
Modular Verification of Distributed Systems with Grove

by

Upamanyu Sharma

B.S., University of Michigan (2019)

Submitted to the Department of Electrical Engineering and Computer Science
in partial fulfillment of the requirements for the degree of

Master of Science

at the

MASSACHUSETTS INSTITUTE OF TECHNOLOGY

September 2022

© Massachusetts Institute of Technology 2022. All rights reserved.

Author .
Department of Electrical Engineering and Computer Science

August 26, 2022

Certified by. .
M. Frans Kaashoek

Charles Piper Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Certified by. .
Nickolai Zeldovich

Professor of Electrical Engineering and Computer Science
Thesis Supervisor

Certified by. .
Ralf Jung

Post-doctoral Researcher, Computer Science and Artifical Intelligence Lab
Thesis Reader

Certified by. .
Joseph Tassarotti

Assistant Professor, New York University
Thesis Reader

Accepted by .
Leslie A. Kolodziejski

Professor of Electrical Engineering and Computer Science
Chair, Department Committee on Graduate Students

2

Modular Verification of Distributed Systems with Grove
by

Upamanyu Sharma

Submitted to the Department of Electrical Engineering and Computer Science
on August 26, 2022, in partial fulfillment of the

requirements for the degree of
Master of Science

Abstract

Grove is a new framework for machine-checked verification of distributed systems.
Grove focuses on modular verification. It enables developers to state and prove spec-
ifications for their components (e.g. an RPC library), and to use those specifications
when proving the correctness of components that build on it (e.g. a key value service
built on RPC).

To enable modular specification and verification in a distributed systems, Grove
uses the idea of ownership from separation logic. Using Grove, we built a verified
unreliable RPC library, where we captured unreliability in the formal specification by
using duplicable ownership. We also built a verified exactly-once RPC library, where
we reasoned about ownership transfer from the client to server (and back) over an
unreliable network by using the escrow pattern.

Overall, we developed and verified an example system written in Go consisting of
the RPC libraries, a sharded key-value store with support for dynamically adding new
servers and rebalancing shards, a lock service, and a bank application that supports
atomic transfers across accounts that live in different shards, built on top of these
services. The key-value service scales well with the number of servers and the number
of cores per server. The proofs are mechanized in the Coq proof assistant using the
Iris [12] library and Goose [5].

Thesis Supervisor: M. Frans Kaashoek
Title: Charles Piper Professor of Electrical Engineering and Computer Science

Thesis Supervisor: Nickolai Zeldovich
Title: Professor of Electrical Engineering and Computer Science

Thesis Reader : Ralf Jung
Title: Post-doctoral Researcher, Computer Science and Artifical Intelligence Lab

Thesis Reader : Joseph Tassarotti
Title: Assistant Professor, New York University

3

4

Acknowledgments

This thesis was made possible through the guidance of several people, to whom I am

grateful.

First, I want to thank my advisors Nickolai and Frans for their continued guidance,

specifically in this project, as well in as many unrelated discussions about systems,

verification, security, etc. Next, the work in this thesis was only completed because of

Ralf and Joe’s help in initially learning Iris, in formulating plans of attack for proofs,

and in writing actual proofs. Most importantly, all four of these people helped guide

major project decisions (such as “what to build and verify”) and offered a great deal of

help and direct feedback for the writing of this thesis. I want to thank the PDOS group

for useful feedback and discussion about this work, which sharpened the presentation

of our ideas. Especially, I want to thank Tej Chajed, who helped me learn Iris, and

whose Perennial work is the basis for this thesis.

5

6

Contents

1 Introduction 13

2 Verification Goal 19

3 The Grove Verification Framework 23

3.1 Overview . 23

3.2 Execution model . 24

3.3 Distributed Hoare triples . 25

3.4 Reasoning about the network . 26

3.5 Distributed Composition . 28

4 Verifying uRPC 31

4.1 Formal specification of uRPC . 32

4.2 Proving uRPC’s specification . 34

5 Exactly-once RPCs and Escrows 37

5.1 The escrow pattern . 37

5.2 Verifying exactly-once RPCs . 39

5.3 Escrow in uRPC . 42

6 Verifying distributed systems with Grove 43

6.1 GroveKV specification . 43

6.1.1 Linearizability and logical atomicity 44

6.2 Verifying Put, Get, etc. 46

7

6.3 Verifying shard migration . 47

6.4 Verifying the lock service . 48

6.5 Verifying the bank . 48

7 Implementation 51

8 Performance evaluation 53

8.1 Single shard server performance . 53

8.2 Speedup from node-local concurrency 54

8.3 Speedup from dynamically adding servers 56

9 Related work 59

10 Conclusion 63

8

List of Figures

2-1 Layers of the example implementation. The network layer is trusted;

all layers above the network are verified using Grove. Not shown are

clerks for the coordinator and shard services, which are part of KVClerk. 20

2-2 Go pseudo-code for a simplified Get client implementation. 21

2-3 Go pseudo-code for GetTwo, a simplified version of MGet that fetches

two keys in parallel. 21

3-1 Overview of Grove’s verification approach. 23

3-2 Network state representing a connection between two endpoints. The

state consists of two channels, one for each direction of communication.

An endpoint refers to two channels in the network state: one incoming

and one outgoing. 27

3-3 The Hoare triples for Send and Receive. Here, conn is a network con-

nection that refers to two channels: conn.in for incoming messages and

conn.out for outgoing messages. 𝑀 represents the set of messages in a

particular channel. 27

4-1 The problem with sending (exclusive) resources to the server for an

RPC. Client first tries to send 𝑃 along with its request message in

order to run some {𝑃} f {𝑄} on the server. The client may resend the

request. On the second request, the client no longer has the resources

𝑃 to send and is stuck. 33

9

4-2 First, the client duplicates 𝑃 into 𝑃 *𝑃 , and the server the extra copy

of 𝑃 to safely run the RPC handler. If the client wants to retry (or the

request is duplicated), there is always 𝑃 sitting around from which a

new copy can be created. 33

5-1 To send 𝑘 ↦→kv 𝑣 for a Put, the client puts it in an escrow invariant,

and sends knowledge of the invariant to the server. 38

5-2 Simplified fragment of a key-value service built on top of uRPC. . . . 40

6-1 Specification for the KV service. Here, kvck is a KVClerk to the key-

value service, . 44

6-2 Top-level Put operation using ShardClerk 47

6-3 Bank built using GroveKV . 49

7-1 Lines of code and proof for Go components. 51

8-1 Latency/throughput comparison of GroveKV on a single core vs Redis,

as we increase the client load. 54

8-2 The horizontal axis shows the number of cores given to a single GroveKV

shard server, and the vertical axis shows the peak throughput achieved

at that configuration. The dashed line shows the hypothetical linear

scaling with more cores by extrapolating the performance with a single

core. 55

8-3 Throughput over time, servers added approximately every 30 seconds. 56

10

List of Tables

11

12

Chapter 1

Introduction

Building distributed applications is difficult because many clients interact concur-

rently with many servers over an unreliable network. This leads to a large number of

possible application behaviors that all have to be considered. Formal verification pro-

vides techniques to systematically reason about all possible behaviors, and there has

been significant interest in applying formal methods to make distributed applications

more robust [1, 8, 10, 17, 20, 22, 25, 29, 32].

This master’s thesis presents Grove, a new framework for verifying distributed

systems. Grove focuses on modular verification of distributed systems, which means

being able to prove specifications about individual components and then using those

specifications to verify systems built on top, whether they be other services or appli-

cations. As an example, Grove can be used to specify and verify a key-value server,

which in turn can be used in a black-box fashion to verify other services, such as a

sharded key-value service or a lock service. These services can then be used by an

application developer to verify a distributed application such as a bank with atomic

transfers across accounts. This mirrors how distributed systems are built in prac-

tice, and avoids the need for the developers of one component to reason about the

internals of other components that they are building on, which may be designed and

implemented by other developers.

Stating precise specifications of distributed system components and using them

to verify the rest of the system is challenging for several reasons:

13

Coordination. Reasoning about correctness of distributed systems often requires

reasoning about coordination of operations across threads running on many machines.

For instance, an application built on top of a key-value store might use a distributed

lock service to coordinate access to the shared key-value pairs. When one thread

acquires a lock, it can safely access the key-value pairs protected by that lock, by

assuming that no other thread—either on the same machine or on other machines—

will do so concurrently. To formalize such reasoning, Grove adopts the notion of

ownership from separation logic [28]. Threads can own logical objects, such as a

key-value pair, which gives them the right to access it. By ensuring that only one

thread can own an object at a time, ownership can provide exclusive access to objects.

Moreover, transfer of ownership between threads running on many machines, such as

moving around ownership of a key-value pair when a lock is acquired or released,

allows reasoning about dynamic coordination in a distributed system. Grove reasons

about ownership using the Iris separation logic framework [12].

Packet loss. Network messages can be lost and retransmitted, leading to com-

plex behaviors, such as a request being executed multiple times. For example, a

key-value service might use an unreliable RPC library to ask a shard-coordinator

which server is responsible for storing a particular key. If the request is lost, it will be

retransmitted until a reply arrives. Explicitly exposing the network-level packet loss

and retransmission to the client requires the application developer to reason about a

large number of possible scenarios. Grove provides a concise specification for unreli-

able RPCs that captures the notion of an operation that might be executed multiple

times using the idea of duplicable ownership. For example, an RPC that looks up

the shards-to-server mapping on the coordinator server does not does not require any

exclusive ownership: it is acceptable for multiple lookups and shard mapping updates

to execute concurrently, since the lookup result is only a hint to the client. Grove

captures this pattern by representing the shard mapping using such a duplicable kind

of ownership, allowing clients to concurrently query it.

Verifying Exactly-Once RPCs. Applications often benefit from stronger se-

mantics than unreliable RPCs, such as exactly-once RPCs, which is typically achieved

14

using sequence numbers and a table for tracking duplicates. However, reasoning about

ownership transfer for exactly-once RPCs built on top of an unreliable network is chal-

lenging: it is not clear which exact network message will convey ownership from one

machine to another. For example, when a client receives a response to a request for

acquiring a lock, it should receive ownership of the key-value pair protected by that

lock. However, if the client does not get a response to its first request, it must send

another one. At this point, a naïve verification plan might be stuck, because the

server no longer has ownership of the key-value pair to send back to the client—it

sent it with the first (lost) response.

Grove addresses this problem using the idea of escrows [31], where ownership

transfer logically occurs later, when a network message has been successfully delivered

and processed.

Verifying Clerks. To simplify the life of application developers, distributed

services often provide client libraries that conveniently expose network operations as

simple function calls. It is also common for these client libraries (or clerks) to contain

some non-trivial parts of the logic implementing a distributed service. For example,

the Get clerk for a sharded key-value service first issues a lookup RPC to the coordina-

tor to find the server responsible for a given key, then issues a Get RPC to that server,

potentially retrying if the shard has been migrated in the meantime. Grove allows the

developers of the key-value service to prove specifications for such client-side clerks,

freeing the application developer from having to reason about individual RPCs, retry

logic, etc. This can be challenging because clerks face many kinds of concurrency:

multiple threads running on the same client machine, concurrent operations in the

network, and requests running concurrently on servers. This leads to a large number

of interleavings for the multiple requests issued by clerks, such as shard migration

between a coordinator lookup and the Get RPC.

Grove extends the Iris concurrent separation logic [11, 12] to formalize distributed

systems, which enables Grove to reason about concurrency within the clerk while still

providing a concise specification for the clerk to the client. Using separation logic also

enables multiple verified components to be composed to achieve a complete proof of

15

correctness.

Grove uses Goose [5] and Perennial [4] (a Go verification framework based on Iris)

to allow developers to write their code in Go. Using Grove, we built and verified

unreliable RPC library as well as an exactly-once RPC library, with precise specifi-

cations and proofs of their correctness on top of an unreliable network. To further

demonstrate that Grove’s ideas work well, we developed example applications that

capture core aspects of distributed systems: GroveKV is a distributed sharded key-

value service with support for dynamically adding new servers and rebalancing the

shards appropriately. On top of GroveKV, we built a lock service and a simple bank

application that uses the lock and key value services to implement atomic transfers.

Using Grove, we are able to prove the correctness of the example applications.

Our evaluation also shows that the implementation achieves reasonable performance:

it is able to sustain a throughput of 80k req/s on a single core in comparison to 125k

reqs/s for the Redis key-value store [27].

To summarize, the main contributions of this thesis are:

• An extension of the Perennial [4] concurrent separation logic (CSL) framework

to reason about Go code across multiple machines that communicate over an

unreliable network (chapter 3).

• A specification and proof for an unreliable RPC library, using duplicable own-

ership to capture unreliability (chapter 4).

• A verified exactly-once RPC library, which makes use of the escrows proof tech-

nique to reason about ownership transfer over an unreliable network (chapter 5).

• A verified example distributed system (a key value service) and application

(bank) as a case study of verifying systems with Grove (chapter 6), along with

a performance evaluation of the verified key-value service (chapter 8).

The most closely related work is Aneris [8, 17]. They also use concurrent separation

logic for verifying distributed systems. Unlike Aneris, this thesis focuses on verifying

RPCs and on applying this verification approach to a realistic, runnable system.

16

One limitation of Grove is that it does not deal with crash recovery or liveness

reasoning. We believe that Grove can be extended to handle crash recovery in future

work, but we have not yet done so. The applications we have developed so far are also

quite simple. However, we believe they are realistic in terms of showing that one can

verify applications with Grove that perform well and that involve core challenges that

often show up in distributed systems, such as dynamic reconfiguration, retransmission,

and concurrent requests.

Our Go code can be found at https://github.com/mit-pdos/gokv (the memkv

package contains our key-value service, and bank has our bank example).

Our proofs can be found in the Perennial repository at https://github.com/

mit-pdos/perennial/tree/master/src/program_proof/grove_shared (for the RPC

libraries) and at https://github.com/mit-pdos/perennial/tree/master/src/program_

proof/memkv (for GroveKV and the bank).

17

https://github.com/mit-pdos/gokv
https://github.com/mit-pdos/perennial/tree/master/src/program_proof/grove_shared
https://github.com/mit-pdos/perennial/tree/master/src/program_proof/grove_shared
https://github.com/mit-pdos/perennial/tree/master/src/program_proof/memkv
https://github.com/mit-pdos/perennial/tree/master/src/program_proof/memkv

18

Chapter 2

Verification Goal

This section presents the example system as summarized in Figure 2-1. This system

consists of multiple layers, from an unreliable RPC library to key-value and lock

services, and ultimately a top-level application (a bank). Our goal is to verify all of

the components by giving them precise specifications, and by using these specifications

to verify code at higher layers. To enable verification while also achieving reasonable

performance, all of the code in our example system is implemented in the subset of

Go that Goose [5] supports.

Network. Our example system is built on top of Grove’s network API, which pro-

vides a typical socket-like API, with procedures for Send, Receive, etc. The imple-

mentation of the network API is trusted (as indicated by the shading), which is not

a strong assumption since Grove models the network as asynchronous, allowing for

arbitrary reordering, duplicating, and dropping of network messages.

uRPC. On top of the networking API we implement a library for unreliable remote

procedure calls, uRPC. It allows a server to provide operations remotely over the

network and allows clients to invoke these operations like local calls. However, unlike

local calls, a single RPC invocation can cause the server to execute an operation

multiple (or zero) times.

19

Unreliable network model

Unreliable RPC library

Exactly-once RPC library

KV ShardKV Coordinator

KV clerk

Lock clerk

Bank clerk

Figure 2-1: Layers of the example implementation. The network layer is trusted;
all layers above the network are verified using Grove. Not shown are clerks for the
coordinator and shard services, which are part of KVClerk.

Exactly-once RPCs. On top of uRPC, we implement eRPC, an exactly-once RPC

library. To realize RPCs that execute exactly once, we use a typical reply-table

protocol. Each client is given a unique client ID. The client combines its ID with

increasing sequence numbers to associate each logical operation with a unique request

ID. The server maintains a table of the latest request ID it has seen from each client.

If a new request arrives, the server executes it and updates the table, noting the

response for this request. If the server sees that request again, it replays the same

response back to the client. For memory efficiency, this scheme only supports one

outstanding request per client ID.

GroveKV. GroveKV consists of a single coordinator server, a variable number of

shard servers, and a client library for interacting with the servers. Shards are sets

of keys that can be migrated between servers; new servers can be added while the

service is running.

The client library provides clerk objects, which maintain a bit of client-side state

and implement procedures Put, Get, MGet, and ConditionalPut. Under the hood,

20

1 type KVClerk struct {
2 coordCk *CoordinatorClerk
3 shardMap []*ShardClerk
4 }
5

6 func (ck *KVClerk) Get(key uint64) []byte {
7 sid := shardOf(key)
8 for {
9 shardServer := ck.shardMap[sid]

10 v, err := shardServer.Get(key)
11 if err == EDontHaveShard {
12 ck.shardMap = ck.coordCk.GetShardMap()
13 } else {
14 return v
15 }
16 }
17 }

Figure 2-2: Go pseudo-code for a simplified Get client implementation.

1 func (ck *KVClerk) GetTwo(k1, k2) (v1, v2) {
2 done := make(chan bool)
3 go func() { v1 = ck.Get(k1); done <- true }()
4 go func() { v2 = ck.Get(k2); done <- true }()
5 _ = <-done
6 _ = <-done
7 }

Figure 2-3: Go pseudo-code for GetTwo, a simplified version of MGet that fetches two
keys in parallel.

the client library uses the coordinator to determine which shard server the data

is stored on (caching this mapping to avoid communicating with the coordinator

unnecessarily), and uses exactly-once RPCs to ensure that each operation (such as

Put) is executed exactly once. The GroveKV clerk accesses the coordinator server

and shard servers through their own respective clerks. For example, the code for the

Get operation in the GroveKV clerk, which invokes the CoordinatorClerk and the

ShardClerk, is shown in Figure 2-2.

A clerk can also issue concurrent operations. For example, Figure 2-3 shows

the clerk code for GetTwo, a simplified version of GroveKV’s MGet which fetches any

number of keys in parallel. The clerk will automatically obtain new client IDs to be

21

able to perform as many requests concurrently as the application requires.

Lock service. On top of the key-value service, we implemented a simple lock service

with Lock(k) and Unlock(k) functions, for acquiring and releasing a lock named by

key k. This lock service is a purely client-side abstraction—the backend system is

the exact same as for the key-value interface. The lock service is a bit simplistic (it

does not implement blocking acquire, and instead repeatedly tries to acquire the lock

using ConditionalPut), which could be fixed by extending the GroveKV API.

Bank. To further evaluate the usability of client specifications in Grove, we imple-

mented a simple bank application using the lock service and GroveKV. The bank has

a Transfer procedure for atomically transferring between two accounts, which maybe

stored at different shard servers. The bank uses GroveKV to store account balances

and the lock service to synchronize access to accounts for Transfer. The bank also

has an Audit procedure which checks that the total amount in the bank is unchanged.

The goal is to verify that the Audit check never fails, providing an end-to-end proof

that the specs of the components of the example system are meaningful.

22

Chapter 3

The Grove Verification Framework

This section describes the Grove framework that we built using Iris [12] to verify the

code described in §2.

3.1 Overview

Figure 3-1 gives an overview of Grove’s verification approach. The top of the di-

agram shows the shared state that Grove supports: a shared network and several

memory heaps, one for each machine (shared among the threads of that machine).

A Grove execution proceeds as a sequence of steps, whereby some thread from some

machine executes an atomic instruction (accessing its heap or the shared network).

An execution can arbitrarily interleave threads both within and across machines. Ver-

ifying a distributed system with Grove captures all possible behaviors of that system

net H1 H2 H3 ... Hn
shared
state (§3.2)

composition
(§3.5)

single machine
proof/specs
(§3.3,§3.4)

net H

main

net H

main

Figure 3-1: Overview of Grove’s verification approach.

23

according to this execution model. We discuss this model in more depth in §3.2.

Formal reasoning in Grove requires using Hoare logic to establish specs for the

main procedures running on each machine of the system. This means proving pre/-

postcondition specifications of the form {𝑃} 𝑒 {𝑄} (“Hoare triples”) for procedures

𝑒. Grove provides the developer with Hoare triples for primitive operations, such as

accessing shared memory in the heap (see §3.3), and sending and receiving messages

on the network (see §3.4). The developer uses those specifications to build proofs of

specifications for larger and larger procedures, using standard Hoare logic composition

rules. Finally, the developer proves a single Hoare triple for the entire code running

on a particular machine, which we call main𝑗. (There is a single main procedure per

machine, but that procedure can dynamically spawn threads to achieve machine-local

concurrency.)

The Hoare triples for procedures running on a single machine are parametrized by

a heap ID, so they can be instantiated to reason about the same procedure running

on different machines. This parametrization allows the developer to use Grove’s

composition theorem to put together the correctness theorems for multiple machines

into a single theorem about the distributed execution of all of them (see §3.5). This

composition theorem connects the Hoare logic statement about each machine’s main𝑗

with the heap of the 𝑗th machine.

3.2 Execution model

To reason about distributed systems, we need to start with an accurate model of how

these systems behave. The systems we are interested in consist of shared-memory

concurrent procedures communicating over an asynchronous network, i.e., packets

can be arbitrarily dropped, reordered, or duplicated.

As is common, Grove models distributed systems as state machines. The state

of a distributed system consists of the shared state shown in Figure 3-1 (a global

network and per-machine heaps), as well as the local state of each thread (the stack

and program counter, so to speak—though we represent them more abstractly via

24

the remaining code that each thread will execute). Each thread is associated with

one particular heap in the system (i.e. one thread cannot directly access the heaps of

two different machines, as one would expect).

A step of the system non-deterministically picks any thread and executes a single

instruction of that thread. This might update the thread-local state, update the heap

associated with the thread (e.g. storeing to memory), and/or update the state of the

network (e.g. Sending a packet). Interleaving these steps across all threads across the

entire system captures all the possible concurrency both within and across machines.

3.3 Distributed Hoare triples

When reasoning about the heap, non-distributed separation logics like Iris enjoy rules

such as

{𝑝 ↦→ 𝑣} *p {ret 𝑣, 𝑝 ↦→ 𝑣}

for reading memory. The ret clause says that the expression *p will evaluate to value

𝑣 under the given precondition. That postcondition uses the heap points-to assertion

𝑝 ↦→ 𝑣, which says that pointer 𝑝 currently points to a value 𝑣. It further expresses

ownership of said pointer, meaning that no other thread is currently able to access

that location in memory.

In a distributed system, talking about “the” heap is ambiguous. Every machine

has its own separate heap that only it can read or write to. A heap points-to 𝑝 ↦→ 𝑣

in a distributed setting needs to clarify on which heap the pointer 𝑝 lives.

To resolve this ambiguity in Grove, all heap points-to resources and Hoare triples

are indexed by a heap ID. For instance, the Grove rule for reading from the heap is

{𝑝 ↦→ℎ 𝑣} *p {ret 𝑣, 𝑝 ↦→ℎ 𝑣}ℎ

where the subscript ℎ is a heap ID. Triples with subscript ℎ are triples that are true

only for code running against heap ℎ. A heap points-to 𝑝 ↦→ℎ 𝑣 is only usable by

code running on heap ℎ. For a fixed heap, Grove inherits Hoare logic rules from Iris’s

25

ability to reason about non-distributed concurrent procedures.

However, most of the time, the developer just wants to refer to “the heap of the

current machine”. Thus, Grove proofs and specifications typically leave the heap

ID implicit. We write {𝑃} 𝑒 {𝑄} to mean ∀ℎ, {𝑃ℎ} 𝑒 {𝑄ℎ}ℎ. In other words, when

proving a triple, a developer proves that it holds no matter what specific heap ID

happens to be associated to the thread. This leads to the structure outlined in

Figure 3-1, where each triple is parameterized by the heap it refers to.

An additional benefit of parameterizing triples by a heap ID this way is that

Grove can re-use the Perennial [4, 6] framework libraries for reasoning about Go

code with Goose [5]. Perennial already parameterized triples by a heap generation

number, in order to reason about crashes and recovery. This approach lets us share

proofs between single-machine Perennial and multi-machine Grove, greatly reducing

the maintenance burden.

Although Grove’s Hoare triples specify the execution of a procedure on a single

machine, that procedure’s execution can interact with other machines through the

network. The Hoare-logic proof for a procedure can reason about the messages sent

and received from other machines using Grove’s network reasoning principles, which

we describe next.

3.4 Reasoning about the network

Grove provides a simple network interface that allows sending and receiving messages,

along the lines of UDP (but without limits on message sizes). Messages are always

sent on a bi-directional connection between two endpoints. Grove models this network

interface using the notion of channels between endpoints. To capture asynchrony, a

channel represents a set of messages that have been sent; sending a message is modeled

by adding the message to the channel, and receiving a message picks any message

non-deterministically from the channel (or no message at all). In this model, an

endpoint consists of two references to channels: one for incoming messages and one

for outgoing messages. Figure 3-2 shows an example with one connection between

26

out
in

out
in

endpoint endpoint

network state

Figure 3-2: Network state representing a connection between two endpoints. The
state consists of two channels, one for each direction of communication. An endpoint
refers to two channels in the network state: one incoming and one outgoing.

{conn.out ↦→chan 𝑀}
conn.Send(msg)

{conn.out ↦→chan 𝑀 ∪ {msg}}

{conn.in ↦→chan 𝑀}
conn.Recv(msg)

{∃𝑚 ∈ 𝑀, ret 𝑚, conn.in ↦→chan 𝑀}

Figure 3-3: The Hoare triples for Send and Receive. Here, conn is a network connection
that refers to two channels: conn.in for incoming messages and conn.out for outgoing
messages. 𝑀 represents the set of messages in a particular channel.

two endpoints and their two associated channels. When many clients connect to the

same server, they will all have individual channels for the server-to-client direction,

but a single channel will collect all messages sent to that server from anyone.

To let developers reason about the network, Grove provides Hoare logic specifi-

cations for the network API. Figure 3-3 shows the specifications for the Send and

Receive operations. The specifications are written in terms of the channel points-to

assertion. This is similar to a heap points-to assertion, but talks about the contents of

a channel in the network model. The channel points-to assertion conn.out ↦→chan 𝑀

represents exclusive knowledge that the only messages that have been sent on the

conn.out channel are precisely those in the set 𝑀 .

The spec for Send says that in order to send a packet, a thread must own the

27

channel points-to for the outgoing channel. The spec for Receive says that any

previously sent packet can be received. Not shown is the case where Receive can time

out and return nothing.

In Grove’s specifications, sending and receiving a message requires ownership of

the same channel: the sender must own the channel points-to when invoking Send, and

the receiver must own the same exact channel points-to when invoking Receive. This

reflects the fact that sender and receiver must coordinate to agree on the protocol

spoken over this channel. The Iris separation logic allows such coordination on shared

state via invariants [11]. The invariant might say that each message in the channel

obeys a certain predicate; this will force the sender to prove that its message satisfies

the predicate and will allow the receiver to assume the same. For example, the

invariant for an RPC library might require that all messages are correctly marshalled

RPC request.

3.5 Distributed Composition

Grove’s Hoare triples capture how a procedure executes on a single machine (identified

by its heap). These specifications enable local callers to reason about what happens

if they invoke this procedure. However, Hoare triples are local: they do not directly

reason about code running on other machines, or other threads on the same machine.

As a result, it is possible to write conflicting specifications by making contradicting

assumptions about shared state (i.e., by using different invariants). For instance, it

is possible to write (and prove) Hoare triples for a key-value client and server that

speak different versions of a network protocol. Although both can be individually

proven, the client and server cannot talk to one another because they do not agree

on a network protocol. This could happen, for instance, if the client and server

serialize/deserialize requests in an incompatible way. As another example, a problem

would arise if, say, the client depends on stronger semantics than what the server

provides (e.g. the client expects linearizability, but the server is unsafe for concurrent

accesses).

28

To prevent this, Grove requires developers to demonstrate the consistency of the

specifications of individual machines when they are composed into a distributed sys-

tem. Specifically, Grove provides a distributed composition theorem, shown in Fig-

ure 3-1, which takes as input a set of proven Hoare triples for the main functions

running on each machine, and produces a theorem about the execution of the dis-

tributed system according to Grove’s execution model (section 3.2).

However, using this theorem requires picking a main function for each machine in

the system. What does this mean when a core verified component in GroveKV is a

library for interacting with our verified distributed key-value service? That library

does not have a main function that we could plug into the distributed composition

theorem. Instead, it has functions like Get and Put. How can we know that the Hoare

triples proven about these functions are meaningful?

The idea is that while we cannot plug those Hoare triples directly into the dis-

tributed composition theorem, we can write a simple test program that calls Get

and Put and states assertions to check that everything behaves as expected. The

developer first proves the correctness of their test procedure (as yet another Hoare

triple), and then composes the test procedure with the Hoare triples for the rest of

the system (including the key-value client library and the key-value server) using the

distributed composition theorem. The result is a statement that the composed system

will never fail any assertions. Although the composed system is a closed world that

does not have any external inputs or outputs, the theorem establishes that the Hoare

triples of Get and Put are meaningful. This is a standard approach in the verification

community for stating the soundness of a program logic.

More precisely, the distributed composition theorem says:

Suppose that the triples {𝑃1} main1 {True}, . . . , {𝑃𝑛} main𝑛 {True} hold

and that it is possible to establish 𝑃1 * 𝑃2 * · · · * 𝑃𝑛 starting from a set of

points-to relations for 𝑘 initial network channels (𝑎1 ↦→chan ∅, . . . , 𝑎𝑘 ↦→chan

∅).

Then a distributed system with 𝑛 machines in which the 𝑗th machine

29

runs the procedures main𝑗 will always execute safely, meaning it will be

memory- and thread-safe and no assert statements will fail.

Furthermore, all invariants 𝐼 on the state of the network that are es-

tablished in the proof will hold on all reachable states of the distributed

system.

Note how the preconditions 𝑃𝑖 of the individual machines are joined together

using the separating conjunction *, which expresses that the initial resources handed

to different machines must be disjoint : it is not possible to give two machines exclusive

ownership of the same resource.

For our example from chapter 2, we wrote a top-level test program for the bank

application that computes the total balances across all accounts and asserts that it

adds up to the correct amount. We use the distributed composition theorem to prove

that that assertion always holds, which demonstrates that all specs involved in the

proof are consistent and meaningful.

30

Chapter 4

Verifying uRPC

As shown in Figure 2-1, the first (verified) component in our distributed system stack

is uRPC, a concurrent, unreliable remote procedure call (RPC) library. uRPC has

a server side, which executes functions as RPC requests arrive, and a client side,

which sends RPC requests and matches up response packets with their originating

client invocation. The server handles RPCs concurrently, and the client supports

concurrent RPC invocations—hence the need to correctly match up response packets

with invocations.

The library is unreliable in the sense that it does not try to cope with packet

duplication or loss, so an RPC can be run many or zero times in response to a single

client invocation. In fact, even if we were to use “reliable” transport protocol like

TCP, it is possible for a connection to be lost in the middle of an RPC invocation,

and we may still need to resend the request with a new connection. RPCs served over

uRPC are meant to be safe to retry, so if the client gets no response, they can simply

try again.

31

4.1 Formal specification of uRPC

Consider a Put function on a key-value server with specification

{𝑘 ↦→kv 𝑤} Put(k, v) {𝑘 ↦→kv 𝑣}1.

Here, 𝑘 ↦→kv 𝑣 is a points-to-like assertion to reason about the current value of key 𝑘.

Suppose we want to serve Put on a uRPC server. An application can invoke this RPC

as urpcClient.Call(“Put”) with uRPC’s client library. What is a useful specification

that we can prove for such an RPC invocation?

Naively, we might hope to prove the specification

{𝑘 ↦→kv 𝑤} urpcClient.Call(“Put”) {𝑘 ↦→kv 𝑣}.

In other words, we might hope that the triple for the function on the server yields an

identical triple for the client. After all, the appeal of RPCs is that they feel like local

function calls.

However, network unreliability means that this spec is wrong. To see why, suppose

the client calls Put to set 𝑘 to 0. If the packet is duplicated and delayed, the duplicated

request to set 𝑘 to 0 might arrive again at the server long after the original request

completed. Setting 𝑘 to 0 a second time is not the specified behavior of a Put. This

issue is visualized in Figure 4-1. There is a difference between running Put locally

and invoking it over uRPC, so we cannot expect them to have the exact same spec.

In fact, Put should not even be served directly over uRPC. Instead, the only

functions it makes sense to directly serve over uRPC are ones that are safe to run

many times. The precondition must let us run the server function arbitrarily many

times.

Formally, in order for a function to be safe to serve over uRPC, we require that its

precondition be duplicable. An assertion 𝑃 is duplicable if 𝑃 implies 𝑃 *𝑃 . As shown

1One can imagine more generally, {𝑃} f() {𝑄}; the Put spec is our representative example for
this section.

32

Client Server

𝑃 ∅

∅ ∅

?

Initial request

Packet lostRetry?
𝑃

?

Figure 4-1: The problem with sending (exclusive) resources to the server for an RPC.
Client first tries to send 𝑃 along with its request message in order to run some
{𝑃} f {𝑄} on the server. The client may resend the request. On the second request,
the client no longer has the resources 𝑃 to send and is stuck.

Client Server

𝑃

𝑃 * 𝑃

𝑃

𝑃

𝑄 * 𝑃

∅

∅

𝑃

𝑄

∅

𝑃

f

duplicate

𝑄

Retry

Figure 4-2: First, the client duplicates 𝑃 into 𝑃 * 𝑃 , and the server the extra copy
of 𝑃 to safely run the RPC handler. If the client wants to retry (or the request is
duplicated), there is always 𝑃 sitting around from which a new copy can be created.

in Figure 4-2, if a client invokes an RPC with duplicable 𝑃 , we can keep peeling off

copies of 𝑃 that make it safe to run the function as many times as demanded by

packet duplication.

Now, we have arrived at a provable specification for uRPC:

Let 𝑓 be a function with spec {𝑃} 𝑓 {𝑄}. Suppose also the precondition

𝑃 is duplicable. Then, a server can safely host 𝑓 as an RPC using uRPC,

and if a client connects to this server with a uRPC client urpcClient, then

the following triple holds true:

{𝑃} urpcClient.Call(“f”) {𝑄}

33

This specification precisely captures the notion that an operation might be executed

multiple times. For instance, the RPC in GroveKV’s coordinator for getting the

current server for each shard is safe to run directly over uRPC. The precondition

is just True, reflecting that a client can always fetch the shard mapping. True is

inherently duplicable so the RPC can be run as often as desired.

RPCs like Put, cannot be run them directly over uRPC, since that would require

that the precondition 𝑘 ↦→kv 𝑣 be duplicable, but 𝑘 ↦→kv 𝑣 is not duplicable because it

represents ownership. To achieve a client-side Put with the same spec as a local Put,

we need to do some extra work both in the code and proof to ensure that Put runs

exactly once. This will be the subject of §5.

4.2 Proving uRPC’s specification

uRPC is a concurrent RPC library, and involves multiple threads and coordination

via mutexes and condition variables. The proof of the top-level uRPC spec reasons

about this node-local concurrency using Iris’s standard Hoare-logic rules.

The proof also uses the reasoning principles for network primitives from Figure 3-

3 and involves maintaining invariants about the messages in the network exchanged

between the server and any clients. A key invariant about the network messages

states that for any RPC request sent to the server, there is a copy of 𝑃 available so

the function for that RPC can always be run again.

uRPC is the only component that directly uses Grove’s network interface. All

higher layers use RPCs as their foundation for communication. So, from here on out,

we can forget about the underlying network interface and its reasoning principles,

and instead rely on the specification for uRPC.

One interesting feature about the uRPC spec is that the postcondition need not be

duplicable. For example, the exactly-once RPC library includes a GetFreshCID RPC

served over uRPC which returns a client ID (CID) not used by anyone else. The

postcondition of the GetFreshCID RPC is exclusive (hence non-duplicable) ownership

of that client ID. If a particular reply message is lost, then the ownership of that

34

client ID is also lost. Even so, one reply message is never mistakenly used to fulfill

two GetFreshCID requests, so two clients will never believe themselves to own the

same client ID.

We achieve non-duplicable post-conditions using escrow, a proof technique that

features prominently in our proof of exactly-once RPC and which is the topic of the

next chapter. We will also briefly discuss in the next chapter how escrow is used in

uRPC.

35

36

Chapter 5

Exactly-once RPCs and Escrows

We have seen how the uRPC library specifies unreliable function calls. Moving up

the system layers in Figure 2-1, we now consider how to implement and verify the

exactly-once RPC library (eRPC) on top of uRPC. On the implementation side, we

follow a standard reply table approach, as already sketched in chapter 2. To illustrate

how eRPC works, we discuss in this chapter a concrete instance of the eRPC code

for Put, shown in Figure 5-2. In the real library, in place of the map update on line

5, eRPC takes a callback to allow the user to provide the function to be run for an

eRPC invocation.

The challenge lies in verifying the desired specification for such an exactly-once

RPC: we want to prove {𝑘 ↦→kv 𝑤} s.Put(k, v) {𝑘 ↦→kv 𝑣}; i.e., this time we actually

will obtain the same specification for the RPC as for a regular function call. But

how is that possible, given that the underlying uRPC library requires a duplicable

precondition? How can we send non-duplicable assertions such as 𝑥 ↦→ 𝑛 to the server

using a library that only allows sending duplicable assertions? The answer lies in the

escrow pattern.

5.1 The escrow pattern

Originally developed for the weak-memory concurrent separation logic GPS [31] based

on earlier work in verified cryptography [2], the intuitive idea of the escrow pattern is

37

Client Server

𝑘 ↦→kv 𝑣 Tok

𝑘 ↦→kv 𝑣 ∨ Tok Tok

𝑘 ↦→kv 𝑣 ∨ Tok

. . .
Tok * 𝑘 ↦→kv 𝑣 ∨ Tok

2

Tok * 𝑘 ↦→kv 𝑣 ∨ Tok

𝑘 ↦→kv 𝑣 * 𝑘 ↦→kv 𝑣 ∨ Tok

✔ Server provably has right to run Put

. . .

1 Establish escrow

5 Can retry

3 Tok is exclusive

4 exchange resources

Figure 5-1: To send 𝑘 ↦→kv 𝑣 for a Put, the client puts it in an escrow invariant, and
sends knowledge of the invariant to the server.

to indirectly transfer ownership of some non-duplicable assertions by “depositing” the

assertion in a “known location” (the escrow), and then only transferring (duplicable)

knowledge that the deposit has happened. For this to work, the other party needs

to have the sole right to take things out of the escrow. To illustrate the escrow

pattern, consider a machine that wants to transfer ownership of 𝑘 ↦→kv 𝑣 to another

machine while only attaching duplicable assertions to messages to account for message

duplication.

We can accomplish this by using invariants and an escrow token Tok. This token

is an exclusive assertion: one with the property Tok * Tok =⇒ False. The escrow

token represents the right for the server to get the client’s assertions. The client and

server need to agree in advance on which token is supposed to be used for a given

request. As we will see in the next section, exactly-once RPCs will use one token for

each client ID and sequence number, which are all initially owned by the server.

The escrow proof pattern is shown in Figure 5-1. The client starts with ownership

of 𝑘 ↦→kv 𝑣 and the server with Tok. To transfer the points-to, the client establishes

the escrow invariant 𝐸inv = 𝑘 ↦→kv 𝑣 ∨ Tok by enclosing its points-to in the invariant

38

as the left disjunct (step 1 in the Figure). At this point, we say that 𝑘 ↦→kv 𝑣 is under

escrow. The client can now send messages to the server informing it that 𝐸inv holds

(step 2). The knowledge that 𝑘 ↦→kv 𝑣 is under escrow is duplicable, so duplicating

those messages is not a problem.

When the server receives this message, it knows 𝐸inv holds: 𝑘 ↦→kv 𝑣 has been

put under escrow, and is ready for the taking. Crucially, the server owns the exlusive

Tok, which serves as a proof that 𝑘 ↦→kv 𝑣 not been taken yet (step 3). Formally,

the server opens up the invariant 𝐸inv, which can be in two cases. In the first case,

the invariant contains 𝑘 ↦→kv 𝑣, and the server simply keeps it. To re-establish the

invariant, the server proves 𝑘 ↦→kv 𝑣∨Tok by picking the right disjunct and giving up

ownership of the token (step 4). The second case, in which the invariant does not

contain 𝑘 ↦→kv 𝑣 but contains Tok, is impossible: the token cannot be both owned by

the server and stored in the escrow because Tok * Tok =⇒ False.

The end-to-end effect of this exchange is that the server started with ownership

of Tok and knowledge of 𝐸inv, and ended up with ownership of 𝑘 ↦→kv 𝑣, while only

duplicable knowledge was transferred from client to server. If the client wants, it can

retry (step 5) by resending knowledge of 𝐸inv.

5.2 Verifying exactly-once RPCs

We now apply this general escrow pattern to verify exactly-once semantics of reliable

RPCs implemented on top of uRPC. Figure 5-2 shows such an implementation of the

Put RPC.

The implementation of exactly-once RPCs works as follows: each request has a

unique identifier by combining a client ID (CID) and an increasing sequence number

(Seq); we call this pair the request ID. The first time that PutRPC is run on the server

for a particular request ID, the server can be sure that the operation has not been

run before, so it can do so exactly once. Before replying to the caller, it records the

fact that the operation has now been run in lastSeq. If the same request ID is seen

by the server again, the server can safely do nothing and repeat the old reply to the

39

1 func (s *KVServer) PutRPC(args *PutArgs) {
2 s.mu.Lock()
3 if s.lastSeq[args.CID] >= args.Seq {
4 } else {
5 s.kvs[args.Key] = args.Value
6 s.lastSeq[args.CID] = args.Seq
7 }
8 s.mu.Unlock()
9 }

10

11 func (c *KVClerk) Put(key uint64, val []byte) {
12 args := PutArgs{CID:c.cid, Seq:c.seq,
13 Key:key, Value:val}
14 c.seq = c.seq + 1
15 for {
16 err := ck.urpcClient.Call("PutRPC", &args)
17 if !err {
18 break
19 }
20 }
21 }

Figure 5-2: Simplified fragment of a key-value service built on top of uRPC.

client. (If an even older sequence number is seen, we know the reply is irrelevant since

clients never have more than one outstanding request.) Put does not return anything,

which simplifies the example since no reply needs to be cached.

In Grove, we reason about the Put using escrow. For every single request ID that

it has not been seen, the server owns an escrow token STokCID ,Seq . The clerk starts

an exactly-once RPC by putting the assertions needed to execute the operation, in

this case 𝑘 ↦→kv 𝑤, under escrow:

𝑅inv = 𝑘 ↦→kv 𝑤 ∨ STokCID ,Seq

The client passes knowledge of this escrow invariant to the server when it invokes

PutRPC. There are two cases for invocations of PutRPC on the server.

Fresh request. The first case is that the request ID passed into PutRPC has not

been seen before (the if branch in PutRPC). In this case, the server owns STokCID ,Seq .

40

The server can exchange this token for the points-to 𝑘 ↦→kv 𝑤 that is under escrow.

With the points-to in hand, the server can physically update its key-value map and

end up with 𝑘 ↦→kv 𝑣, while maintaining the invariant that the physical key-value

map is coherent with the 𝑘 ↦→kv 𝑣 assertion

To finish the request, the server needs to send 𝑘 ↦→kv 𝑣 back to the client together

with the reply. The reply could be duplicated like the request, so we again use the

escrow pattern for this ownership transfer. Similar to the server, the client also owns

a client-side escrow token CTokCID ,Seq for each sequence number associated with its

client ID.

The server puts the updated points-to under escrow:

𝑆inv = 𝑘 ↦→kv 𝑣 ∨ CTokCID ,Seq

Before replying to the client, the server updates its lastSeq table to record the

last sequence number that it has seen. We already mentioned that the server owns

STokCID ,Seq for all requests it has not yet seen; moreover the server has knowledge of

an escrow like 𝑆inv for the last request that might still be outstanding. This invariant

holds again once lastSeq has been updated. Finally, the server sends back knowledge

of 𝑆inv to the client.

Duplicate request. The second case is that the request ID passed into PutRPC has

been seen before. If this is the last request, the server will already have a copy of 𝑆inv

saved from the first time that the request was seen. The server does not have to do

anything, it just sends another copy of 𝑆inv (representing knowledge of the fact that

the request was executed) to the client. The proof has to also cover the case in which

this request is even older; in that case we can show that the response is irrelevant

since the client will only ever care about one pending request.

Client-side reasoning. We now briefly consider what happens on the client-side in

Put. The first two lines bundle up the arguments for the request as well as the client

ID and sequence number, which is incremented each time. The client has ownership

41

of each client-side token CTokCID ,Seq that it has not used yet for sequence numbers

c.seq and higher.

Next, the client sets up the request escrow 𝑅inv by putting 𝑘 ↦→kv 𝑤 into the

invariant. This is the precondition required by the uRPC. It is duplicable, so we can

repeat this request arbitrarily often in a loop, until we get a response.

If the unreliable RPC ever gets a response (after enough retries), that will convey

knowledge of 𝑆inv from the server. Since we own the client-side token corresponding

to this request, we can open the escrow and take out the points-to fact 𝑘 ↦→kv 𝑣 that

the server sent back, which is exactly the postcondition we need to return from Put.

5.3 Escrow in uRPC

We mentioned at the end of chapter 4 that we also use escrow to achieve a non-

duplicable postcondition for uRPC. Now that we have talked about escrow, we can

briefly describe how. First, note that reply messages in uRPC are matched up with

their invocation by associating each request with a uRPC request ID. When the

server responds to an RPC with a given request ID, the response message includes

this request ID so the client can correctly match up the response with the invocation.

Recall that a message (whether it happens to be considered a request or reply

message by higher-level code) can only carry duplicable assertions with it for the

receiver to learn about when they receive it. The assertion associated with the reply

message for uRPC is actually an escrow invariant 𝑄 ∨ TokID , where 𝑄 is the real

postcondition of that RPC. TokID is a token owned by the client library for the request

with ID as its ID. When the uRPC client library receives a reply for an unfinished

RPC, it will still own TokID , and can use it to get 𝑄 from the escrow invariant. Then,

it returns 𝑄 to the caller of the RPC and is done.

42

Chapter 6

Verifying distributed systems with

Grove

This section outlines the verification of GroveKV, the sharded key-value server de-

scribed in chapter 2. By using the exactly-once RPC specification described in the

previous section, much of the verification is similar to standard single-node reasoning

in concurrent separation logic (CSL). In particular, verifying each GroveKV opera-

tion is split into verifying a server-side procedure, and then verifying a client-side

clerk that manages local state and calls the RPC. Finally, we use the specification for

GroveKV to verify a lock service and a simple bank client.

6.1 GroveKV specification

GroveKV’s top-level library is the KVClerk, which provides the user with a interface to

the key-value service that hides concerns about concurrency and network unreliability.

Figure 6-1 shows its specification. The angle-bracket notation ⟨𝑃 ⟩ 𝑓 ⟨𝑄⟩ will be

explained shortly, but can be initially thought of as the same as {𝑃} 𝑓 {𝑄} (in fact,

the angle-bracket version is a stronger spec).

The KVClerk specifications uses a key-value points-to, 𝑘 ↦→kv 𝑤 which represents

exclusive ownership of key 𝑘 and knowledge that its current value is 𝑤, much like

the usual in-memory points-tos for heaps. The specification for Put says that if one

43

⟨𝑘 ↦→kv 𝑤⟩ kvck.Put(𝑘, 𝑣) ⟨𝑘 ↦→kv 𝑣⟩
⟨𝑘 ↦→kv 𝑣⟩ kvck.Get(𝑘) ⟨ret 𝑣, 𝑘 ↦→kv 𝑣⟩

⟨𝑘1 ↦→kv 𝑣1 * 𝑘2 ↦→kv 𝑣2⟩
kvck.GetTwo(𝑘1,𝑘2)

⟨ret (𝑣1, 𝑣2), 𝑘1 ↦→kv 𝑣1 * 𝑘2 ↦→kv 𝑣2⟩

⟨𝑘 ↦→kv 𝑣old⟩
kvck.ConditionalPut(𝑘, 𝑣exp , 𝑣)⟨
∃𝑏. ret 𝑏, (𝑣old = 𝑣exp ∧ 𝑏) * 𝑘 ↦→kv 𝑣 ∨

(𝑣old ̸= 𝑣exp ∧ ¬𝑏) * 𝑘 ↦→kv 𝑣old

⟩

Figure 6-1: Specification for the KV service. Here, kvck is a KVClerk to the key-value
service,

calls Put(𝑘, 𝑣) starting with ownership of 𝑘 ↦→kv 𝑤, then 𝑘 ↦→kv 𝑣 is returned in the

postcondition. The specification for Get says that the value returned matches the

points-to 𝑘 ↦→kv 𝑣 in the precondition.

GetTwo issues two Get RPCs in parallel (Figure 2-3). The specification for GetTwo

hides this internal parallelism, and just says that the operation returns the value of

two keys, as though doing a Get for each of them. GroveKV provides a more general

MGet and corresponding specification for fetching arbitrarily many keys concurrently.

The specification for ConditionalPut is a slight modification of the Put spec, in

which the target key is only updated if the previous value is the desired one.

The specifications for these operations are essentially the same as might typically

be given to an in-memory hashmap in a concurrent separation logic like Iris. Hence,

standard Hoare logic reasoning that would apply to such an in-memory hashmap

works just the same for the distributed key-value service.

6.1.1 Linearizability and logical atomicity

GroveKV is a linearizable key-value service, and the specifications capture this using

logical atomicity [13]. A logically atomic spec is written ⟨𝑃 ⟩ 𝑓 ⟨𝑄⟩, and implies the

normal spec {𝑃} 𝑓 {𝑄}.

44

Before we explain what logical atomicity is, note that the normal (non-logically

atomic) specification is insufficient, for instance, to verify our lock service (section 6.4).

If the ConditionalPut spec required 𝑘 ↦→kv 𝑣old in a normal Hoare triple, then while

one ConditionalPut runs, no other function would be able to access key 𝑘. However,

the whole point of the lock service is that many clients race to do a ConditionalPut

on the same key.

To make it possible for clients to concurrently access a key in a linearizable way,

a logically atomic specification ensures that the transition from the precondition 𝑃

to the postcondition 𝑄 happens atomically at the linearization point. To achieve

this, a logically atomic spec is given a special assertion called the atomic update. An

atomic update from 𝑃 to 𝑄 gives the user of the update access to the resources 𝑃 ,

but requires that the user immediately return the resources 𝑄 in at most one physical

step. This ensures that there is no point in time at which 𝑃 is violated but 𝑄 is not

yet true.

A logically atomic spec enables concurrent accesses becausee it allows the user

to open an invariant around a logically atomic function call. An invariant must

remain true after every single physical step, so they can normally only be opened (i.e.

temporarily broken) around a physically atomic step (such as a single memory read

or write). A logically atomic function allows one to use an invariant across a function

call that consists of many physical steps and is thus not physically atomic. It does

this by only actually opening the invariant at the moment that the atomic update

goes from 𝑃 to 𝑄.

So, for instance, ownership of a 𝑘 ↦→kv 𝑣 can be placed in an invariant, the invariant

shared with many threads, and the threads can all concurrently run ConditionalPut

on key 𝑘.

With Grove, to prove logically atomic specs for RPCs, we pass the atomic update

via the exactly-once RPC proof library to the server, and then pass the post-condition

the caller. Putting the atomic update into the escrow invariants used by exactly-once

RPC is straightforward because Iris (on top of which Perennial and Grove are built)

is a higher-order logic [12].

45

6.2 Verifying Put, Get, etc.

GroveKV is sharded, which means that different shards (which are simply sets of

keys) can be managed by different servers. Internally, shard servers in GroveKV

provide their own client interface called ShardClerk. That interface includes functions

similar to the top-level KVClerk, except that ShardClerk operations only operate on

a particular server, so they can fail if the server does not own the requested key. For

instance, the specification for the ShardClerk Put says:

⟨𝑘 ↦→kv 𝑤⟩

err := shardck.Put(𝑘, 𝑣)

⟨(err = nil * 𝑘 ↦→kv 𝑤) ∨ (err ̸= nil * 𝑘 ↦→kv 𝑣)⟩

This means that either the Put will succeed and the key-value points-to will have the

new value, or the server will return an error indicating that it does not own the shard

for that key, in which case the key-value points-to is unchanged.

Proving this specification is straightforward with eRPC. We simply prove a local

spec for the Put handler on the ShardServer, and then by plugging that into the eRPC

library, we get the same spec on ShardClerk.

Clerks for multiple shard servers. The KVClerk uses the specs for ShardClerk

in a loop: the KVClerk tries doing an operation against the server it believes owns the

key, and consults the coordinator to try a different server if that operation returns

an error. The code for this is shown in Figure 6-2. Shard lookup requests are sent

to the coordinator as unreliable RPCs, because the coordinator merely returns a hint

about where the shard might be, so no ownership transfer needs to take place. The

postcondition for a shard lookup is a duplicable fact saying that the returned server

is a valid shard server that can be queried. Clients thus do not have to know upfront

about all shard servers, they can discover servers dynamically from the coordinator.

Each ShardClerk can only handle a single request at a time, because it is asso-

ciated with one eRPC client ID, which allows for one outstanding operation. To

46

1 func (ck *KVClerk) Put(key uint64, value []byte) {
2 for {
3 shardID := shardOf(key)
4 shardServer := ck.shardMap[shardID] // this server should hold ‘key’
5 shardClerk := ck.shardClerks.GetClerk(shardServer)
6

7 err := shardClerk.Put(key, value)
8

9 if err == ENone {
10 break
11 }
12 // if error, update the shard mapping and try again
13 ck.shardMap = coordinator.GetShardMap()
14 }
15 }

Figure 6-2: Top-level Put operation using ShardClerk

support running multiple requests concurrently, KVClerk will create new ShardClerks

as needed, by requesting more unused client IDs.

6.3 Verifying shard migration

Besides distributing the current shard mapping, the coordinator is also responsible

for dynamically migrating shards.

To facilitate shard migration, shard servers have a MoveShard and InstallShard

operation. The coordinator calls MoveShard(shardID, dst) on a shard server to tell

it to move one of its shards to another server dst. The source shard server will then

call InstallShard(shardID, kvData) on the destination server to send it the latest

key-value data for the specified shard. The internal specification for InstallShard is

proved just like Put; instead of updating a key-value entry, we simply add a full shard

to a server. Also just like the Put, proving the spec for InstallShard is straightforward

with eRPC. We simply prove a normal local specification for InstallShard on the

server, and then get the same spec through eRPC for the client.

In this protocol, at most one server thinks that it owns a shard at a time (possibly

none if it is being moved). So, in the proof, each server maintains as an invariant

47

that all of its key-value data must match the current key-value points-tos. When a

server responds to a request, it can be certain that it has the latest value for a key.

6.4 Verifying the lock service

The lock service is implemented as a client-side abstraction on top of GroveKV. The

specification for the lock service is a standard (non-distributed) CSL lock specifi-

cation. The assertion isLock(𝑘, 𝑃) says that the lock 𝑘 is associated with the lock

invariant assertion 𝑃 . The specification for Lock gives ownership of the lock invari-

ant, {isLock(𝑘, 𝑃)} Lock(k) {𝑃}. Conversely, releasing the lock requires giving up

ownership of the invariant, {isLock(𝑘, 𝑃) * 𝑃} Lock(k) {True}.

The Lock function is implemented as a spinning ConditionalPut, and Unlock does

a Put. Because the GroveKV specification from Figure 6-1 is similar to standard CSL

specifications for in-memory operations, the lock service proof is essentially identical

to a spinlock proof in CSL. This makes use of the logically atomic specification for

ConditionalPut, which says that the operation is linearizable.

6.5 Verifying the bank

Figure 6-3 shows code from the simple bank client. The bank uses GroveKV to

store values for two accounts, a1 and a2. These keys are protected by locks in the

lock service. The TransferOne() operation uses these locks to atomically move a value

of 1 from one account to the other. (The initial account balances sum to less than

INT_MAX, so there is no possibility of overflow.)

The Audit() routine asserts that the sum of the account balances is always equal to

TOTAL. That is, this checks that the transfers between the accounts are transactional.

We prove Hoare logic specs for each of Audit and TransferOne. The distributed

composition theorem then implies that a machine running Audit will never fail the

assert.

To establish the specifications, we instantiate the lock service specification so that

48

1 type Bank struct {
2 lck *LockClerk
3 kv *KVClerk
4 }
5

6 func (b *Bank) TransferOne() {
7 b.lck.Lock(a1); b.lck.Lock(a2)
8 old_amount := b.kv.Get(a1)
9 if old_amount > 0 {

10 b.kv.Put(a1, old_amount-1)
11 b.kv.Put(a2, b.kv.Get(a2)+1)
12 }
13 b.lck.Unlock(a1); b.lck.Unlock(a2)
14 }
15

16 func (b *Bank) Audit() {
17 b.lck.Lock(a1); b.lck.Lock(a2)
18 assert(b.kv.Get(a1) + b.kv.Get(a2) == TOTAL)
19 b.lck.Unlock(a1); b.lck.Unlock(a2)
20 }

Figure 6-3: Bank built using GroveKV

the lock invariants guard ownership of the account keys. We add an invariant that

says that when locks for the bank’s accounts are not held, the sum of their balances

is maintained. The proof of the bank then proceeds as a typical non-distributed Iris

proof [3], using the GroveKV and lock service specs in place of standard heap and

local lock specs.

49

50

Chapter 7

Implementation

Grove is implemented as an extension to Perennial [6]. The Perennial support for

crash safety was irrelevant for this work, but using Perennial we could build on the

existing integration of Goose [4, 5] and Iris [11, 12] for reasoning about Go code in

Coq using the Iris Proof Mode [15, 16].

We extended Perennial with a distributed Hoare triple, a network model and

corresponding specification, and the distributed composition theorem. On top of

this, we built verified unreliable and exactly-once RPC libraries, the key-value service

GroveKV, the lock service, and the bank example application. The line counts for the

Go components and their proofs are given in Figure 7-1. The Go implementation of

the network layer is trusted to match the specification in Figure 3-3; it is implemented

using TCP which facilitates sending arbitrarily-sized messages.

Lines of Code Lines of Proof

Network layer 120 Trusted
uRPC 149 1,065
eRPC 63 819
GroveKV 807 5,555
Lock service 20 138
Bank 74 429

Figure 7-1: Lines of code and proof for Go components.

51

52

Chapter 8

Performance evaluation

In this section, we answer the following questions: (1) Does GroveKV have reasonable

performance compared to a real key-value service? (2) Does it scale up with more

cores? (3) Does GroveKV scale up as servers are dynamically added?

8.1 Single shard server performance

To evaluate whether GroveKV has reasonable performance compared to real systems,

we compare against the popular key-value store Redis [27]. Since Redis is single-

threaded, we compare the performance of a single GroveKV shard server running on

one core against the performance of a Redis server.

Our experiments comparing Redis and GroveKV run on two machines, one server

and one client. Each machine has an Intel Xeon CPU E5-1410 2.8 GHz processor and

64 GB RAM. The machines are connected over a 1 Gbps network and run Ubuntu

20.04.2 LTS.

We generate client requests using YCSB [7]. For this experiment, we use uniform

random key value operations with 128 bytes for each value, 8 bytes for each key, and

100,000 total key-value pairs. Each client thread issues operations sequentially in a

proportion of 95% gets and 5% puts.

We increase the number of client threads, recording the latency and throughput

seen by the client program, up until we saturate the system—i.e. until throughput

53

stops increasing. Figure 8-1 plots this latency/throughput graph for both Redis and

GroveKV, with each point representing a fixed number of client threads.

0k 10k 20k 30k 40k 50k 60k 70k 80k 90k 100k 110k 120k 130k
0

0.1

0.2

0.3

0.4

0.5

0.6

Throughput (ops/sec)

La
te

nc
y

(m
s)

GroveKV
Redis

Figure 8-1: Latency/throughput comparison of GroveKV on a single core vs Redis,
as we increase the client load.

The latency of GroveKV is close to the latency of Redis at low loads. Moreover,

the peak throughput of GroveKV is about 2/3 that of Redis. At high load, however,

GroveKV has worse latency than Redis. Through performance profiling, we observed

that when saturated with requests, the GroveKV server spends the majority of its

time in the kernel and the Go networking code. It is possible that better use of the

Go networking APIs could decrease the amount of time spent in networking code and

improve GroveKV’s performance. Redis is written in C and directly uses the Linux

networking API, which is likely contributing to its better performance.

8.2 Speedup from node-local concurrency

In this section, we evaluate how GroveKV’s performance scales as more cores are

added to a single shard server. For each number of cores, we keep increasing the

54

number of client threads in the benchmark program until throughput deteriorates,

and measure the highest achieved throughput.

We run this experiment on a machine with 8 Intel E7-8870 2.4 GHz CPUs (each

with 10 cores) and 256 GB RAM, running Arch Linux with kernel 5.10.64. The shard

server runs with more and more cores on a single CPU. Our client benchmark runs

on 40 cores on other CPUs.

Figure 8-2 shows the peak throughput as a function of the number of cores. Im-

portantly, as we increase the number of cores, throughput increases almost linearly.

1 2 3 4 5 6 7 8 9 10
0k

50k

100k

150k

200k

250k

300k

350k

400k

Cores

T
hr

ou
gh

pu
t

(o
ps

/s
ec

)

Peak throughput vs number of cores

GroveKV
linear scaling

Figure 8-2: The horizontal axis shows the number of cores given to a single GroveKV
shard server, and the vertical axis shows the peak throughput achieved at that con-
figuration. The dashed line shows the hypothetical linear scaling with more cores by
extrapolating the performance with a single core.

Like before, a majority of the time is spent in kernel and Go networking code.

Moreover, as we increase the number of cores, an increasing amount of time is spent

in the Go runtime (scheduler + garbage collection). Better use of Go and the kernel’s

networking interfaces could likely improve the multi-core scalability of GroveKV.

55

8.3 Speedup from dynamically adding servers

We additionally run an experiment in which we add servers to a running GroveKV

system and measure the throughput over time. We run this experiment on the same

machine as section 8.2. All servers run on the same machine. Each server uses 1 core

on its own CPU; the other cores of that CPU are idle. Again, the client uses 40 cores

on other CPUs.

We start with only one server in the system. After approximately 30 seconds, we

add another server, invoking GroveKV’s coordinator to dynamically migrate shards

to balance load. We repeat this twice more until there are a total of 4 servers in the

system.

0 10 20 30 40 50 60 70 80 90 100 110 120 130
0k

20k

40k

60k

80k

100k

120k

140k

Time (s)

In
st

an
ta

ne
ou

s
th

ro
ug

hp
ut

(o
ps

/s
ec

)

GroveKV

Figure 8-3: Throughput over time, servers added approximately every 30 seconds.

Figure 8-3 shows the instantaneous throughput (measured in 0.5 second time

slices) of the system over time. There is a brief drop in throughput when shard

migration occurs to rebalance the system, after which throughput increases based on

the number of available servers. In reality, the throughput drops all the way to 0

briefly, while locks are held, but because migration takes less than 0.5 seconds, the

56

average throughput over the 0.5 second time slices nevers hits 0.

57

58

Chapter 9

Related work

Separation logic. Grove is not the first application of separation logic to dis-

tributed systems: the same idea is pursued by Disel [29] and Aneris [8, 17].

Disel [29] uses a notion of “protocols” to capture a logical, abstract description of

the network messages exchanged between a service and its client. Reasoning about

protocols is based on inductive invariants. Disel demonstrates how these protocols can

be composed to verify clients that interact with multiple protocols, and to implement

one service in terms of another (“delegation”). However, they use protocols as module

boundaries for the purpose of abstraction; Disel does not have a notion of a client

library or clerks, which is a key goal for Grove. Protocols also expose the node-local

protocol-specific state (such as a set of outstanding requests). The Disel network

model does not account for having to re-send a request in case of a connection failure,

which means that connection failures lead to client stalls. Grove explicitly deals with

re-sending requests, which required the escrow pattern.

Aneris [17] demonstrates compositional reasoning about components of a dis-

tributed system in an Iris-based concurrent separation logic. For example, Aneris

is used to verify a general load balancer that is agnostic about the service provided

by the backend servers. The Aneris network model is more low-level than Grove’s,

directly exposing the concepts of “IP addresses” and “ports”. In follow-up work [8],

Aneris has been used to verify a distributed causal database. This included the use

of the escrow pattern to transfer resources between machines on top of the causal

59

consistency specs (see §4.5 of [8]). This use of escrow is similar to the use of es-

crow for ownership transfer in weak memory logics [31]. In contrast to our verified

exactly-once RPC library, Aneris only proves causal consistency and hence does not

establish that an RPC is executed at most once (and indeed, the implementation will

re-execute RPCs when network packets are duplicated).

Whole-system verification. One approach to verifying distributed systems is to

prove a sequence of refinements from a high-level protocol description down to exe-

cutable code. IronFleet [10] used this approach by verifying protocols in TLA+-like

style encoded in Dafny [21], and then proving event handlers simulate transitions of

the protocol. The Verdi [32] framework provides verified system transformers that

convert systems verified on top of an idealized, reliable network into one that operates

on an unreliable network.

However, these frameworks do not address concurrency within a node. Concur-

rency is difficult to handle, because the tools in existing frameworks for reasoning

about or generating implementation code are restricted to sequential code. Addi-

tionally, concurrency complicates the techniques needed for refinements. For exam-

ple, IronFleet uses reduction [23] to reason about event handlers as if they executed

atomically as transitions of the protocol. This exploits the fact that nodes cannot

observe intermediate states of event handlers on other nodes. However, node-local

concurrency allows intermediate states to be exposed to other threads.

Furthermore, these refinement-based verification approaches specify correctness

in terms of how the full system state evolves. In contrast, Grove’s specifications for

client libraries allow developers to verify application code using a local view of the

part of the state that is relevant to them.

Modular verification. In order to verify large distributed systems composed of

multiple components, a verification framework must support combining proofs of

parts together.

The Chapar system [22] introduces a new operational semantics for specifying the

60

behavior of causally consistent key-value stores. Lesani et al. use this semantics as

an interface for verifying the key-value store and the client applications separately.

However, the framework provides only support for this form of composition, and does

not provide modularity within the implementation of a key-value store itself.

WormSpace [30] proposes write-once registers (WOR) as a building block abstrac-

tion for building verified distributed systems. A verified implementation of WOR is

provided using the Certified Concurrent Abstraction Layers (CCAL) approach of Gu

et al. [9], which allows layers of verified components to be linked together through

contextual refinement specifications. This compositionality is applied to use the WOR

implementation to build verified implementations of Paxos [19], an append-only dis-

tributed log, and two-phase commit. However, the CCAL verification framework does

not provide “client-facing” specifications for clerks or RPCs.

Protocol verification. TLA+ [18, 20] provides a modeling language for concisely

describing distributed protocols, which can then either be model-checked or interac-

tively verified. In other tools, constraining the modeling language used for expressing

protocols enables automatic or semi-automatic proofs of correctness. For example,

ByMC [14] can automatically verify protocols that can be expressed as threshold au-

tomata. The Ivy [25] tool can represent a wider class of protocols, but still achieves

semi-automatic verification by requiring inductive invariant specifications to be ex-

pressed in a decidable fragment of first-order logic [26]. I/O automata [24] support

composition of modules by representing whole modules as a single I/O automaton.

Although protocol verification can ensure the absence of bugs in the protocol de-

sign, many bugs in distributed systems only manifest at the level of implementations,

and so fall outside the scope of protocol verification. Grove aims to verify implemen-

tations of systems to address these bugs.

Protocol verification approaches also verify the system as a whole, proving that the

overall system has a certain behavior. In contrast, Grove focuses on individual ma-

chines interacting with the distributed system, proving “client-facing” specifications

for clerks and RPCs.

61

62

Chapter 10

Conclusion

Grove is a new framework for verifying distributed systems. The core idea of Grove is

its focus on modular verification: stating and proving specifications about individual

components and then using those specifications to verify components built on top.

To enable this modular reasoning, Grove supports use of ownership for reasoning

about coordination in a distributed system. We use duplicable ownership to specify

unreliable RPCs, and verify exactly-once RPC using the escrow pattern for proving

ownership transfer over unreliable networks. To demonstrate the value of these ideas,

we have verified GroveKV, a performant key-value service written in Go that uses

unreliable and exactly-once RPCs and supports dynamically adding new servers and

rebalancing shards. Using this service we also implemented and verified a lock service

and a bank application. We hope that the specification and proof techniques of this

thesis will be useful to others who want to verify distributed systems in a modular

fashion.

63

64

Bibliography

[1] James Bornholt, Rajeev Joshi, Vytautas Astrauskas, Brendan Cully, Bernhard
Kragl, Seth Markle, Kyle Sauri, Drew Schleit, Grant Slatton, Serdar Tasiran,
Jacob Van Geffen, and Andrew Warfield. Using lightweight formal methods to
validate a key-value storage node in Amazon S3. In Proceedings of the 28th
ACM Symposium on Operating Systems Principles (SOSP), Virtual conference,
October 2021.

[2] Michele Bugliesi, Stefano Calzavara, Fabienne Eigner, and Matteo Maffei. Logi-
cal foundations of secure resource management in protocol implementations. In
POST 2013, volume 7796 of Lecture Notes in Computer Science, pages 105–125.
Springer, 2013. doi: 10.1007/978-3-642-36830-1_6.

[3] Tej Chajed. A brief introduction to Iris. https://plv.csail.mit.edu/blog/
iris-intro.html, 2020.

[4] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich.
Verifying concurrent, crash-safe systems with Perennial. In Proceedings of the
27th ACM Symposium on Operating Systems Principles (SOSP), pages 243–258,
Huntsville, Ontario, Canada, October 2019.

[5] Tej Chajed, Joseph Tassarotti, M. Frans Kaashoek, and Nickolai Zeldovich. Ver-
ifying concurrent Go code in Coq with Goose. In Proceedings of the 6th Inter-
national Workshop on Coq for Programming Languages (CoqPL), New Orleans,
LA, January 2020.

[6] Tej Chajed, Joseph Tassarotti, Mark Theng, Ralf Jung, M. Frans Kaashoek,
and Nickolai Zeldovich. Gojournal: a verified, concurrent, crash-safe journaling
system. In Proceedings of the 15th USENIX Symposium on Operating Systems
Design and Implementation (OSDI), Virtual conference, July 2021.

[7] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and
Russell Sears. Benchmarking cloud serving systems with YCSB. In Proceedings
of the 1st ACM Symposium on Cloud Computing, SoCC 2010, Indianapolis,
Indiana, USA, June 10-11, 2010, pages 143–154. ACM, 2010. doi: 10.1145/
1807128.1807152.

[8] Léon Gondelman, Simon Oddershede Gregersen, Abel Nieto, Amin Timany, and
Lars Birkedal. Distributed causal memory: modular specification and verifica-

65

https://plv.csail.mit.edu/blog/iris-intro.html
https://plv.csail.mit.edu/blog/iris-intro.html

tion in higher-order distributed separation logic. In Proceedings of the 48th ACM
Symposium on Principles of Programming Languages (POPL), Virtual confer-
ence, January 2021.

[9] Ronghui Gu, Zhong Shao, Jieung Kim, Xiongnan Wu, Jérémie Koenig, Vilhelm
Sjöberg, Hao Chen, David Costanzo, and Tahina Ramananandro. Certified con-
current abstraction layers. In Proceedings of the 39th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), pages 646–661,
Philadelphia, PA, June 2018.

[10] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,
Michael L. Roberts, Srinath Setty, and Brian Zill. IronFleet: Proving practical
distributed systems correct. In Proceedings of the 25th ACM Symposium on
Operating Systems Principles (SOSP), pages 1–17, Monterey, CA, October 2015.

[11] Ralf Jung, David Swasey, Filip Sieczkowski, Kasper Svendsen, Aaron Turon,
Lars Birkedal, and Derek Dreyer. Iris: Monoids and invariants as an orthogonal
basis for concurrent reasoning. In Proceedings of the 42nd ACM Symposium on
Principles of Programming Languages (POPL), Mumbai, India, January 2015.

[12] Ralf Jung, Robbert Krebbers, Jacques-Henri Jourdan, Ales Bizjak, Lars
Birkedal, and Derek Dreyer. Iris from the ground up: a modular foundation for
higher-order concurrent separation logic. Journal of Functional Programming,
28:e20, 2018.

[13] Ralf Jung, Rodolphe Lepigre, Gaurav Parthasarathy, Marianna Rapoport, Amin
Timany, Derek Dreyer, and Bart Jacobs. The future is ours: prophecy variables
in separation logic. In Proceedings of the 47th ACM Symposium on Principles of
Programming Languages (POPL), pages 45:1–45:32, New Orleans, LA, January
2020.

[14] Igor Konnov and Josef Widder. ByMC: Byzantine model checker. In Proceedings
of the 8th International Symposium on Leveraging Applications of Formal Meth-
ods, Verification, and Validation, pages 327–342, Limassol, Cyprus, November
2018.

[15] Robbert Krebbers, Amin Timany, and Lars Birkedal. Interactive proofs in higher-
order concurrent separation logic. In Proceedings of the 44th ACM Symposium
on Principles of Programming Languages (POPL), pages 205–217, Paris, France,
January 2017.

[16] Robbert Krebbers, Jacques-Henri Jourdan, Ralf Jung, Joseph Tassarotti, Jan-
Oliver Kaiser, Amin Timany, Arthur Charguéraud, and Derek Dreyer. MoSeL: a
general, extensible modal framework for interactive proofs in separation logic. In
Proceedings of the 23rd ACM SIGPLAN International Conference on Functional
Programming (ICFP), pages 77:1–30, St. Louis, MO, September 2018.

66

[17] Morten Krogh-Jespersen, Amin Timany, Marit Edna Ohlenbusch, Simon Odd-
ershede Gregersen, and Lars Birkedal. Aneris: A mechanised logic for modular
reasoning about distributed systems. In Proceedings of the 29th European Sym-
posium on Programming (ESOP), pages 336–365, Dublin, Ireland, April 2020.

[18] Leslie Lamport. The temporal logic of actions. ACM Transactions on Program-
ming Languages and Systems, 16(3):872–923, May 1994.

[19] Leslie Lamport. The part-time parliament. ACM Transactions on Computer
Systems, 16(2):133–169, 1998.

[20] Leslie Lamport. Specifying Systems, The TLA+ Language and Tools for Hard-
ware and Software Engineers. Addison-Wesley, 2002. ISBN 0-3211-4306-X.

[21] K. Rustan M. Leino. Dafny: An automatic program verifier for functional cor-
rectness. In Proceedings of the 16th International Conference on Logic for Pro-
gramming, Artificial Intelligence and Reasoning (LPAR), pages 348–370, Dakar,
Senegal, April–May 2010.

[22] Mohsen Lesani, Christian J. Bell, and Adam Chlipala. Chapar: Certified causally
consistent distributed key-value stores. In Proceedings of the 43rd ACM Sym-
posium on Principles of Programming Languages (POPL), pages 357–370, St.
Petersburg, FL, January 2016.

[23] Richard J. Lipton. Reduction: A method of proving properties of parallel pro-
grams. Communications of the ACM, 18(12), December 1975.

[24] Nancy A. Lynch and Mark R. Tuttle. An introduction to input/output automata.
Technical Report MIT/LCS/TM-373, MIT Laboratory for Computer Science,
Cambridge, MA, November 1988.

[25] Kenneth L. McMillan and Oded Padon. Ivy: A multi-modal verification tool
for distributed algorithms. In Proceedings of the 32nd International Conference
on Computer Aided Verification (CAV), pages 190–202, Los Angeles, CA, July
2020.

[26] Oded Padon, Giuliano Losa, Mooly Sagiv, and Sharon Shoham. Paxos made
EPR: decidable reasoning about distributed protocols. In Proceedings of the 32nd
Annual ACM Conference on Object-Oriented Programming, Systems, Languages,
and Applications (OOPSLA), pages 108:1–108:31, Vancouver, Canada, October
2017.

[27] Redis. https://redis.io/. Version 6.2.5.

[28] John C. Reynolds. Separation logic: A logic for shared mutable data structures.
In Proceedings of the 17th Annual IEEE Symposium on Logic in Computer Sci-
ence, pages 55–74, Copenhagen, Denmark, July 2002.

67

https://redis.io/

[29] Ilya Sergey, James R. Wilcox, and Zachary Tatlock. Programming and proving
with distributed protocols. In Proceedings of the 45th ACM Symposium on Prin-
ciples of Programming Languages (POPL), pages 28:1–28:30, Los Angeles, CA,
January 2018.

[30] Ji-Yong Shin, Jieung Kim, Wolf Honoré, Hernán Vanzetto, Srihari Radhakrish-
nan, Mahesh Balakrishnan, and Zhong Shao. WormSpace: A modular founda-
tion for simple, verifiable distributed systems. In Proceedings of the 10th ACM
Symposium on Cloud Computing, pages 299–311, Santa Cruz, CA, November
2019.

[31] Aaron Turon, Viktor Vafeiadis, and Derek Dreyer. GPS: Navigating weak
memory with ghosts, protocols, and separation. In Proceedings of the 35th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), page 691–707, Edinburgh, United Kingdom, June 2014.

[32] James R. Wilcox, Doug Woos, Pavel Panchekha, Zachary Tatlock, Xi Wang,
Michael D. Ernst, and Thomas Anderson. Verdi: A framework for imple-
menting and formally verifying distributed systems. In Proceedings of the 36th
ACM SIGPLAN Conference on Programming Language Design and Implemen-
tation (PLDI), pages 357–368, Portland, OR, June 2015.

68

	Introduction
	Verification Goal
	The Grove Verification Framework
	Overview
	Execution model
	Distributed Hoare triples
	Reasoning about the network
	Distributed Composition

	Verifying uRPC
	Formal specification of uRPC
	Proving uRPC's specification

	Exactly-once RPCs and Escrows
	The escrow pattern
	Verifying exactly-once RPCs
	Escrow in uRPC

	Verifying distributed systems with Grove
	GroveKV specification
	Linearizability and logical atomicity

	Verifying [0.5]Put, [0.5]Get, etc.
	Verifying shard migration
	Verifying the lock service
	Verifying the bank

	Implementation
	Performance evaluation
	Single shard server performance
	Speedup from node-local concurrency
	Speedup from dynamically adding servers

	Related work
	Conclusion

