT also
maintains a dereference level to aid in error correction
(Section 3.3.2). Specifically, all use nodes of values in
the memory dump have a dereference level of 0. For
any other node, REPT determines its dereference level
in three steps: (1) for all incoming value edges, find
the maximum dereference level of the source nodes as
D1; (2) for all incoming address edges, find the maxi-
mum dereference level of the source nodes as D2; (3)
pick the larger value between D1 and D2+1 as the target
node’s dereference level. We can see that the dereference
level actually measures the maximum number of address
edges from a value stored in the memory dump to the
given node. A node’s dereference level reflects the confi-
dence level for its value since data inference errors come
from memory due to missing memory writes. A higher
dereference level means a lower confidence level.

3.3.2 Error Correction

During the iterative backward and forward analysis,
REPT continuously updates the data inference graph and
detects and corrects inconsistencies. There are two kinds
of inconsistencies: value conflict and edge conflict. A
value conflict happens when an inferred value does not
match the existing value. An edge conflict happens when
a newly identified def node of a memory location breaks
the previously assumed def-use relationship between two
nodes connected through a vertical edge. Consider the
example in Figure 3. If REPT detects another write to
the same memory location specified by rax between I1
and In, this memory write will cause a conflict on the

22 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

vertical edge between [rax]@In and [rax]@I1.
When REPT detects a conflict, it stops the analysis of

the current instruction, identifies the invalid node, then
runs the invalidation process. For both types of conflicts,
the invalidation process starts with an initial node. In the
case of edge conflicts, the initial node is the target node
of the broken vertical edge as it no longer belongs to the
same def-use chain. In the case of value conflicts, REPT
checks if the dereference level of the node of the newly
inferred value is less than or equal to that of the node
of the existing value (this means a higher or equal con-
fidence for the new value). If so, REPT picks the node
of the existing value as the initial node for invalidation.
Otherwise, REPT discards the newly inferred value and
moves on to the next instruction.

If REPT identifies an initial node for invalidation, it
first processes each of its outgoing value and address
edges. For a value edge, the target node is marked as
unknown. For an address edge, the target node is deleted
from the data inference graph since its address becomes
unknown and consequently such a def or use on that
memory location may no longer exist. Then REPT re-
cursively applies the invalidation process to these target
nodes. It is worth noting that the data inference graph
is guaranteed not to have cycles, because REPT adds a
node and edges into the graph only when the node’s value
is inferred for the first time.

To ensure convergence of the analysis, REPT main-
tains a blacklist of invalidated values for each node. Ev-
ery time a node is invalidated, its value is added to its
blacklist. Once a value is in a node’s blacklist, the node
cannot take that value any more. This ensures that the
iterative analysis process will not enter the conflicting
state again and consequently guarantees that the algo-
rithm will eventually converge. However, a correct value
can be incorrectly blacklisted for a node if it has a lower
confidence level than another incorrect value. This leads
to the problem that a value is recoverable but cannot be
recovered due to the use of the blacklist. We choose to
keep the blacklists to prioritize the convergence of the
analysis over the improvement in data recovery.

3.4 Handling Concurrency

When we face multiple instruction sequences executed
simultaneously on multiple cores, the problem is seem-
ingly intractable because, without a perfect order of the
executed instructions, there could be a large number of
ways to order those instructions. We have two insights
for tackling this challenge. First, we leverage the timing
information logged by hardware tracing to construct a

partial order of instructions executed in different threads.
Second, we recognize that memory writes are the only
operations whose orders may affect data recovery.

With timestamps inserted in an instruction sequence,
we refer to the instructions between two timestamps as
an instruction subsequence. We refer to the two times-
tamps as the start and end time of the subsequence.
Given two instruction subsequences from two different
instruction sequences, we infer their relative execution
order based on their start and end times. If one subse-
quence’s end time is before another subsequence’s start
time, we say the first subsequence is executed before the
other subsequence. Otherwise, we say their order can-
not be inferred, and the two subsequences are concur-
rent. Note that the order of two subsequences in the same
instruction sequence can always be determined based
on their positions in the instruction sequence. We say
two instructions are concurrent if the instruction subse-
quences they belong to are concurrent. We say two mem-
ory accesses are concurrent if the corresponding memory
access instructions are concurrent.

Given multiple instruction sequences executed simul-
taneously on multiple cores, REPT first divides them into
subsequences, then merges them into a single conceptual
instruction sequence based on the inferred orders. For
two subsequences whose order cannot be inferred, REPT
arbitrarily inserts one before the other in the newly con-
structed sequence. A natural question is whether the data
recovery is affected by this arbitrary choice of ordering
two concurrent subsequences. Obviously, if we change
the order of two subsequences that have concurrent mem-
ory accesses to the same location and one of them is
write, we may get different values for the memory lo-
cation. On the other hand, if concurrent subsequences do
not have any concurrent memory write to the same loca-
tion, it does not matter in which order REPT places them
into the merged instruction sequence.

Since we cannot tell the order of concurrent instruction
subsequences, our goal is to eliminate the impact of their
ambiguous order on data recovery. Specifically, during
the iterative analysis, for every memory access (regard-
less of read or write), REPT detects if it has a concurrent
memory write to the same location. If so, REPT takes
the following steps to limit the use of the memory ac-
cess in the data inference graph. First, REPT removes all
vertical edges of the node representing the memory ac-
cess and invalidates the target nodes of outgoing vertical
edges. Then, REPT labels the memory access node so
that it will not be used in vertical edges. This is because
REPT does not know if the memory access happens be-
fore or after the concurrent memory write to the same

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 23

location. However, REPT still allows horizontal value
edges to infer this node’s value.

A remaining question is whether picking an arbitrary
order for concurrent instruction subsequences would af-
fect the detection of concurrent memory writes to the
same location. Our observation is that REPT’s analysis
works as long as there are no two separate concurrent
writes such that one affects the inference of another’s
destination. We acknowledge that this possibility exists
and depends on the granularity of timing information.
Given the timestamp granularity supported by modern
hardware, we deem this as a rare case in practice [39].

4 Implementation

In this section, we first describe the implementation de-
tails of REPT’s online hardware tracing and offline bi-
nary analysis. Then we describe its deployment.

4.1 Online Hardware Tracing
REPT leverages Intel Processor Trace (PT) to log
control-flow and timing information of a program’s ex-
ecution. Intel PT became available when the Broadwell
architecture was released in 2014. Intel PT supports var-
ious program tracing modes, and REPT currently uses
the per-thread circular buffer mode to trace user-space
execution of all threads within a process. REPT sup-
ports configuring the circular buffer size and the gran-
ularity of timestamps. We do not configure Intel PT to
do whole-execution tracing because that would introduce
performance overhead due to frequent interrupts (when
the trace buffer gets full) and I/O workload (when the
buffer is written to some persistent storage). When a
traced process fails, its final state and the recorded Intel
PT traces are saved in a single memory dump.

4.2 Offline Binary Analysis
REPT takes a memory dump with Intel PT trace as in-
put, and outputs the recovered execution history of each
thread. At first, REPT parses the trace to reconstruct the
control flow. Parsing an Intel PT trace requires that the
binary code in the dump is the same as the code that was
executed when the trace is collected. Therefore, REPT
supports jitted code as long as the code was not modi-
fied since its execution was logged in the circular trace
buffer. Next, REPT converts native instructions into an
intermediate representation (IR) that specifies opcodes
and operands, and conducts the forward and backward
analysis until it converges.

In addition to the final program state and constants,
REPT can leverage control dependencies to recover data.
For instance, if a conditional branch is executed only if
a register’s value is 0, then REPT can infer the register’s
value once it observes that the branch is taken.

Programs invoke system calls to request operating sys-
tem services, and the operating system may modify cer-
tain register and memory values in the process as a re-
sponse. Upon a system call, REPT will mark all volatile
registers as unknown based on the calling convention.
REPT currently does not handle memory writes by the
kernel, but instead treats those in the same way as miss-
ing memory writes and relies on the error correction
mechanism to detect and resolve conflicts. We acknowl-
edge that semantic-aware handling of system calls can
be done with more engineering effort to help improve
the data recovery, but we leave it to future work.

4.3 Deployment
We implement REPT in two components and deploy it
into the ecosystem of Microsoft Windows for program
tracing, failure reporting, and debugging.

First, we implement the online hardware tracing com-
ponent as a driver of 8.5K lines of C code. It is respon-
sible for controlling tracing of a target process and cap-
turing the trace in a memory dump when the monitored
process fails. We also modify the Windows kernel to
support per-thread tracing by swapping the trace buffers
upon context switch.

Second, we implement REPT’s offline binary analysis
and reverse debugging as a library of 100K lines of C++
code, and integrate it into WinDbg [45]. We also im-
plement common debugging functionalities such as code
and data breakpoints to facilitate the debugging process.

We enhance the Windows Error Reporting (WER) ser-
vice [30] to support REPT. Specifically, developers can
request Intel PT enriched memory dumps on WER. Then
WER selects user machines to trace the targeted pro-
gram. When a traced program causes a failure, a mem-
ory dump with Intel PT trace is captured and sent back to
WER. Finally, developers can load the enriched memory
dump in WinDbg to do reverse debugging.

5 Evaluation

In this section, we evaluate REPT to answer the follow-
ing four questions: (1) How accurately can REPT re-
cover data values? (2) How efficiently can REPT recover
data values? (3) How effectively can REPT be used to
debug failures? (4) What is the deployment status? Next,

24 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Program-BugId Bug Type MP SS
Apache-24483 NULL pointer deref [1] No Yes
Apache-39722 NULL pointer deref [2] No Yes
Apache-60324 Integer overflow [3] No Yes
Nasm-2004-1287 Stack buffer overrun [4] No No
PHP-2007-1001 Integer overflow [5] No Yes
PHP-2012-2386 Integer overflow [6] No No
PHP-74194 Type confusion [7] No No
PHP-76041 NULL pointer deref [8] No Yes
PuTTY-2016-2563 Stack buffer overrun [9] No No
Python-2007-4965 Integer overflow [10] No Yes
Python-28322 Type confusion [11] No No
Chrome-784183 Integer overflow [12] No No
Pbzip2 Use-after-free [29] Yes No
Python-31530 Race [13] Yes No
Chrome-776677 Race [14] Yes No
LibreOffice-88914 Deadlock [15] Yes No

Table 1: Software bugs used in our experiments. MP
means that the defect and failure threads are different. SS
means that the defect is on the same stack as the failure.

we present our experimental setup and describe our ex-
perimental results to answer these questions.

We evaluate REPT on failures caused by 16 real-world
bugs listed in Table 1. All of these bugs are from open-
source software. We focus on open-source software for
independent reproducibility. The main constraint that
limits us from evaluating REPT on more bugs is that we
need to reproduce bugs in open-source software on Mi-
crosoft Windows. When reproducing bugs, we try to pick
bugs that are from a diverse set of widely-used real-world
systems (e.g., Apache, Python, Chrome and PHP) and
from a wide spectrum of bug types (e.g., NULL pointer
dereference, race, type confusion, use-after-free, integer
overflow, and buffer overflow).

In our experiments, we configure Intel PT to use a
circular buffer of 256K bytes per thread and turn on
the most fine-grained timestamp logging (i.e., TSCEn=1,
CYCEn=1, CycThresh=0 and MTCFreq=0; see [36] for
more details).

5.1 Accuracy
To evaluate the accuracy of REPT’s data recovery, we
need to obtain the ground truth. We use Time Travel
Debugging (TTD) [44], a slow but precise record/replay
tool, to log both control and data flow of a program’s ex-
ecution. With the fully recorded execution, we create in-
puts to REPT and check the correctness of its output. To
evaluate the accuracy of REPT in handling multiple con-
current instruction sequences, we modify TTD to gener-
ate the timing information as an approximation to times-

Program-BugId # Insts Cor Unk Inc
Apache-24483 49 96.72% 1.64% 1.64%
Apache-39722 1,644 99.30% 0.70% 0.00%
Apache-60324 672 96.47% 1.83% 1.70%
Nasm-2004-1287 67,726 95.95% 3.70% 0.35%
PHP-2007-1001 54,475 99.08% 0.90% 0.02%
PHP-2012-2386 43,813 71.55% 25.40% 3.05%
PHP-74194 78,103 90.88% 7.82% 1.30%
PHP-76041 115 94.96% 3.60% 1.44%
PuTTY-2016-2563 677 99.55% 0.45% 0.00%
Python-2007-4965 1,043 95.04% 4.09% 0.87%
Python-28322 1,062 90.85% 8.60% 0.55%

Table 2: REPT’s accuracy on a single instruction se-
quence. Cor, Unk and Inc represent the percentage of
correct, unknown, and incorrect register uses.

tamps generated by Intel PT. Finally, we stress test REPT
on a highly concurrent program and report how well the
timestamps provided by Intel PT can order shared mem-
ory accesses under extreme cases.

5.1.1 Single-Thread Accuracy

In this experiment, we first use TTD to record the exe-
cution where each bug is triggered. Then, we replay the
recorded execution to construct an instruction sequence
without the timing information for the failure thread.
Next, we run REPT on the constructed instruction se-
quence and the final program state provided by the replay
engine. Finally, we compare the recovered data values
with the data values returned by the replay engine.

When we compare the data values, we only check reg-
ister uses (i.e., a register used as a source operand or
the address of a destination memory operand). We do
not check defs (i.e., a destination operand) because we
want to avoid double counting. For instance, given mov
rax,rcx, both rax and rcx will be correct or incor-
rect at the same time. When computing the data recovery
accuracy, we do not need to count both of them. We do
not check memory uses (i.e., a memory used as a source
operand) because memory values are usually read into
registers before they take on any operations. We analyze
the trace of the 16 bugs and find that the destination is
a register for 95% of memory reads. Therefore, we can
count the uses of these registers to measure the accuracy.

We present our accuracy measurements in Table 2.
Column 2 describes the number of instructions executed
from the program defect to the program failure. We iden-
tify the location of a program defect based on the bug fix.
For instance, Apache-24483 is a NULL pointer derefer-
ence bug, and its defect is where the NULL pointer check

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 25

PHP-2012-2386

PHP-74194

PHP-76041

PuTTY-2016-2563

Python-2007-4965

Python-28322

20

40

60

80

100

Correct Unknown Incorrect

Figure 4: REPT’s accuracy on different instruction se-
quence sizes. For each bug, we limit REPT to analyze
1M instructions, and depict the accuracy for 10K, 100K
and 1M instructions away from failure, from left to right.

is added in the bug fix. The rest of three columns show
the percentage of correct, unknown and incorrect regis-
ter uses recovered by REPT in the instruction sequence
from the defect to the failure.

We can see that REPT achieves a high accuracy. In
most cases, the percentage of correct register uses is
above 90% for tens of thousands of instructions; the per-
centage is still above 80% within 162,208 instructions for
the Python-31530 bug. PHP-2012-2386 is an outlier case
with the lowest accuracy. This particular bug involves a
large number of memory allocation operations right be-
fore the program failure. Unfortunately, memory alloca-
tion operations are hard to reverse because the metadata
information (i.e., chunk sizes) may be completely over-
written by reallocations, resulting in a large percentage
of unknowns. We could not obtain the ground truth for
Chrome-781483 because TTD does not support Chrome.

We also evaluate how the data recovery accuracy
changes as the trace grows. We use instruction sequence
sizes of 10K, 100K and 1M, and evaluate 6 bugs, because
others have short execution histories. The results are
summarized in Figure 4. Overall, the accuracy decreases
as the number of instructions increases, and the rate of
decrease depends on the program and the workload. It is
worth noting that the accuracy does not decrease mono-
tonically as the number of instructions increases. This
is expected because REPT’s accuracy depends on a pro-
gram’s behavior. For instance, PHP-2012-2386 has the
accuracy drop in the case of 100K instructions because
these instructions have a large number of memory allo-
cation operations which are hard to reverse.

5.1.2 Multiple-Thread Accuracy

To evaluate REPT’s analysis on multiple concurrent ex-
ecutions, we need to emulate the timing information
in addition to the control flow from TTD. Currently,
TTD supports record and replay of multithreaded pro-
grams running on multiple cores by logging timestamps
at each system call and synchronization operation (e.g.,
cmpxchg). We extend TTD to log timestamps periodi-
cally in a manner similar to Intel PT during recording.
When constructing an instruction sequence, we insert
TTD’s timestamps into the sequence accordingly. We
acknowledge that such an approach may not perfectly
reflect a multithreaded program’s actual behavior on a
bare metal machine.We conduct this experiment and re-
port the results as our best estimation of REPT’s accuracy
for multithreaded programs.

We evaluate REPT on two race condition bugs, Pbzip2
and Python-31530. We do not evaluate Chrome-776677
or LibreOffice-88914 because REPT does not work for
them (see Section 5.3). We measure the accuracy on
the instructions executed on all threads from the defect
to the failure. For Pbzip2, there are 12,496 instruc-
tions, and the correct/unknown/incorrect percentages are
95.33%, 4.36%, and 0.31%. For Python-31530, there
are 511,289 instructions, and the corresponding percent-
ages are 75.72%, 24.14%, and 0.14%. We attribute the
lower accuracy on Python-31530 to the large number of
instructions elapsed between the defect and the failure.

Finally, we evaluate how well REPT can use fine-
grained timestamps from Intel PT to order memory ac-
cesses. We use Racey [34], a stress-testing benchmark
that has extremely frequent data races—each thread races
with other threads to constantly read/write a shared array
for updating a signature. We run Racey with 8 threads for
1000 iterations and instrument it to save the addresses of
memory accesses to the shared array. To minimize the
instrumentation’s impact on timing, we store the mem-
ory addresses to a pre-allocated buffer. We measure the
fraction of memory accesses that have concurrent mem-
ory writes to the same location. We find that 5.5% of
accesses to the shared array have concurrent memory
writes. Given Racey is an extreme case of concurrent
programs, we believe that the granularity of timestamps
provided by Intel PT is sufficient for a majority of real-
world programs.

5.2 Efficiency
Efficiency of REPT has two prongs, the performance
overhead caused by Intel PT when a program is running,
and REPT’s offline analysis for data recovery. The for-

26 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Program-BugId # Iters REPT (s)
Apache-24483 4 5.8
Apache-39722 5 3.0
Apache-60324 2 5.5
Chrome-784183 6 8.2
Nasm-2004-1287 10 18.6
Pbzip2 7 8.2
PHP-2007-1001 5 2.0
PHP-2012-2386 6 3.8
PHP-74194 7 6.3
PHP-76041 6 14.5
PuTTY-2016-2563 5 5.2
Python-2007-4965 12 10.5
Python-28322 18 17.5
Python-31530 6 10.6

Table 3: The number of iterations and the time of REPT’s
offline analysis.

mer is low and has been well studied. For instance, Fig-
ure 8 in [39] shows that the performance overhead with
circular buffers and the timing information is below 2%
for a range of applications. Furthermore, the deployment
of REPT proves that its performance overhead is accept-
able in practice, particularly when it is selectively turned
on for a program on a user machine.

We test REPT’s offline analysis on a machine run-
ning an x86-64 Windows 10 on an Intel Core i7-7700K
4.2GHZ Quad-Core CPU with 16GB RAM. In Table 3,
we show the analysis time for the 14 bugs REPT can an-
alyze. We can see that REPT finishes its analysis within
20 seconds for all the 14 bugs.

5.3 Effectiveness
To evaluate the effectiveness of REPT, we check if re-
verse debugging based on recovered data can be used to
effectively diagnose a bug. To make this check objec-
tive, we say REPT is effective if the values of variables
that are involved in the bug fix are correctly recovered.
For all the 16 bugs listed in Table 1, REPT is effective
for 14 bugs. REPT does not work for Chrome-776677
because the collected trace contains in-place code update
for jitted code, which fails Intel PT trace parsing. REPT
does not work for LibreOffice-88914, because this is a
deadlock bug that triggers an infinite loop, which easily
fills up the circular trace buffer and causes the program
execution history before the loop to be lost. Out of those
14 bugs, we select three complicated ones to demonstrate
the effectiveness of REPT.

Pbzip2. This is a use-after-free bug caused by a race
condition. Pbzip2 is a parallel file (de)compressor based
on bzip2. Specifically, it divides an input file into chunks

of an equal size and spawns multiple child threads to
process them in parallel. The main thread synchronizes
with child threads using a mutex. Unfortunately, there
is a race condition bug where the main thread may free
the mutex before all child threads finish, causing the pro-
gram to crash when a child thread dereferences a pointer
field inside the freed mutex. With REPT, a developer can
set a data breakpoint on the pointer field, and locate the
instruction that overwrites the pointer field in the heap
free operation on the main thread by going backwards
along the execution.

Python-31530. This is a race condition bug in
Python’s implementation of its file objects. Python
preloads the file content as an optimization for its file
operations. To do so, Python allocates a buffer based on
the given size bufsize and assigns it to a pointer field
f buf in the file object. Then, it reads the file con-
tent into the buffer, and finally updates another pointer
field f bufend so that it points to the end of the buffer
(i.e., f bufend=f buf+bufsize). The race condi-
tion happens when two threads preload the file content si-
multaneously. Specifically, while a thread is reading file
content into the buffer, another thread starts preloading
and overwrites f buf with a smaller buffer. Then, the
original thread updates f bufend based on the over-
written f buf and the old bufsize, which makes
f bufend point to a location beyond the actually al-
located buffer. This causes Python to crash when it at-
tempts to read the data outside of the allocated buffer.
With REPT, a developer can set data breakpoints on both
f buf and f bufend. By going backwards along the
reconstructed execution, the developer can see how the
race condition bug overwrites f buf and leads to an in-
consistent f bufend.

Chrome-784183. This is an integer overflow bug in
a validation routine used for image snipping. The val-
idation routine checks if the snipped area is within the
original image. For example, given an image represented
as a matrix of pixels, one can snip the image by choos-
ing y rows from row x. The validation routine ensures
x+y is not greater than the height of the original image.
Unfortunately, the routine does not check if x+y over-
flows. Thus, the check is incorrectly passed when a large
y causes an integer overflow. This results in the subse-
quent crash when Chrome attempts to access a pixel in
the snipped area based on y. When the crash happens,
the validation function has already returned and more
than 500K instructions have been executed afterwards.
With REPT, a developer can go back to the validation
routine and single step through it to quickly pinpoint the
actual arithmetic operation that overflows.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 27

5.4 Deployment

We have received anecdotal stories from Microsoft de-
velopers in using REPT to successfully debug failures
reported to WER [30]. The very first production bug that
is successfully resolved with the help of REPT had been
left unfixed for almost two years because developers can-
not reproduce the crash locally. The failure occurs in
Microsoft Edge when an exception is thrown because a
function returns with an error. The bug is hard to fix be-
cause there are two possible reasons for the function to
fail and it is difficult to tell the actual reason by look-
ing at the memory dump. With the reverse debugging
enabled by REPT, the developer is able to step through
the function based on the reconstructed execution his-
tory and quickly find out the root cause and fix the bug.
In summary, a two-year-old bug was fixed in just a few
minutes thanks to REPT.

6 Discussion

In this section, we discuss the limitations of REPT and
how we plan to address them in future work.

When developers use REPT in practice, they currently
have to deal with two main limitations. First, the control
flow trace may not be long enough to capture the defect
(e.g., the free call is not in the trace for a use-after-free
bug). Second, data values that are necessary for debug-
ging the failure are not recovered (e.g., the heap address
passed to the free call is not recovered for a use-after-free
bug). We cannot simply use a large circular trace buffer
to solve this problem because the data recovery accuracy
decreases when the trace size increases.

REPT currently does not capture any data during a
program’s execution. To fundamentally solve these two
limitations, we will need to log more data than just the
memory dump. It is an open research question to iden-
tify a good trade-off between online data logging, run-
time overhead, and offline data recovery. A potential di-
rection is to leverage the new PTWRITE instruction [36]
to log data that is important for REPT’s data recovery.

The current implementation of REPT only supports
reverse debugging of user-mode executions. While
REPT’s core analysis is on machine instructions and thus
independent of the privilege mode, we need to properly
handle kernel-specific artifacts such as interrupts to sup-
port reverse debugging of kernel-mode executions.

In addition to reverse debugging, we believe one can
leverage the execution history recovered by REPT to per-
form automatic root cause analysis. The challenge is that
the data recovery of REPT is not perfect, so the research

question is how to perform automatic root cause analysis
based on the imperfect information provided by REPT.

Our evaluation of REPT has been focused on software
running on a single machine. When developers debug
distributed systems, they usually rely on event logging.
It is an interesting research direction to study how pro-
gram tracing can be combined with event logging to help
developers debug bugs in distributed systems. We have
not been able to apply REPT to mobile applications be-
cause there is no efficient hardware tracing like Intel PT
available on mobile devices.

7 Related Work

There is a large body of related work dedicated to debug-
ging failures. More recently, there have been increas-
ing interest in debugging failures in deployed systems.
In this section, we discuss some representative examples
and describe how REPT differs.

Automatic Root Cause Diagnosis Techniques. A
large body of automated root cause diagnosis techniques
rely on statistical techniques such as sampling and out-
lier detection to isolate the key reasons behind a fail-
ure and thus help debugging. Cooperative bug isola-
tion [19, 20, 37, 41], failure sketching [40], and lazy di-
agnosis [39] are state-of-the-art techniques. Unlike these
techniques, REPT does not target at a subset of poten-
tial bugs or rely on statistical methods to isolate failure
causes, but it rather focuses on reconstructing executions.
We perceive these techniques as orthogonal and comple-
mentary to REPT.

POMP [57] is an automatic root cause analysis tool
based on a control flow trace and a memory dump. It
handles missing memory writes by running hypothe-
sis tests recursively, which significantly limits its effi-
ciency, because the number of hypotheses grows expo-
nentially with the trace size. In contrast, REPT uses a
new error correction technique to do forward/backward
analysis iteratively, which makes its analysis grow lin-
early with the trace size. We compare their performance
on 3 of the 14 bugs (Nasm-2004-1287, PuTTY-2016-
2563, and Python-2007-4965) that are evaluated by both.
REPT is 1 to 3 orders of magnitude faster than POMP.
For instance, POMP takes 30 minutes to analyze the
PuTTY-2016-2563 bug, but REPT only takes 5.2 sec-
onds. POMP is evaluated only on how well it works for
root cause analysis. There is no instruction-level accu-
racy reported in the paper, so we cannot directly com-
pare its accuracy with REPT. Furthermore, POMP only
supports a single thread, but REPT handles concurrency.

ProRace [62] attempts to recover data values based

28 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

on the control flow logged by Intel PT and the register
values logged by Intel Processor Event Based Sampling
(PEBS) [36]. Unlike REPT, ProRace does not provide
solutions for the problems of missing memory writes and
concurrent memory writes.

PRES [51] and HOLMES [24] record execution infor-
mation (e.g., path profiles, function call traces, etc.) to
help debug failures. PRES performs state space explo-
ration using the recorded information to reproduce bugs.
HOLMES performs bug diagnosis purely based on con-
trol flow traces. REPT relies on the lightweight hard-
ware control flow tracing to reconstruct data flows from
a memory dump.

“Better Bug Reporting” [23] is a system that performs
symbolic execution on a full execution trace to generate
a new input that can lead to the same failure. Report-
ing the generated input instead of the original input can
provide better privacy. The main limitation is that it usu-
ally introduces high overhead to record a full execution
trace. Furthermore, by using a full trace, this bug report-
ing scheme does not need to handle memory aliasing, but
this is not the case for REPT.

Execution Synthesis (ESD) [60] does not assume there
is any execution trace. Given a coredump, it relies on
heuristics to explore possible paths to search for inputs
that may lead to the crash. As recognized in the ESD
paper, due to the limitations of symbolic executions for
solving complex constraints, ESD may not be able to
scale to large programs with long executions.

Delta debugging [61] iteratively isolates program in-
puts and the control flow of failing executions by repeat-
edly reproducing the failing and successful runs, and al-
tering variable values. REPT does not make the assump-
tion that failures can be reproduced and operates on a
single control flow trace and memory dump.

PSE [42] is a static analysis tool that performs back-
ward slicing and alias analysis on source code to identify
potential sources of a NULL pointer. PSE has false pos-
itives and is not evaluated on real-world crashes.

Record/Replay Techniques. As we discussed earlier,
certain techniques rely on full system record/replay [47–
49,56] to help debug failures. REPT does not rely on full
system record/replay, which is expensive for deployment
usage, but rather reconstructs executions by leveraging
lightweight control flow tracing.

Castor [43] is a recent record/replay system that relies
on commodity hardware support as well as instrumen-
tation to enable low-overhead recording. Castor works
efficiently for programs without data races. In our expe-
rience, many programs have data races in practice, which
actually make debugging very hard. REPT handles sys-

tems with data races.
Ochiai [16] and Tarantula [38] record failing and suc-

cessful executions and replay them to isolate root causes.
REPT does not rely on expensive record/replay tech-
niques nor does it assume bugs can be reproduced.

H3 [35] uses a control flow trace to reduce the con-
straint complexity for finding a schedule of shared data
accesses that can reproduce a failure. H3 does not re-
cover data values, and only applies constraint solving to
a small number of shared variables.

State-of-the-Art Techniques in Deployed Systems.
Despite extensive prior research, to our knowledge, there
are few examples of debugging techniques that are ac-
tively used in deployed systems. RETracer [27] is a bug
triaging tool that was deployed in Windows Error Re-
porting [30]. RETracer assigns “blame” to a function
for modifying a pointer that ultimately causes an access
violation. RETracer performs backward taint analysis
based on an approximate execution history recovered by
reverse execution. RETracer does not require a control
flow trace but can only recover limited data values.

8 Conclusion

We have presented REPT, a practical solution for re-
verse debugging of software failures in deployed sys-
tems. REPT can accurately and efficiently recover data
values based on a control flow trace and a memory dump
by performing forward and backward execution itera-
tively with error correction. We implement and deploy
REPT into the ecosystem of Microsoft Windows for pro-
gram tracing, failure reporting, and debugging. Our ex-
periments show that REPT can recover data values with
high accuracy in just seconds, and its reverse debugging
is effective for diagnosing 14 out of 16 bugs. Given
REPT, we hope one day developers will refuse to debug
failures without reverse debugging.

9 Acknowledgments

We thank our shepherd, Xi Wang, and other review-
ers for their insightful feedback. We are very grateful
for all the help from our colleagues on the Microsoft
Windows team. In particular, Alan Auerbach, Peter
Gilson, Khom Kaowthumrong, Graham McIntyre, Tim-
othy Misiak, Jordi Mola, Prashant Ratanchandani, and
Pedro Teixeira provided tremendous help and valuable
perspectives throughout the project. We also thank Bee-
man Strong from Intel for answering numerous questions
about Intel Processor Trace.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 29

References

[1] https://bz.apache.org/bugzilla/show bug.cgi?id=
24483.

[2] https://bz.apache.org/bugzilla/show bug.cgi?id=
39722.

[3] https://bz.apache.org/bugzilla/show bug.cgi?id=
60324.

[4] https://www.exploit-db.com/exploits/25005/.

[5] http://ifsec.blogspot.com/2007/04/php-521-
wbmp-file-handling-integer.html.

[6] https://www.exploit-db.com/exploits/17201/.

[7] https://bugs.php.net/bug.php?id=74194.

[8] https://bugs.php.net/bug.php?id=76041.

[9] https://github.com/tintinweb/pub/tree/master/pocs/
cve-2016-2563.

[10] https://bugs.python.org/issue1179.

[11] https://bugs.python.org/issue28322.

[12] https://bugs.chromium.org/p/chromium/issues/
detail?id=784183.

[13] https://bugs.python.org/issue31530.

[14] https://bugs.chromium.org/p/chromium/issues/
detail?id=776677.

[15] https://bugs.documentfoundation.org/show bug.
cgi?id=88914.

[16] R. Abreu, P. Zoeteweij, and A. J. C. v. Gemund.
An evaluation of similarity coefficients for software
fault localization. In Pacific Rim Intl. Symp. on De-
pendable Computing, 2006.

[17] Apple Inc. MacOSX CrashReporter.
https://developer.apple.com/library/content/
technotes/tn2004/tn2123.html, 2017.

[18] Arm Embedded Trace Macrocell (ETM), 2017.
http://infocenter.arm.com/help/index.jsp?topic=
/com.arm.doc.ihi0014q/index.html.

[19] J. Arulraj, P.-C. Chang, G. Jin, and S. Lu.
Production-run software failure diagnosis via hard-
ware performance counters. In Intl. Conf. on Archi-
tectural Support for Programming Languages and
Operating Systems, 2013.

[20] J. Arulraj, G. Jin, and S. Lu. Leveraging the short-
term memory of hardware to diagnose production-
run software failures. In Intl. Conf. on Architectural
Support for Programming Languages and Operat-
ing Systems, 2014.

[21] T. Ball, V. Levin, and S. K. Rajamani. A decade of
software model checking with SLAM. Commun.
ACM, 54(7), July 2011.

[22] C. Cadar, D. Dunbar, and D. Engler. Klee: Unas-
sisted and automatic generation of high-coverage
tests for complex systems programs. In USENIX
Conference on Operating Systems Design and Im-
plementation, 2008.

[23] M. Castro, M. Costa, and J.-P. Martin. Better bug
reporting with better privacy. In Intl. Conf. on Ar-
chitectural Support for Programming Languages
and Operating Systems, 2008.

[24] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and
K. Vaswani. HOLMES: Effective statistical debug-
ging via efficient path profiling. In Intl. Conf. on
Software Engineering, 2009.

[25] V. Chipounov and G. Candea. Enabling sophisti-
cated analyses of x86 binaries with revgen. In Pro-
ceedings of the 7th Workshop on Hot Topics in Sys-
tem Dependability, 2011.

[26] L. Ciortea, C. Zamfir, S. Bucur, V. Chipounov, and
G. Candea. Cloud9: A software testing service.
SIGOPS Oper. Syst. Rev., 2010.

[27] W. Cui, M. Peinado, S. K. Cha, Y. Fratantonio, and
V. P. Kemerlis. RETracer: Triaging crashes by re-
verse execution from partial memory dumps. In
International Conference on Software Engineering,
2016.

[28] J. Engblom. A review of reverse debugging. In
Proceedings of the 2012 System, Software, SoC and
Silicon Debug Conference, Vienna, Austria, 2012.

[29] J. Gilchrist. Parallel BZIP2. http://compression.ca/
pbzip2, 2017.

[30] K. Glerum, K. Kinshumann, S. Greenberg, G. Aul,
V. Orgovan, G. Nichols, D. Grant, G. Loihle, and
G. Hunt. Debugging in the (very) large: Ten years
of implementation and experience. In ACM Symp.
on Operating Systems Principles, 2009.

30 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://bz.apache.org/bugzilla/show_bug.cgi?id=24483
https://bz.apache.org/bugzilla/show_bug.cgi?id=24483
https://bz.apache.org/bugzilla/show_bug.cgi?id=39722
https://bz.apache.org/bugzilla/show_bug.cgi?id=39722
https://bz.apache.org/bugzilla/show_bug.cgi?id=60324
https://bz.apache.org/bugzilla/show_bug.cgi?id=60324
https://www.exploit-db.com/exploits/25005/
http://ifsec.blogspot.com/2007/04/php-521-wbmp-file-handling-integer.html
http://ifsec.blogspot.com/2007/04/php-521-wbmp-file-handling-integer.html
https://www.exploit-db.com/exploits/17201/
https://bugs.php.net/bug.php?id=74194
https://bugs.php.net/bug.php?id=76041
https://github.com/tintinweb/pub/tree/master/pocs/cve-2016-2563
https://github.com/tintinweb/pub/tree/master/pocs/cve-2016-2563
https://bugs.python.org/issue1179
https://bugs.python.org/issue28322
https://bugs.chromium.org/p/chromium/issues/detail?id=784183
https://bugs.chromium.org/p/chromium/issues/detail?id=784183
https://bugs.python.org/issue31530
https://bugs.chromium.org/p/chromium/issues/detail?id=776677
https://bugs.chromium.org/p/chromium/issues/detail?id=776677
https://bugs.documentfoundation.org/show_bug.cgi?id=88914
https://bugs.documentfoundation.org/show_bug.cgi?id=88914
https://developer.apple.com/library/content/technotes/tn2004/tn2123.html
https://developer.apple.com/library/content/technotes/tn2004/tn2123.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ihi0014q/index.html
http://compression.ca/pbzip2
http://compression.ca/pbzip2

[31] GNU Foundation. GDB and reverse debug-
ging. https://www.gnu.org/software/gdb/news/
reversible.html, 2018.

[32] P. Godefroid and N. Nagappan. Concurrency at Mi-
crosoft – An exploratory survey. In Intl. Conf. on
Computer Aided Verification, 2008.

[33] Google Inc. Chrome Error and Crash Report-
ing. https://support.google.com/chrome/answer/
96817?hl=enl, 2017.

[34] M. D. Hill and M. Xu. Racey: A stress test for
deterministic execution. http://www.cs.wisc.edu/
∼markhill/racey.html.

[35] S. Huang, B. Cai, and J. Huang. Towards
production-run heisenbugs reproduction on com-
mercial hardware. In Proceedings of the 2017
USENIX Annual Technical Conference, Santa
Clara, CA, 2017. USENIX Association.

[36] Intel Corporation. Intel 64 and IA-32 architectures
software developer’s manual, 2017.

[37] G. Jin, A. Thakur, B. Liblit, and S. Lu. Instrumenta-
tion and sampling strategies for cooperative concur-
rency bug isolation. In International Conference on
Object Oriented Programming Systems Languages
and Applications, 2010.

[38] J. A. Jones and M. J. Harrold. Empirical evaluation
of the tarantula automatic fault-localization tech-
nique. In IEEE/ACM International Conference on
Automated Software Engineering, 2005.

[39] B. Kasikci, W. Cui, X. Ge, and B. Niu. Lazy diag-
nosis of in-production concurrency bugs. In ACM
Symp. on Operating Systems Principles, Shanghai,
China, October 2017.

[40] B. Kasikci, B. Schubert, C. Pereira, G. Pokam, and
G. Candea. Failure sketching: A technique for au-
tomated root cause diagnosis of in-production fail-
ures. In ACM Symp. on Operating Systems Princi-
ples, 2015.

[41] B. R. Liblit. Cooperative Bug Isolation. PhD thesis,
University of California, Berkeley, Dec. 2004.

[42] R. Manevich, M. Sridharan, S. Adams, M. Das,
and Z. Yang. PSE: Explaining program failures
via postmortem static analysis. In Proceedings of
the 12th ACM International Symposium on Foun-
dations of Software Engineering, 2004.

[43] A. Mashtizadeh, T. Garfinkel, D. Terei,
D. Mazier̀es, and M. Rosenblum. Towards
practical default-on multi-core record/replay. In
Intl. Conf. on Architectural Support for Pro-
gramming Languages and Operating Systems,
2017.

[44] Microsoft Corporation. Time travel debug-
ging. https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/time-travel-debugging-
overview.

[45] Microsoft Corporation. Windows Debugger.
https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/.

[46] P. Montesinos, L. Ceze, and J. Torrellas. Delorean:
Recording and deterministically replaying shared-
memory multiprocessor execution efficiently. In
Intl. Symp. on Computer Architecture, 2008.

[47] P. Montesinos, M. Hicks, S. T. King, and J. Torrel-
las. Capo: A software-hardware interface for prac-
tical deterministic multiprocessor replay. In Intl.
Conf. on Architectural Support for Programming
Languages and Operating Systems, 2009.

[48] Mozilla Corporation. Mozilla rr. http://rr-project.
org/, 2017.

[49] S. Narayanasamy, G. Pokam, and B. Calder.
Bugnet: Continuously recording program execu-
tion for deterministic replay debugging. In Intl.
Symp. on Computer Architecture, 2005.

[50] M. Olszewski, J. Ansel, and S. Amarasinghe.
Kendo: efficient deterministic multithreading in
software. SIGPLAN Not., 2009.

[51] S. Park, W. Xiong, Z. Yin, R. Kaushik, K. H. Lee,
S. Lu, and Y. Zhou. PRES: Probabilistic replay with
execution sketching on multiprocessors. In ACM
Symp. on Operating Systems Principles, 2009.

[52] G. Pokam, C. Pereira, S. Hu, A.-R. Adl-Tabatabai,
J. Gottschlich, J. Ha, and Y. Wu. Coreracer: A
practical memory race recorder for multicore x86
tso processors. In IEEE/ACM International Sym-
posium on Microarchitecture, 2011.

[53] C. Rossi. Rapid release at massive scale. https:
//code.facebook.com/posts/270314900139291/
rapid-release-at-massive-scale/, 2015.

[54] Ubuntu. Ubuntu error. https://wiki.ubuntu.com/
ErrorTracker, 2017.

USENIX Association 13th USENIX Symposium on Operating Systems Design and Implementation 31

https://www.gnu.org/software/gdb/news/reversible.html
https://www.gnu.org/software/gdb/news/reversible.html
https://support.google.com/chrome/answer/96817?hl=enl
https://support.google.com/chrome/answer/96817?hl=enl
http://www.cs.wisc.edu/~markhill/racey.html
http://www.cs.wisc.edu/~markhill/racey.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-overview
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-overview
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/time-travel-debugging-overview
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/
http://rr-project.org/
http://rr-project.org/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://code.facebook.com/posts/270314900139291/rapid-release-at-massive-scale/
https://wiki.ubuntu.com/ErrorTracker
https://wiki.ubuntu.com/ErrorTracker

[55] Undo. UndoDB: The interactive reverse debugger
for C/C++ on Linux and Android. https://undo.io/,
2018.

[56] K. Veeraraghavan, D. Lee, B. Wester, J. Ouyang,
P. M. Chen, J. Flinn, and S. Narayanasamy. Dou-
bleplay: Parallelizing sequential logging and re-
play. In Intl. Conf. on Architectural Support for
Programming Languages and Operating Systems,
2011.

[57] J. Xu, D. Mu, X. Xing, P. Liu, P. Chen, and
B. Mao. Postmortem program analysis with
hardware-enhanced post-crash artifacts. In Pro-
ceedings of the 26th USENIX Security Symposium,
Vancouver, BC, 2017. USENIX Association.

[58] J. Yang, T. Chen, M. Wu, Z. Xu, X. Liu, H. Lin,
M. Yang, F. Long, L. Zhang, and L. Zhou. Modist:
Transparent model checking of unmodified dis-
tributed systems. In Proceedings of the 6th USENIX
Symposium on Networked Systems Design and Im-
plementation, 2009.

[59] Z. Yin, D. Yuan, Y. Zhou, S. Pasupathy, and
L. Bairavasundaram. How do fixes become bugs?
In ACM SIGSOFT European Conference on Foun-
dations of Software Engineering, 2011.

[60] C. Zamfir and G. Candea. Execution synthesis: A
technique for automated debugging. In ACM Euro-
pean Conf. on Computer Systems, 2010.

[61] A. Zeller and R. Hildebrandt. Simplifying and iso-
lating failure-inducing input. IEEE Transactions on
Software Engineering, 2002.

[62] T. Zhang, C. Jung, and D. Lee. ProRace: Practi-
cal data race detection for production use. In Pro-
ceedings of the 22nd International Conference on
Architectural Support for Programming Languages
and Operating Systems, 2017.

32 13th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://undo.io/

	Introduction
	Overview
	Problem Statement
	Design Choices
	Challenges
	Irreversible Instructions
	Missing Memory Writes
	Concurrent Memory Writes

	Design
	Instruction Reversal
	Irreversible Instruction Handling
	Recovering Memory Writes
	Data Inference Graph
	Error Correction

	Handling Concurrency

	Implementation
	Online Hardware Tracing
	Offline Binary Analysis
	Deployment

	Evaluation
	Accuracy
	Single-Thread Accuracy
	Multiple-Thread Accuracy

	Efficiency
	Effectiveness
	Deployment

	Discussion
	Related Work
	Conclusion
	Acknowledgments

