6.876J Advanced Topics in Cryptography: Lattices		Oct 14, 2015		
Lecture 10				
Lecturer: Vinod Vaikuntanathan	Scribe: Lauren de Meyer,	Prashant Vasudevan		

Last class we showed the **NP**-hardness of the Closest Vector Problem (CVP). Today, we discuss the **NP**-hardness of the Shortest Vector Problem (SVP) and its gap version, GapSVP .

1 History

The essential parts of the history of hardness proofs for SVP are presented in Table 1. By SVP_{γ} and CVP_{γ} , we denote GapSVP and GapCVP respectively with gap γ . NP-hard* means that the reduction is randomised - an algorithm for this problem would give a randomised algorithm for any problem in NP. Quasi-NP-hard means the reduction runs in super-polynomial (though still sub-exponential) time.

Problem	Norm	Hardness	Reference
CVP ₁	ℓ_p	NP-hard	[vEB81]
SVP ₁	ℓ_{∞}	NP-hard	[vEB81]
SVP ₁	ℓ_2	NP-hard*	[Ajt98]
$SVP_{\sqrt{2}}$	ℓ_2	NP-hard*	[Mic98]
SVP	ℓ_p	NP-hard*	[Kho04]
$SVP_{2^{(\log n)^{1/2-\epsilon}}}$	ℓ_p	quasi-NP-hard	[Kho04]
$SVP_{2^{(\log n)^{1-\epsilon}}}^2$	ℓ_p	quasi-NP-hard	[HR07]

Table 1: History of NP-hardness proofs for lattice problems.

The following questions immediately arise from the current state of knowledge of **NP**-hardness reductions as presented in Table 1, and are still open.

- 1. Can the reductions to SVP with any gap at all be derandomised? See [Mic12] for notes on analogies to similar problems from the domain of linear codes.
- 2. It was shown in [AR05] that $SVP_{n^{1/2}}$ is in **coNP**. This makes it unlikely that $SVP_{n^{1/2}}$ is **NP**-hard. But what about $SVP_{n^{1/2-\epsilon}}$ for some ϵ ?
- 3. Can we get polynomial time reductions for the cases where we now have sub-exponential time reductions (from [Kho04] and [HR07])? If so, then things here would mirror the state of affairs for the same gaps for CVP.

2 NP-hardness of SVP in ℓ_2 -norm

We present here the reduction from [Kho04] SVP_c for constant c. While [Kho04] works for SVP in the ℓ_p for any p > 1, we shall concern ourselves only with the ℓ_2 norm. It is to be mentioned that the reduction due to [HR07] mentioned in Table 1 starts with this reduction and uses tensor products to amplify the gap.

The reduction proceeds in the following three steps:

1. ESC \leq CVP*

- 2. $CVP^* \leq SVP^*$
- 3. $SVP^* \leq SVP$

The problems ESC (Exact Set Cover), CVP^* , and SVP^* are defined when discussing the respective steps below.

Step 1: ESC \leq CVP^{*}

Exact Set Cover. For each n', n'', the promise problem $\mathsf{ESC}(\gamma, d)$ is defined over sets of n'' subsets $S_1, \ldots, S_{n''} \subseteq [n']$ (along with n') by the following characterisation of YES and NO instances:

- YES: There is a collection of γd subsets among $S_1, \ldots, S_{n''}$ that partition [n'].
- NO: No collection of $\leq d$ subsets among $S_1, \ldots, S_{n''}$ covers [n'].

CVP^{*}. The promise problem $\mathsf{CVP}^*(\gamma, d)$ is defined over pairs of full rank matrices and vectors (B, t) by the following characterisation of YES and NO instances:

- YES: $\exists y \in \Lambda(B)$ such that (y t) is a 0-1 vector with at most γd ones
- NO: $\forall y \in \Lambda(B)$ and $\beta \in \mathbb{Z} \setminus \{0\}$, $(y \beta t)$ has at least d non-zero coefficients.

Reduction:

For any d and γ , we show how to reduce $\mathsf{ESC}(\gamma, d)$ to $\mathsf{CVP}^*(\gamma, d)$. Given an instance $(n', S_1, \ldots, S_{n''})$ of $\mathsf{ESC}(\gamma, d)$, let χ_{S_i} be the characteristic vector of S_i (of length n'). Then the CVP^* instance reduced to is (B_{CVP}, t) , where B_{CVP} and t are constructed as follows:

1. Pick matrix S as:

$$S \leftarrow \begin{bmatrix} \vdots & \vdots & \vdots \\ \chi_{S_1} & \dots & \chi_{S_{n''}} \\ \vdots & \vdots & \vdots \end{bmatrix} \in \{0, 1\}^{n' \times n''}$$

- 2. Let L_{CVP} be the lattice defined as $L_{CVP} = \{z \in \mathbb{Z}^{n''} \mid Sz = 0\}$. Pick B_{CVP} to be a basis of L_{CVP} .
- 3. Pick t to be any vector in $\mathbb{Z}^{n''}$ such that $St = -\overrightarrow{1}$.

In other words, B_{CVP} is a basis of the dual of the lattice formed by the characteristic vectors of the sets $S_1, \ldots, S_{n''}$, and t is a vector in a certain coset of this lattice. The following argue that the reduction is correct:

- If $(n', S_1, \ldots, S_{n''})$ is a YES instance of $\mathsf{ESC}(\gamma, d)$, this implies that there is a 0-1 vector z with at most γd 1's such that $Sz = \overrightarrow{1}$. Then the vector y = z + t is in $\Lambda(B_{CVP})$ because $Sy = S(z+t) = \overrightarrow{0}$, and (y-t) = z is a 0-1 vector with at most γd 1's. Thus, (B_{CVP}, t) is a YES instance of $\mathsf{CVP}^*(\gamma, d)$.
- If $(n', S_1, \ldots, S_{n''})$ is a NO instance of $\mathsf{ESC}(\gamma, d)$, then no collection of at most d subsets even covers [n']. For any $y \in \Lambda(B_{CVP})$ and $\beta \in \mathbb{Z} \setminus \{0\}$, note that $S(y \beta t) = -\beta St = \beta \overrightarrow{1}$. So $(y \beta t)$ cannot have less than d non-zero co-efficients as the set of subsets corresponding to the non-zero co-efficients of $(y \beta t)$ constitutes a cover of [n']. Hence, (B_{CVP}, t) is a NO instance of $\mathsf{CVP}^*(\gamma, d)$.

Step 2: $CVP^* \leq SVP^*$

SVP^{*}. The promise problem $\mathsf{SVP}^*(\zeta, d)$ is defined over a full rank matrix *B* by the following characterisation of YES and NO instances:

- YES: There are "many" vectors $z \in \Lambda(B)$ with $||z|| \le \sqrt{\zeta d}$
- NO: There are only "a few" vectors $z \in \Lambda(B)$ with ||z|| < d.

We leave "many" and "a few" undefined for now. We will reduce $\mathsf{CVP}^*(\gamma, d)$ to $\mathsf{SVP}^*(4\gamma + \frac{r}{d}, d)$ (for r to be specified later) by creating a lattice that has a guaranteed number of short vectors $(\| \cdot \| \leq \sqrt{4\gamma d + r})$ when the CVP^* instance is a YES and only a limited number of vectors with length < d when the CVP^* instance is a NO.

A First Attempt

Consider a CVP*instance (B_{CVP}, t) with $y = B_{CVP}w$ the solution. First, construct the lattice basis $B = \begin{bmatrix} B_{CVP} & t \end{bmatrix}$.

- If (B_{CVP}, t) is a YES instance of $\mathsf{CVP}^*(\gamma, d)$ then t is close to the lattice L_{CVP} . This implies the existence of a vector $w \in \{0, 1\}^{n''}$ such that $y = B_{CVP}w$ is the solution of CVP^* and thus $\begin{bmatrix} B_{CVP} & t \end{bmatrix} \begin{bmatrix} w \\ -1 \end{bmatrix} = y - t$ is a 0-1 vector with at most γd ones $\Leftrightarrow \| \cdot \|_2 \leq \sqrt{\gamma d}$.
- If (B_{CVP}, t) is a NO instance of $\mathsf{CVP}^*(\gamma, d)$, then for any lattice vector $y = B_{CVP}w$ and for any $\beta \in \mathbb{Z} \setminus \{0\}$: $\begin{bmatrix} B_{CVP} & t \end{bmatrix} \begin{bmatrix} w \\ \beta \end{bmatrix} = y + \beta t$ has at least d non-zero coefficients $\Leftrightarrow \| \cdot \|_2 \ge \sqrt{d}$.

What about the case when $\beta = 0$? For this, consider the SVP lattice from $\begin{bmatrix} B_{CVP} & t \\ L & s \end{bmatrix}$ with L a gadget lattice and s some point that must satisfy the following properties:

1. s is close to all Lw vectors with $w \in \{0,1\}^{n''}$ such that the YES-instances

$$\begin{bmatrix} B_{CVP} & t \\ L & s \end{bmatrix} \begin{bmatrix} w \\ -1 \end{bmatrix} = \begin{bmatrix} B_{CVP}w - t \\ Lw - s \end{bmatrix}$$

are not ruined.

2. For NO-instances
$$\begin{bmatrix} B_{CVP} & t \\ L & s \end{bmatrix} \begin{bmatrix} w \\ \beta \end{bmatrix} = \begin{bmatrix} B_{CVP}w + \beta t \\ Lw + \beta s \end{bmatrix}$$
, we have either:

- $\beta \neq 0 \Rightarrow$ the vector $B_{CVP}w + \beta t$ already has at least d non-zero coefficients by CVP^* .
- $\beta = 0 \Rightarrow$ we must make sure Lw is not short

Finding L and s

Consider a binary $[n, k, d]_2$ code that transforms k-bit messages to n-bit codewords such that the minimum distance between any two codewords is d. With G the generator matrix of the code, let L be the basis of the lattice generated by $\begin{bmatrix} G & 2I \end{bmatrix}$ (the basis vectors of G mod 2).

Lemma 1. Every vector in $\Lambda(L)$ has either

- only even coordinates (= vectors corresponding to the zero codeword)
- $\geq d$ non-zero coordinates (=vectors corresponding to non-zero codewords)

Lemma 2. For any $r \in \mathbb{N}$, there is a point $s \in \{0,1\}^n$ such that the number of lattice vectors in $\Lambda(L)$ at distance at most r from s is at least:

$$\frac{2^k}{2^n} \binom{n}{r} = \frac{1}{2^{n-k}} \binom{n}{r}$$

Proof. Consider the collection of 2^k codewords (that are also vectors in $\Lambda(L)$) and the space $\{0,1\}^n$ of 2^n vectors. Connect each codeword to the vectors with hamming distance r (which are obtained by flipping r bits of the codeword). In each codeword one can choose $\binom{n}{r}$ different combinations of bits to flip so each codeword has $\binom{n}{r}$ edges. This implies that the total number of edges is $\binom{n}{r} \cdot 2^k$. So there is at least one point $s \in \{0,1\}^n$ that has at least $\binom{n}{r} \frac{2^k}{2^n}$ incident edges, which implies there are at least so many points in $\Lambda(L)$ within distance r from it.

The Reduction

Now we can finish our reduction from $\mathsf{CVP}^*(\gamma, d)$ to SVP^* by dealing with the case of $\beta = 0$. Consider the following lattice basis:

$$B_{SVP} = \begin{bmatrix} 2B_{CVP} & 0 & 2t \\ 0 & L & s \end{bmatrix}$$

- If (B_{CVP}, t) is a YES instance of $\mathsf{CVP}^*(\gamma, d)$, then there are vectors y, w such that $y t = B_{CVP}w t$ is a 0-1 vector with at most γd ones. By Lemma 2, there exists a vector s and at least $\frac{1}{2^{n-k}} \binom{n}{r}$ vectors w' such that Lw' s has at most r ones. This means that there exist at least $\frac{1}{2^{n-k}} \binom{n}{r}$ lattice vectors $z = B_{SVP} \begin{bmatrix} w \\ w' \\ -1 \end{bmatrix} = \begin{bmatrix} 2(B_{CVP}w t) \\ Lw' s \end{bmatrix}$ with $||z||_2 \le \sqrt{4\gamma d + r}$ (We call these z's good vectors).
- If (B_{CVP}, t) is a NO instance of $\mathsf{CVP}^*(\gamma, d)$, then consider the vector $z = B_{SVP} \begin{bmatrix} w \\ w' \\ \beta \end{bmatrix}$ for any

w, w' and β . We have the following cases:

- $-\beta \neq 0 \Rightarrow$. In this case, the fact that this is a NO instance of CVP^* guarantees that $||z||_2 \geq \sqrt{d}$.
- $-\beta = 0$. In this case, the lattice vectors are of the form $z = \begin{bmatrix} 2B_{CVP}w \\ Lw' \end{bmatrix}$.
 - 1. If \exists an odd coordinate in z, then by Lemma 1, there are $\geq d$ odd coordinates $\Leftrightarrow ||z||_2 \geq d$.
 - 2. Else, there are only even coordinates:
 - * If there are at least $\frac{d}{4}$ non-zero coordinates in z, then $||z||_2 \ge d$.
 - * Else, z has less than $\frac{d}{4}$ non-zero coordinates:
 - · If there is a coordinate with absolute value at least d, then $||z||_2 \ge d$
 - Else, we call z an **annoying vector**. Such a vector has only a few (< d/4) non-zero coordinates and each coordinate have absolute value at most d. By straightforward counting, we can see that the number of **annoying vectors** is at most:

$$\binom{n+n''-n'}{d/4}(2d+1)^{d/4}$$

If one chooses $r = (\frac{3}{4} + \epsilon)d$ for some small constant ϵ and uses a BCH code $([n, n - \frac{d}{2}\log n, d]_2)$ in the above reduction, then one can make sure that the number of annoying vectors in any instance that a NO instance of CVP^* reduces to is much smaller than the number of good vectors in any instance that a YES instance reduces to.

Note that there was a non-uniform step involved in the reduction, which was knowing an s such that there are a lot of codewords close to it as predicted by Lemma 2. This non-uniformity can be traded for randomness, as it can be shown that a random 0-1 vector, in fact, has very similar properties.

Step 3: $SVP^* \leq SVP_c$

We reduce SVP^* to SVP with (an arbitrarily large) constant gap by transforming the lattice with basis B_{SVP} to a new lattice $L_{w,q} = \{v \in \Lambda(B_{SVP}) \text{ s.t. } \langle v, w \rangle = 0 \mod q\}$. For any set of vectors in $\Lambda(B_{SVP})$, with high probability (over the choice of w), 1 in q vectors from this set is present in $L_{w,q}$. So by choosing q appropriately and choosing w at random, we can ensure that with high probability, none of the annoying vectors are retained when reducing from a NO istance of SVP^* , and least 1 good vector is retained when reducing from a YES instance.

References

- [Ajt98] Miklós Ajtai. The shortest vector problem in L_2 is NP-hard for randomized reductions (extended abstract). In Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA, May 23-26, 1998, pages 10–19, 1998.
- [AR05] Dorit Aharonov and Oded Regev. Lattice problems in NP cap conp. J. ACM, 52(5):749–765, 2005.
- [HR07] Ishay Haviv and Oded Regev. Tensor-based hardness of the shortest vector problem to within almost polynomial factors. In Proceedings of the 39th Annual ACM Symposium on Theory of Computing, San Diego, California, USA, June 11-13, 2007, pages 469–477, 2007.
- [Kho04] Subhash Khot. Hardness of approximating the shortest vector problem in lattices. In 45th Symposium on Foundations of Computer Science (FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 126–135, 2004.
- [Mic98] Daniele Micciancio. The shortest vector in a lattice is hard to approximate to within some constant. In 39th Annual Symposium on Foundations of Computer Science, FOCS '98, November 8-11, 1998, Palo Alto, California, USA, pages 92–98, 1998.
- [Mic12] Daniele Micciancio. Inapproximability of the shortest vector problem: Toward a deterministic reduction. *Theory of Computing*, 8(1):487–512, 2012.
- [vEB81] Peter van Emde Boas. Another np-complete partition problem and the complexity of computing short vectors in a lattice. Technical Report 81-04, Mathematische Instituut, University of Amsterdam, 1981.