
Adam Hesterberg

Lecture Notes
6.876 2015-11-16

1 Guest Lecture by Silas Richelson

1.1 Review

Vinod’s algorithm, GPV-Sample(A,S, u, σ):

1. A ∈ Zn×mq

2. S is a type 1 trapdoor for A i.e. S ∈ Zm×m is a “short” matrix such that
AS ≡ 0 (mod q).

3. σ (which should be larger than the largest norm of a vector in the Gram-
Schmidt orthogonalization by something like ω(

√
log(n))) is a measure of

smoothness.

The output is determined as in previous classes. (Choose a random r from the
discrete Gaussian DΛ⊥,u,σ, etc.)

The security property is that the following two distributions should be sta-
tistically close:

1. First choose r fromDZm,σ, then let u = Ar (taken mod q, giving something
in Znq)—that is, take a “random trapdoor”.

2. First choose r according to GPV-Sample(A,S, u, σ), then choose u ran-
domly from Znq . (That is, run GPV-Sample).

This property should remind one of a trapdoor permutation: sampling a ran-
dom point and computing its image should be indistinguishable from sampling
a random point and computing its preimage.

1.2 Identity-Based Encryption

Goal: allow public keys to be anything, e.g. a name, so you don’t have to do
a key-generation process. But how would you generate a corresponding secret
key?

Model: There’s a master and many users ID1, . . . , IDn. The master begins
by generating a master public key MPK and a corresponding secret key MSK.
If I want a secret key, I request it from the master, who generates it using their
secret key somehow. The other users, but not the master, might collude to try
to break the system. Encrypt using MPK and the identity of the recipient.

There are four parts:

1

1. IBE-Setup(1n) is the master’s setup: outputs (MPK, SPK).

2. IBE-Extract(MPK,MSK,ID) is each person’s setup: it outputs SKID,
where (PKID, SKID) is a key pair. PKID should be trivially obtainable
from ID.

3. IBE-Encrypt(MPK,PKID,msg) is encryption: outputs ciphertext ctID
(which depends on the message and identity).

4. IBE-Decrypt(ctID, SKID) outputs msg.

There are a few necessary properties:

1. Correctness: For every message msg and identity ID, if you do every-
thing properly, it should work with high probability: that is, IBE −
Decrypt(IBE−Encrypt(MPK,PKID,msg), IBE−Extract(MPK,MSK, ID)) =
msg.

2. Security: No polynomial-time adversary should win the following game
with probability more than 1

2 + negl(n):

The challenger gets (MPK,MSK) from IBE − Setup. Then, polyno-
mially many times, the adversary sends IDi and gets SKi from IBE −
Extract(MPK,MSK, IDi). Then, the adversary sends an identity ID
that’s not one whose secret key they got in the previous phase and two
messages m0 and m1; the challenger picks a random b ∈ {0, 1} and sends
the encrypted ciphertext ct = IBE−Encrypt(MPK, ID,mb). Then, the
adversary can repeat the previous step (send ID, get secret key). Finally,
the adversary guesses b ∈ {0, 1}, and wins iff they guess correctly.

(This security property corresponds to CPA security. It can be modified
to work for CCA security too.)

Construction:

1. IBE-Setup(1n) generates a master public and secret key by making a lat-
tice with a trapdoor: that is, it takes a statistically random (according to
the trapdoor statistical indistinguishability guarantee) A ∈ Zn×mq along
with a trapdoor S. MPK is A and MSK is S.

2. IBE-Extract(A,S, ID): assuming a random oracle1 H, let u = H(ID) ∈
Znq ; choose r according to GPV-Sample(A,S, u, σ) (for any σ sufficiently
large for statistical indistinguishability), and output (PKID, SKID) =
(u, r). That is, r ∈ Zmq is a “short” (i.e. Gaussianly distributed) vector
such that Ar = u.

1We should be able to remove this later.

2

Except, if you’ve been asked about the same u (i.e. the same ID) before,
output the same thing instead.2

3. Before definiting IBE-Encrypt, note that we can’t just use Regev encryp-
tion. Recall that in Regev Encryption, you have an A ∈ Zn×mq , you
generate a secret key s ∈ Znq , choose e ∈ DZm,r and let v = Ats+ e ∈ Zmq ,
which the LWE assumption says looks completely random, be the public
key. To encrypt a message b with v, choose r ∈ DZm,σ, let u = Ar ∈ Znq ,
let w = vtr+ q

2b, and output the ciphertext (u,w). To decrypt a message
(u,w) with s, calculate (w − stu)(2

q) and round it.

In Regev encryption, public keys are sparse in Zmq . In the random oracle
model of IBE, public keys are dense in Znq . That’s why we can’t just use
Regev encryption.

So, we’ll use “Dual3 Regev Encryption”, which basically switches the key-
generation and encryption algorithms.

(a) Again, we have a public A ∈ Zn×mq .

(b) To generate a key, choose r ∈ DZm,σ, let u = Ar ∈ Znq , and use
(pk, sk) = (u, r).

(c) To encrypt a message b with u, choose s ∈ Znq , e ∈ DZm,σ, and
e′ ∈ DZ,σ, and let v = Ats+ e ∈ Zmq , w = uts+ e′+ (q2)b and output
the ciphertext (v, w).

(d) To decrypt a message (v, w) with secret key r, round (w − vtr) 2
q .

(In regular Regev, the public key and ciphertext are (v, u, w); in dual
Regev, they’re (u, v, w). In regular Regev, the public key and ciphertext
are (s, r); in dual, they’re (r, s).)

That’s correct because w− vtr = (q2)b+ (e′− etr), and the second term is
short.

Heuristically, the proof of security is about the same as the proof of secu-
rity for regular Regev Encryption: use the leftover hash lemma to show
that u is statistically random, then use LWE on the random w.

So, finally, define IBE-Encrypt(A, u, b) as follows: choose s ∈ Znq , e ∈
DZm,σ, and e′ ∈ DZ,σ, and let v = Ats+ e ∈ Zmq , w = uts+ e′ + (q2)b and
output the ciphertext (v, w).

Define IBE-Decrypt((v,w),r) as b(w − vtr) 2
q e.

2This might not be necessary. Maybe, without this, if you get many r for the same u,
you can reconstruct S? It’s convenient in the security proof: it makes the Adversary’s attack
indistinguishable from one in which they don’t send any IDs, but we just choose the random
oracle output ourselves. Then the keys (ui, ri) we send the Adversary are a random ui ∈ Znq
and a random ri from GPV-Sample(A,S, ui, σ), which is, by the GPV indistinguishability
guarantee, indistinguishable from if we’d just generated the secret key ri randomly from
DZm,σ and multiplied by A (mod q for the public key ui = Ari, which the Adversary can
generate themself.

3This is not a technical term.

3

How can we remove the random oracle from that construction? We’ll remove
the random oracle along the lines of the classic tree construction of pseudoran-
dom functions from pseudorandom generators.

We’ll construct a tree as follows. The root is A ∈ Zn×mq with a trapdoor
S. Each identity will be some node of the tree, at which there’ll be a matrix

A′ = [A||Ā] ∈ Zn×(m+m̄)
q with a trapdoor S′, and we need to be careful that all

those S′ don’t reveal anything of S. So, we’ll define an algorithm “Extend” to
compute such a trapdoor. The ith column S′i of S′ will be computed as follows:

draw t̄i from DZm̄,σ and s′i =

(
ti
t̄i

)
. Set u = −Āt̄i ∈ Znq , so A′s′i = Ati = −Āt̄i.

Draw ti from GPV-Sample(A,S, u, σ).
Next lecture: using the above to get complete IBE. Also, ABE.
Last lecture by Vinod might be predicate-based encryption.

4

	Guest Lecture by Silas Richelson
	Review
	Identity-Based Encryption

