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Lecture 4
Lecturer: Vinod Vaikuntanathan Scribe: Akshay Degwekar

In this class, we will cover -

• The LLL Algorithm.

• Applications of LLL -

– Babai’s Algorithm for approximating CVP.

– Exact SVP in 2O(n2)poly(W ) time.

– Solving “low density” subset sum problems.

1 The LLL Algorithm

We begin describing the algorithm of Lenstra, Lenstra and Lovász for approximating the shortest vector of
a lattice.

Theorem 1. Given a basis B ∈ Zn×n there is a poly(n,WB)-time algorithm for SVP2O(n) , where WB

is the length of the bit representation of B; namely, the algorithm returns a vector v ∈ L(B) such that
‖v‖ ≤ 2O(n) · λ1(B).

The LLL algorithm actually transforms, in polynomial time, the given basis into a “LLL-reduced” basis
for the same lattice. The above theorem holds since a LLL-reduced basis has an important property — its
shortest vector is a 2O(n)-approximation for the shortest vector in entire the lattice. In this lecture we’ll give
define a LLL-reduced basis and give some intuition for this definition; in the next lecture we’ll describe and
analyze the LLL algorithm itself.

1.1 LLL-reduced Basis

Our goal is to transform the given basis to one with “short” vectors. Consider the case n = 2, i.e., B =
[b1,b2]. Our starting point is the Gram-Schmidt orthogonalization process in which we set b̃1 := b1 and
b̃2 := b2−µ21b̃1, where µ21 = 〈b2, b̃1〉/〈b̃1, b̃1〉. Intuitively, b̃2 is the shortest vector we can hope for, since
we removed all b̃1’s components from it (this fact is what make the Gram-Schmidt orthogonal). However,
b̃2 /∈ L(B), and thus cannot be in a basis of L(B). To fix this issue, we transform B into the following basis:
b′1 = b and b′2 = b2 − bµ21eb′1, where b·e means rounding to the closest integer. b′2 is the shortest lattice
vector we can hope for, as we removed all the integer components of b̃1. Note that when projecting b′2 to
the line generated by b′1, then this projection is between −b′1/2 to b′1/2. The latter fact also guarantees
that the resulting basis is “close” to orthogonal — the angle between b′1 to b′2 is at least 60 degrees. See
Figure 1 for an example of this transformation.

So far we reduced b2, but left b1 as is. But what if b1 is very long to begin with? there is no guarantee
that the reduced basis is short. At this point we adopt an idea from Euclid’s greatest common divisor (gcd)
algorithm: we reduce b2 with respect to b1 as much as we can, then swap the roles of b1 and b2 and repeat
the process. The process will stop when the basis meets the following conditions, which are the definition of
LLL-reduced basis in two dimensions.

Definition 2 (LLL-reduced basis in two dimensions). A basis B = [b1,b2] is LLL-reduced if

1. |µ21| ≤ 1/2.
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Figure 1: The LLL-reduced basis of [b1 = (2, 0),b2 = (3, 2)] is [b′1 = (2, 0),b′2 = (1, 2)].

2. ‖b2‖ ≥ ‖b1‖.

Note that the second condition can be written as
∥∥∥b̃2

∥∥∥2 ≥ (1−µ2
21)
∥∥∥b̃1

∥∥∥2. Generalizing for n dimensions

we get the following definition.

Definition 3 (LLL-reduced basis). Let δ ∈ [1/4, 1]. A basis B = [b1, . . . ,bn] is δ-LLL-reduced if

1. |µij | ≤ 1/2 for every 1 ≤ i < j ≤ n.

2.
∥∥∥b̃i+1

∥∥∥2 ≥ (δ − µ2
i+i,i)

∥∥∥b̃i∥∥∥2 for every 1 ≤ i ≤ n− 1.

Note that the projection of a (partial) LLL-reduced basis [b1, . . . ,bi−1,bi,bi+1] to Span(b̃i, . . . , b̃n) is
[0, . . . , 0, b̃i,bi+1+µi+1,ib̃i]. The last two vectors meet the definition of LLL-reduced basis in two dimensions.

2 The LLL Algorithm

2.1 LLL-reduced basis

To recap, we defined a δ-LLL reduced basis last class

Definition 4 (δ-LLL-reduced basis). Let δ ∈ (1/4, 1). A basis B = [b1, . . . ,bn] is δ-LLL-reduced if

1. size-reduced. |µi,j | ≤ 1/2 for every i > j.

2. Lovász criterion.
∥∥∥b̃i+1

∥∥∥2 ≥ (δ − µ2
i+i,i)

∥∥∥b̃i∥∥∥2 for every 1 ≤ i ≤ n− 1.

To get some intuition for this definition, we look at the 2d variant we saw last class where we said

that ‖b2‖ ≥ ‖b1‖ equivalently
∥∥∥b̃2

∥∥∥2 ≥ (1 − µ2
2,1)

∥∥∥b̃1

∥∥∥2. We are slightly changing this by adding a

δ as a parameter. Geometrically, the criterion looks at the projection of vectors b1,b2 · · ·bn on to the
Gram-Schmidt vectors. The first few vectors b1 · · ·bi−1 project to 0, bi becomes b̃i and bi+1 projects to
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b̃i+1 + µi+1,ib̃i. So the Lovász criterion compares the norms of these two projected vectors and says that
the second one is ‘longer’ than the first one, like the 2d case.

It is interesting to note that this condition is extremely local and it can be extended to looking at k vectors
at a time to give a 2k time, 2n/k approximation to SVP. We want to argue that finding a LLL-reduced basis
is enough to get an approximate shortest vector.

Lemma 5. If B is a δ-LLL reduced basis, then ‖b1‖ ≤
(

2√
4δ−1

)n−1
λ1

Proof. Since B is δ-LLL reduced, we know that -∥∥∥b̃i+1 + µi+1,ib̃i

∥∥∥2 ≥ δ ∥∥∥b̃i∥∥∥
Using the fact that the Gram-Schmidt basis is ortogonal, we rearrange the equation to get∥∥∥b̃i+1

∥∥∥2 ≥ (δ − µ2
i+1,i)

∥∥∥b̃i∥∥∥2
Here we substitute the fact that |µi+1,i| ≤ 1

2 to get that∥∥∥b̃i+1

∥∥∥2 ≥ (
4δ − 1

4
)
∥∥∥b̃i∥∥∥2

From this we infer that
∥∥∥b̃i∥∥∥2 ≥ ( 4δ−1

4 )i−1
∥∥∥b̃1

∥∥∥2. This used in conjunction with λ1 ≥ mini

{∥∥∥b̃i∥∥∥} gives

us the required result.

So, in any LLL-reduced basis, the first vector would be a good approximation to the shortest vector. It
is interesting to note that this gives us a bit more - we can use the fact that the i-th largest element of the

set -
{∥∥∥b̃j∥∥∥}

j
gives us a lower bound on λi to get a comparable approximation on λi for all i.

2.2 Finding an LLL-reduced basis

Lemma 5 reduces the problem of getting a 2O(n) approximation to SVP to finding an LLL-reduced basis. In
this section we describe the LLL algorithm to find a reduced basis and analyze it.

Input Basis b1,b2 · · ·bn
while

1 Compute b̃1, b̃2 · · · b̃n a

2 for i = 2 to n // Reduction Step
for j = i− 1 to 1

bi ← bi − ci,jbj where ci,j = bµi,je
3 if ∃ i such that

∥∥∥b̃i+1

∥∥∥ <√δ − µ2
i+1,i

∥∥∥b̃i∥∥∥b // Swap step

Swap bi and bi+1

else
Output b1,b2 · · ·bn

aThis step does have some issues with runtime - the exact Gram-Schmidt vectors might
keep getting bigger in terms of bit length. We don’t consider those issues here.

bWe do not recompute the b̃i’s again because the Reduction step does not affect b̃i’s.

Figure 2: The LLL algorithm
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The LLL-algorithm is an iterative algorithm where in each iteration, we first replace the vectors bi’s by
‘approximately’ orthogonal vectors in the lattice obtained from the vectors b̃i’s. After this, we check if the
Lovász criterion is violated for any pair of vectors bi,bi+1. In case of a violation, we swap the two vectors
and continue.

Correctness To prove correctness, we need to show that, if the algorithm terminates, then the output
basis is LLL-reduced.

In order to show that |µi,j | ≤ 1
2 , consider the last iteration. It will not do any swaps and hence the

vectors b̃i’s will remain unchanged in the iteration. On the other hand, because we subtract ci,j ’s, the values
of µi,j ’s changes. Namely µnewi,j = µoldi,j −

⌊
µoldi,j

⌉
and hence

∣∣µnewi,j

∣∣ ≤ 1/2. Note that this relies on the fact
that we are decrementing j in step 2 of the algorithm. The Lovász criterion is satisfied by termination – if
it was not satisfied for some i, then we would swap bi and bi+1 and iterate again.

Termination The termination is a potential argument. We define a non-negative potential function φ(B)
for any basis and then show that it was not too large to begin with and that each iteration reduces this
function by a constant.

Let φ(B) =
∏
i φi(B) where

φi(B) = |det(L(b1,b2 · · ·bi))|

Where the determinant for non full rank matrices is defined as det(B) = det(
√

B>B). Another way to
write it would be

φi(B) =
∥∥∥b̃1

∥∥∥ · ∥∥∥b̃2

∥∥∥ · · · ∥∥∥b̃i∥∥∥
Observation 6. φ(B) is not too large to begin with

φ(Binit) ≤
n∏
i=1

‖b1‖ · ‖b2‖ · · · ‖bi‖ ≤ max
i

(‖bi‖)O(n2)

So, log(φ(Binit)) = poly(n,W ) where W is the bit length of the vectors. We also know that φ(B) ≥ 1
because of the fact that we are dealing with integer lattices and each potential φi can be interpreted as the
i-dimensional volume enclosed by the vectors b1,b2 · · ·bi.

Observation 7. The reduction step does not change the potential function

This is evident by looking at φi(B) =
∥∥∥b̃1

∥∥∥ ∥∥∥b̃2

∥∥∥ · · · ∥∥∥b̃i∥∥∥ and observing that the reduction step leaves

b̃i’s invariant.

Observation 8. The swap step reduces φ by a constant factor.

Proof. Let us say that bi and bi+1 were swapped. This only affects the value of φi(B) because changing
order of vectors does not affect the determinant.

The old value of φi is, φoldi =
∥∥∥b̃1

∥∥∥ · ∥∥∥b̃2

∥∥∥ · · · ∥∥∥b̃i∥∥∥ while the new value is φnewi =
∥∥∥b̃1

∥∥∥ · ∥∥∥b̃2

∥∥∥ · · · ∥∥∥b̃i−1∥∥∥ ·∥∥∥b̃i+1

∥∥∥. We see that the component of b̃i+1 orthogonal to the span of b1,b2 · · ·bi−1 is b̃i+1 + µi+1,ib̃i. So,

φnew

φold
=
φnewi

φoldi
=

∥∥∥b̃i+1 + µi+1,ib̃i

∥∥∥∥∥∥b̃i∥∥∥ <
√
δ

So as long as δ < 1 is a fixed constant, we know that the potential function decreases by a constant
factor.

Combining the observations we see that the algorithm has to terminate in time poly(n,W ).
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3 Applications

The LLL algorithm has many applications - the most famous one being factoring polynomials over rationals.
It also gives us an algorithm for finding the exact shortest vector - while the algorithm takes exponential
time, it was the first algorithm to solve exact SVP for a fixed dimension.

3.1 Computing Shortest Vectors in 2O(n2) Time

Corollary 9 (Exact SVP). There is an exact SVP algorithm running in time 2O(n2)

Proof. To show this we consider an LLL-reduced basis B. Consider a shortest vector v =
∑
i cibi. We want

to say that ci ≤ 2O(n) and hence by iterating over ci’s and returning the smallest vector would give us a
2O(n2) algorithm.

Consider v =
∑
i cibi = v =

∑
i c̃ib̃i. We look at the last i such that ci is non-zero. Then ci = c̃i

because it is the only coefficient contributing in the b̃i direction. Since ‖b1‖ ≥ ‖v‖ ≥ ci

∥∥∥b̃i∥∥∥, we get that

ci ≤ ( 4
4δ−1 )(i−1)/2 because

∥∥∥b̃i∥∥∥2 ≥ ( 4δ−1
4 )i−1

∥∥∥b̃1

∥∥∥2.

3.2 Babai’s Algorithms for Approximate CVP

Corollary 10 (Babai’s Algorithm for Approximate CVP). Let B be a reduced LLL-basis and y be the input
vector. There are two variants of the algorithm -

1. Babai’s rounding algorithm - We find the representation of y in the real span of B and output the
rounded coefficients. Succinctly, output B

⌊
B−1y

⌉
2. Babai’s nearest plane algorithm - The algorithm works iteratively. We consider the hyperplane H =

Span(b1 · · ·bn−1) and its translations - bn +H, 2bn +H and so on and find the one closest to y, then
project y on H and recurse.
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