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1 Overview

e Worst-case to average-case reduction

Worst-case problems are typically harder than average-case problems. While if there
is worst-case to average-case reduction, you are able to solve the problem in worst-case
if you can solve a problem in average case.

An example of worst-case to average-case reduction is RSA. Assume there is an black
box reverse RSA, i.e. you known N, e, the box output m¢ = m°d (V) on input m. While
the box is only guaranteed to work w.h.p. on random input m. Then given m, your
could query the box on input m’ = m - r¢ for random r, then the box should output
m¢" - r with high probability.

e Cryptography constructions (One-way functions, CRHF's)

2 Reduce worst-case SIVP; ) to average-case SIS (Short
Integer Solutions) [MRO7]

Definition 2.1 (Search SIVP,). Given a lattice £, find n linear independent vectors vy, ..., v,
in L such that ||v;||2 < yA\,.

Definition 2.2 (SIS(n,m, q, 3)). Given A € Zy*™, find e € Z;" s.t.

1. Ae=0
2.e#0
3. [lel2 <8

Moreover, SIS is typically considered as an average-case problem. An oracle solving SIS
would output a short solution w.h.p. given uniform random input A.

nlogq

We choose parameter m > o2 (B11/2)

so that a short solution is guaranteed.

Remark. e Parameter: When m < n, the SIS problem is trivial. The case when n <
m < nlogn is similar to LWE.

e We could define f4 by fa(e) = Ae mod ¢, f4 is “many-to-one” under such parameter.
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e SIS is a lattice problem. The set A+(A) = {e : Ae = 0 mod ¢} is an integer lattice
and A is the “parity check” matrix. SIS problem is to find a non-zero short vector in
the lattice.

e SIS can be defined more generally on a Abelian group G. In SISg, given ay, ..., a, € G,
find short vector (ey,...,e,) € Z™ such that ) e;a; = 0.

e Another generalization is ISIS (Inhomogenous SIS), given A, b, find e such that Ae = b
mod q.

Theorem 2.1. There is a polytime reduction from SIVP 4.\ to average-case SIS, m .5, where

q=n*), 6 =0(/m),m=nlogq.

An important concept in the proof is Gaussian distribution. In n-dim Gaussian, ps(u) o
flu?
e 2 . Consider we pick a random lattice, then add a Gaussian noise with variance s.

(Formally, we should sample from Gaussian distribution and modulo parallelepiped.) If
s < A1, the resulting distribution should concentrate around the lattice points. If s > Aq,
then the Gaussian distribution rooted at two neighbor lattice points “merge together”. If s
is sufficiently large, then the distribution is close to uniform distribution.

To quantify this idea, we define the smoothing parameter 7. as in [MRO7]

Definition 2.3 (Smoothing parameter 1.(£(B))). The smoothing parameter of lattice £L(B)
of error ¢ is the minimum variance of Gaussian, such that its modulo over parallelepiped
P(B) is e-close to uniform.

n:(L(B)) = inf{s : Aq(N(0,5*) mod P(B),Upp)) < e}

Theorem 2.2 (Banaszczyk [Ban95, Pei08]). For every lattice,

n.(L) < \/log(1/e) +logn - A,
Proof of Theorem 2.1. The reduction is
Given basis B € Z"*" (and assume that A, is known)
1. Choose Xy, .. .,X, from n-dimensional Gaussian A (0, s?) such that s > n.(L)
2. y;=x%; mod P(B)

Then we known y; should satisfies (close to) uniform distribution in P(B).

We consider the sup-lattice E(%B) ={v/q: v € L(B)}, which is ¢" times more dense
then L(B). Round y; to a vector z; in this sup-lattice, and let a; be the coefficient of the
lattice point under base %B .

3. a; = [q . Bilyij, Z; = lBai

T g

Then z; = %Bai is the lattice point in E(%B), and it’s close to y;. Moreover, a; should be
(almost) uniform random in Z,.
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4. Feed (ay,...,a,,) as input to the SIS oracle, get (e1,...,en).

5. > ei(x; — yi + z;) is a short lattice vector.

Correct: Vector Y e;(x; —y; + z;) is a lattice point. > e;(x; — y;) is a lattice point
because x; — y; is a lattice point; and > e;z; is a lattice point because Y e;a; =0 mod ¢

Zeiai =0 mod q

1
= e;—a; =0 mod 1
Do,
1
= ) e;—Ba; =0 mod P(B)
q
— Zeizi =0 mod P(B)

Short: Vector Y e;(x; —y; + z;) is a short vector.

VI < 1D eaill + 11 elyi — 2o)]

nmax; ||b;]|
< lell - lIxll + ————

nmax; ||b;]|

< B syvn+

The problem is that ||b;|| might be so large that the output v is not a short vector. In such
case, v is shorter than max; ||b;|| (if ¢ is sufficiently large), then we could use v to update
the basis so that we’ll get a shorter basis.

Set ¢ > n2. If max; ||b;|| > Q(n),), we get v that is smaller than max; ||b;||. Use it to

update the basis and reduce max ||b;||. Repeat such process many times until ||b;|| = O(nA,),
then ||v|| =~ O(8y/mn).

Non-zero and cheat: The above analysis does not rule out the possibility that v = 0.
We are solving Search SIVP,, we are looking for n linear independent lattice points, while
the procedure might always output lattice points from a subspace. Also, when max; ||b;||,
we use v to update the basis, while if v is limited in a subspace, e.g. the space spanned by
by, then v can not be used to improve the basis. In either case, we hope v is not limited in
any subspace. We relies on randomness to solve the problem. E.g. if v is uniformly sampled
from all lattice points that ||v| < O(B+y/mn), then all the problems are fixed.

Notice that in our procedure, step 3 and 4, x; is never used, and y; is their best knowledge

about x;. Given y; = x; mod P(B), vector x; — y; satisfies discrete Gaussian distribution,
llu)?
which is a distribution over lattice £ such that ps(u) oc e s .

The procedure outputs v =">_ e;(x; — y;) + > €;z;. Given the values used in step 3 and
4, %" e;z; is a fixed number, while ) e;(x; —y;) is sum of discrete Gaussian, which satisfies
discrete Gaussian with standard deviation ||e||2s. These provide sufficient randomness to fix
the problems mentioned above. [
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3 Reduce SAT to inverting OWF? (Is SAT < OWF?)

Question: we are given an oracle inverting a family of one-way functions. Could you use it
to solve SAT in polynomial time?

Consider a special case where the family is consist of permutations. Any language that
can be reduced to inverting one-way permutation is in NP NcoNP. So SAT can not be reduce
to inverting one-way permutations unless polynomial hierarchy collapses.

Slightly more generally, if a language can be reduce to inverting an one-way functions
family that is regular (or size-verifiable). Then the language is in AM N coAM C NP [BB15].
This rule out the probability that you can reduce SAT to worst-case inverting regular one-way
functions.

Another negative result: NP-hard problems cannot be reduce to arbitrary one-way func-
tions family, if the reduction is non-adaptive (or constant-round adaptive) [HMX10].

What we are looking for is an reduction from SAT to average-case inverting an one-way
functions family. We have not ruled out this probability, but we known the OWF family
must not be regular or size-verifiable, and the reduction must be (heavily) adaptive.

We can easily construct a “one-way functions family”, inverting which in worst-case
implies solving SAT. While the worst-case hardness is not a useful guarantee in cryptography.
The reduction from SIVP to SIS is extremely interesting because it reduce inverting a one-
way function in worst-case to an average-case problem.
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