
6.876J: Advanced Topics in Cryptography: Lattices Fall 2015

Lecture 14 - Fully Homomorphic Encryption

Prof. Vinod Vaikuntanathan October 28, 2015

Overview

In the previous class we covered

• LWE. We looked at a search to decision reduction (SLWEn,m,q,χ ≤ DLWEn,m′,q,χ). However,
the runing time of the reduction is poly(q) and also m = poly(1/ε,m′, q). Ideally, we would
want running time poly(log q) and m = O(m′). This has been shown, but only when χ is a
Gaussian.

• private and public-key encrpytion schemes from LWE.

In this lecture we will construct a fully homomorphic encryption scheme. Currently the only know
construction of such a scheme is from LWE.

Fully Homomorphic Encryption

Motivation: Through regular encryption we can store data remotely without revealing the data
D to the server. Is is possible to have the server compute some function f on the data without
having to decrypt it and send the encrypted result back to the client? Also, for what choice of
functions is this possible?

Client
Server

Encsk(D)

Eval f

Encsk(f(D))

We will show this is possible for both addition (XOR) and multiplication (AND).

Definition 1. Let C be a class of circuits C : {0, 1}n → {0, 1}. An encryption scheme (KeyGen,
Enc, Dec, Eval) is called C-homomorphic if for all f ∈ C and ciphertexts c1, . . . , cn,

Eval(f, c1, . . . , cn) = c∗ such that if Dec(ci) = mi for all ci then Dec(c∗) = f(m1, . . . ,mn)

For security, we use the regular notion of semantic security (or indistinguishability).

Definition 2. An encryption scheme is fully homomorphic if it is C-homomoprhic where C is the
class of all polynomial sized circuits.

1

Addition

We will start by looking how to compute addition over ciphertexts. In fact, we will use the private
key scheme from last class. As a reminder, the secret key s ∈ Znq and m ∈ {0, 1}

Enc(s,m) =
(
a, 〈a, s〉+ e+

⌈q
2

⌋
m
)

where e is some small random error term. To compute the addition, we will simply add the
ciphertexts component-wise. So given plaintext-ciphertext pairs (m1, c1) and (m2, c2),

c1 + c2 =
(
a1 + a2, 〈a1 + a2, s〉+ (e1 + e2) +

⌈q
2

⌋
(m1 +m2)

)
So applying the decryption algorithm we would retrieve the parity of m1 +m2 given the total error
is small (|e1 + e2| ≤ q/4). It is easy to expand this to addition of l = poly(n) ciphertexts. However,
this will result in an accumulation of error. The total error of adding these l ciphertexts is at most
l · max |ei|. So we need to start with small enough error (|ei| ≤ q

4l) to be able to decrypt after
adding l ciphertexts. For security, this means we need to assume the hardness of LWE for weaker
parameters.

Theorem 3 (WC-AC for LWE).

gapSVPn, q
σ
poly(n) ≤ LWEn,m,q,χ=Dσ

where Dσ is a discrete gaussian and m only affects the running time of the reduction.

Note that the approximation factor depends on the ratio between q and σ.

Informally, we can use this theorem as a way to choose parameters. The best known algorithms

for gapSVPn,2nε takes time 2Õ(n1+ε). So we can set q
σ = 2n

.99
. For addition, l = poly(n) at most

nlogn. So we let q = nlogn and σ = poly(n) to do arbritrary additions.

Multiplication

For multiplication we will use the Approximate Eigenvector Encryption Scheme [Gentry, Sahai,
Waters ‘13; Brakerski ‘14]. The first uses an approximation factor of nd where d is the depth of the
circuit and the second work improves the approximation factor to n3.

A Non-Encryption Scheme

Consider the following:

Public Key: P ∈ Zn×nq where is P is random matrix with nullity > 0

Secret Key: s ∈ Znq such that sP ≡ 0 (mod q)

Enc(m) = PR+mI = C ∈ Zn×nq , where R
$←Zn×nq

Dec(C) = sC = s(PR+mI) = ms

2

Note that this scheme is insecure because we can recover s given P , but we will ignore that for
now. Encryption is essentially a OTP since R is random s is an eigenvector of C with eigenvalue
m. So we can both add and multiply cihpertexts. Let sC = ms and sC ′ = m′s.

s(C + C ′) = (m+m′)s s(CC ′) = (mm′)s

Tweaking the Scheme

We will modify the previous scheme to get closer to a real encryption scheme. We do not want s
to be in the kernal of P , but almost in the kernal (sP ≈ 0 (mod q)). So we define the following
scheme:

Secret Key: s =
(
s′ −1

)
where s is an n-dimensional row vector and s′

$←Zn−1q

Public Key: P =

[
P ′

s′P ′ + e

]
with P ′

$←Zn−1×nq and error e

Enc(µ) = PR+ µI = C ∈ Zn×nq , where R
$←{0, 1}n×n

Dec(C) = sC = s(PR+ µI) = −eR+ µs

Note sP =
(
s′ −1

) [P ′

s′P ′ + e

]
= −e which shows s is close to being in the kernal. It is important

that R have small entries as otherwise the error term −eR would become large and we would be
unable to decrypt. This scheme is also not semantically secure. But let us try to add and multiply
over this scheme. Let sC = ẽ+ µs and sC ′ = ẽ′ + µ′s with ẽ = −eR.

s(C + C ′) = (ẽ+ ẽ′) + (µ+ µ′)s s(CC ′) = (ẽ+ µs)C ′ = (ẽC ′ + µẽ′) + µµ′s

This is a problem for multiplication as ẽC ′ could be a large error term since P has large entries.

Approximate Eigenvector Encryption Scheme

We will make one more change to address the problem of the previous scheme. We increase the
number of LWE sample from n to m = n(blog qc+ 1). The other change is replacing I with a new
matrix G. Like the scheme for addition, we need a way to account for noise of the error. So we
will construct G to perform error correction.

Secret Key: s =
(
s′ −1

)
where s is an n-dimensional row vector and s′

$←Zn−1q

Public Key: P =

[
P ′

s′P ′ + e

]
with P ′

$←Zn−1×mq and error e

Enc(µ) = PR+ µG = C ∈ Zn×mq , where R
$←{0, 1}n×m

Dec(C) = sC = s(PR+ µG) = −eR+ µsG

Let G ∈ Zn×m such that

G =

1 2 . . . 2blog qc 0 . . . 0

0 . . . 0 1 . . . 2blog qc 0 . . . 0
...

. . .

0 . . . 0 1 . . . 2blog qc

3

Also, G = g ⊗ I, where g =
[
1 2 . . . 2blog qc

]
. So for any a ∈ Zq, consider finding a solution

v ∈ Zn satisfying gv = a with small coefficients. One can see that the binary decomposition of a is
a solution. Likewise for a vector a ∈ Znq , a solution to Gv = a with v ∈ Zm having small coefficients
is expanding each component of a into its binary decomposition. G is a linear operator given by
matrix multiplication and G−1, the inverse operator (not linear), expands a into its component-wise
binary decomposition.

Now, addition is identical to the previous scheme. So let us look at multiplication given ciphertexts
C,C ′ ∈ Zn×mq . Instead of directly multiplying we will compute either

C ·G−1(C ′) or C ′ ·G−1(C)

with G−1(C ′) ∈ Zm×m expanding each column of C ′ into its binary decomposition.

s(C ·G−1(C ′)) = (e+ µsG)G−1(C ′)

= (eG−1(C ′) + µsC ′)

= (eG−1(C ′) + µe′) + µµ′sG

This gives us the desired result. Now we will bound the error term (emult). Since each entry in
G−1(C ′) is in {0, 1},

‖emult‖ ≤ m‖e‖∞ + µ‖e′‖∞
Note that while the product is correctly given back, the order of multiplication has an impact on
the error. It is possible to get an error reduction. For example if µ = 0, then we remove the e′

error.

The security of this scheme follows almost identical to Regev’s public key scheme as our public key
is many LWE samples. So we now have a scheme capable of computing addition and multiplication.

A crucial question remains of how many operation can one perform? Given a circuit f of depth
d. If we start with a magnitude of error B0 = ‖e‖∞ = poly(n), then as we evaluate the circuit
at each level we pick up at most a factor of m (assuming multiplication). So the final error is
B0m

d = mO(d). Because we want to be able to decrypt at the end, we must have mO(d) < q/4 or
(n log q)d < q. So as a result we have a leveled fully homomorphic encryption scheme as d must be
specified in advance to choose a sufficiently small starting error. For security q < 2n

ε
with ε < 1.

This gives us a bound d < nε

logn .

f

B0

...

B0m

B0m
d

Bootstrapping

However, we would like to compute circuits of arbritrary depth. Every method we currently know
how to do this relies on the bootstrapping theorem [Gentry ‘09]. As we do computations, we

4

accumulate error. So we would like a procedure to do error reduction. Given a ciphertext C with
error η that encrypts m, we want a ciphertext C ′ with error η′ << η that encrypts m. Note that
decrpytion itself is a good error reduction as it completely removes the noise, but we cannot hand
over the secret key.

So instead we will hand over an encrpytion of the secret key (Es(s)). This circular encryption is
no longer LWE and one needs to assume security under this new setting where the adversary has
the secret key encrypted under itself.

DEC

C ′ = Es(m)

Es(s) Es(C)

Homomorphic encrpytion lets us compute functions over encrpyted inputs and get the encrypted
output. So we can compute decryption on encrypted inputs. So this is an identity operation except
the error has changed. The error of C ′ does not depend on the error of C as we used fresh error in
the inputs. The final error is nO(dDEC)poly(n). So if we set q > nO(dDEC)poly(n) we can reduce the
error of a ciphertext.

Therefore, we can compute an operation and then perform error reduction to get a ciphertexts
with small error. Repeating this process we can evaluate arbritrary circuits while keeping the error
small as nO(dDEC)poly(n) is fixed. So with bootstrapping we get a fully homomorphic encryption
scheme.

Open Questions: Is is possible to do fully homomorphic encryption without making circular
security assumptions? Either by showing the security of the circular object or coming up with a
new construction?

Note that for Regev encryption, it is secure to release the encryption of the secret key. Consider
each index of the key encrypted under itself,(

a, 〈a, s〉+ e+ si

⌈q
2

⌋)
=
(
a,
〈
a+

⌈q
2

⌋
ui, s

〉
+ e
)

=
(
a′ −

⌈q
2

⌋
ui,
〈
a′, s

〉
+ e
)

where ui is the ith standard basis vector. The last equality holds from variable substitution and
the security follows from noting this last expression is indistinguishable from random.

5

