6.876 Advanced Topics in Cryptography: Lattices Instructor: Vinod Vaikuntanathan

Problem Set 1

Handed Out: October 1, 2015

Due: October 24, 2015

Notes

- This problem set is worth 100 points.
- Collaboration is allowed, but you must write up the solutions by yourself without consulting to notes from the discussions. You must also reference your sources.
- Grading is based on correctness as well as the clarity of the solutions. When writing proofs, it is generally a good idea to first explain the intuition behind your solution in words (wherever appropriate), before jumping in to the formalisms.
- Notation: \mathbb{N} denotes the natural numbers, \mathbb{Z} denotes the integers, \mathbb{Q} denotes rational numbers and \mathbb{R} the set of real numbers.

Warmup: Lattice Bases (10 points)

Consider the basis

$$\mathbf{B} = \left(\begin{array}{rrr} 123 & 1\\ 6764 & 55 \end{array}\right)$$

• Which of the following vectors belong to the lattice $\mathcal{L}(\mathbf{B})$?

$$\mathbf{v}_1 = \begin{pmatrix} 129\\ 143 \end{pmatrix} \qquad \mathbf{v}_2 = \begin{pmatrix} 1/2\\ 10 \end{pmatrix} \qquad \mathbf{v}_1 = \begin{pmatrix} 1\\ 0 \end{pmatrix}$$

- What is the determinant of $\mathcal{L}(\mathbf{B})$?
- Find the Gram-Schmidt orthogonalization of **B**.
- Find a shortest vector in $\mathcal{L}(\mathbf{B})$ (note that there may be many).
- Find a shortest basis of $\mathcal{L}(\mathbf{B})$ (note that there may be many).

Problem 2: Bases (20 points)

- Given a basis *B*, check if $\mathcal{L}(B)$ is a cyclic lattice, where a lattice \mathcal{L} is called cyclic if for every lattice vector $\mathbf{x} \in \mathcal{L}$, any cyclic rotation of the coordinates of *x* is also in \mathcal{L} . For example, the lattice $\mathcal{L}(\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3)$ where $\mathbf{b}_1 = (2, 0, 0)^T$, $\mathbf{b}_2 = (0, 2, 0)^T$ and $\mathbf{b}_3 = (1, 1, 1)^T$ is cyclic.
- Describe a procedure that given any set of vectors $\mathbf{b}_1, \ldots, \mathbf{b}_n \in \mathbb{Z}^m$, find a basis for the lattice $\mathcal{L}(\mathbf{b}_1, \ldots, \mathbf{b}_n)$ (notice that these vectors are not necessarily linearly independent and that in particular, *n* might be greater than *m*). There is no need to analyze the running time. A corollary is that any set of vectors in \mathbb{Z}^m spans a lattice.

Problem 3: Minkowski's First Theorem (20 points)

• (5 points) Find the analog of Minkowski's first theorem for the ℓ_1 and ℓ_{∞} norms.

[*Hint:* Which part of the proof of Minkowski's first theorem is specific to the ℓ_2 norm?]

• (15 points) Despite lattices with much shorter vectors than predicted, Minkowski's theorem is tight for general lattices. In particular, there is a family of lattices $\{\mathcal{L}_n\}_{n\in\mathbb{N}}$ where \mathcal{L}_n lives in n dimensions, and

$$\lambda_1(\mathcal{L}_n) \ge c \cdot \sqrt{n} \cdot \det(\mathcal{L}_n)^{1/n}$$

where c is a universal constant independent of n.

Show that such a family of lattices exists (your proof doesn't have to construct this family, you merely have to show existence).

Problem 4: Properties of LLL-Reduced Bases (20 points)

Show that a δ -LLL reduced basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$ of a lattice L with $\delta = 3/4$ satisfies the following properties.

- 1. $\|\mathbf{b}_1\| \le 2^{(n-1)/4} \cdot \det(L)^{1/n}$.
- 2. For any $1 \le i \le n$, $\|\mathbf{b}_i\| \le 2^{(i-1)/2} \cdot \|\widetilde{\mathbf{b}}_i\|$.
- 3. $\prod_{i=1}^{n} \|\mathbf{b}_i\| \le 2^{n(n-1)/4} \cdot \det(L).$
- 4. For $1 \leq i \leq n$, consider the hyperplane $H = \mathsf{Span}(\mathbf{b}_1, \ldots, \mathbf{b}_{i-1}, \mathbf{b}_{i+1}, \ldots, \mathbf{b}_n)$. Show that

$$2^{-n(n-1)/4} \|\mathbf{b}_i\| \le \mathsf{dist}(H, \mathbf{b}_i) \le \|\mathbf{b}_i\|$$

Hint: use (3).

Problem 5: Rounding to find an Approximately Close Lattice Vector (15 points)

Show that there is a constant c > 0 such that the following algorithm, given a basis $\mathbf{B} \in \mathbb{Z}^{m \times n}$ and a target vector $\mathbf{t} \in \mathbb{Z}^m$, finds a lattice point $\mathbf{y} \in \mathcal{L}(\mathbf{B})$ where

$$\|\mathbf{y} - \mathbf{t}\| \le 2^{cn} \cdot \mathsf{dist}(\mathbf{t}, \mathcal{L}(\mathbf{B}))$$

Algorithm Round(B,t):

- 1. Run the LLL-reduction algorithm on \mathbf{B} to get an LLL-reduced basis \mathbf{B}' .
- 2. Find $\mathbf{s} = (s_1, \ldots, s_n) \in \mathbb{R}^n$ such that $\mathbf{B's} = \mathbf{t}$, say, by Gaussian Elimination.
- 3. Let $\hat{\mathbf{s}} \triangleq (\lfloor s_1 \rceil, \dots, \lfloor s_n \rceil)$ be the vector consisting of the entries of \mathbf{s} rounded to the nearest integer. (e.g., $\lfloor 0.5 \rceil = 1$ and $\lfloor 0.49 \rceil = 0$). Output $\mathbf{y} = \mathbf{B}'\hat{\mathbf{s}}$.

Problem 6: Running Time of LLL (15 points)

Show that our analysis of the LLL algorithm using LLL-reduced bases is tight (up to some constant). More specifically, find a δ -LLL reduced basis $\mathbf{b}_1, \ldots, \mathbf{b}_n$ for $\delta = 3/4$ such that \mathbf{b}_1 is longer than the shortest vector by a factor or $c \cdot 2^{n/2}$, for some constant c.

(Note that this does not mean that $\mathbf{b}_1, \ldots, \mathbf{b}_n$ is the output of the LLL algorithm when run on some input basis. You do not have to demonstrate that.).

Extra Credit*

For any vector $\mathbf{v} = (v_1, v_2, \dots, v_n) \in \mathbb{Z}^n$, let $\mathsf{Rot}(\mathbf{v}) \triangleq (v_2, v_3, \dots, v_n, v_1)$ denote the cyclic rotation of \mathbf{v} . A cyclic lattice is one that is closed under the $\mathsf{Rot}(\cdot)$ operation. That is, a lattice L is cyclic if for every $\mathbf{v} \in L$, $\mathsf{Rot}(\mathbf{v}) \in L$ too. Show any of the following:

- CVP on cyclic lattices is NP-hard (Recall, we saw in class that CVP for general lattices is NP-hard).
- An interactive proof for $gapCVP_{\gamma}$ on cyclic lattices, for any $\gamma = o(\sqrt{n/\log n})$, improving on the Goldreich-Goldwasser interactive proof we saw in class.
- A polynomial-time algorithm that finds 2^{o(n)}-approximate shortest vectors on cyclic lattices, improving on the LLL algorithm.