Notes

• This problem set is worth 100 points.
• Collaboration is allowed, but you must write up the solutions by yourself without consulting to notes from the discussions. You must also reference your sources.
• Grading is based on correctness as well as the clarity of the solutions. When writing proofs, it is generally a good idea to first explain the intuition behind your solution in words (wherever appropriate), before jumping in to the formalisms.
• Notation: \(\mathbb{N} \) denotes the natural numbers, \(\mathbb{Z} \) denotes the integers, \(\mathbb{Q} \) denotes rational numbers and \(\mathbb{R} \) the set of real numbers.

Warmup: Lattice Bases (10 points)

Consider the basis

\[
B = \begin{pmatrix}
123 & 1 \\
6764 & 55
\end{pmatrix}
\]

• Which of the following vectors belong to the lattice \(\mathcal{L}(B) \)?

\[
v_1 = \begin{pmatrix} 129 \\ 143 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1/2 \\ 10 \end{pmatrix}, \quad v_1 = \begin{pmatrix} 1 \\ 0 \end{pmatrix}
\]

• What is the determinant of \(\mathcal{L}(B) \)?

• Find the Gram-Schmidt orthogonalization of \(B \).

• Find a shortest vector in \(\mathcal{L}(B) \) (note that there may be many).

• Find a shortest basis of \(\mathcal{L}(B) \) (note that there may be many).

Problem 2: Bases (20 points)

• Given a basis \(B \), check if \(\mathcal{L}(B) \) is a cyclic lattice, where a lattice \(\mathcal{L} \) is called cyclic if for every lattice vector \(x \in \mathcal{L} \), any cyclic rotation of the coordinates of \(x \) is also in \(\mathcal{L} \). For example, the lattice \(\mathcal{L}(b_1, b_2, b_3) \) where \(b_1 = (2, 0, 0)^T \), \(b_2 = (0, 2, 0)^T \) and \(b_3 = (1, 1, 1)^T \) is cyclic.

• Describe a procedure that given any set of vectors \(b_1, \ldots, b_n \in \mathbb{Z}^m \), find a basis for the lattice \(\mathcal{L}(b_1, \ldots, b_n) \) (notice that these vectors are not necessarily linearly independent and that in particular, \(n \) might be greater than \(m \)). There is no need to analyze the running time. A corollary is that any set of vectors in \(\mathbb{Z}^m \) spans a lattice.
Problem 3: Minkowski’s First Theorem (20 points)

• (5 points) Find the analog of Minkowski’s first theorem for the \(\ell_1\) and \(\ell_\infty\) norms.

 [Hint: Which part of the proof of Minkowski’s first theorem is specific to the \(\ell_2\) norm?]

• (15 points) Despite lattices with much shorter vectors than predicted, Minkowski’s theorem is tight for general lattices. In particular, there is a family of lattices \(\{L_n\}_{n \in \mathbb{N}}\) where \(L_n\) lives in \(n\) dimensions, and

\[
\lambda_1(L_n) \geq c \cdot \sqrt{n} \cdot \det(L_n)^{1/n}
\]

where \(c\) is a universal constant independent of \(n\).

Show that such a family of lattices exists (your proof doesn’t have to construct this family, you merely have to show existence).

Problem 4: Properties of LLL-Reduced Bases (20 points)

Show that a \(\delta\)-LLL reduced basis \(b_1, \ldots, b_n\) of a lattice \(L\) with \(\delta = 3/4\) satisfies the following properties.

1. \(\|b_1\| \leq 2^{(n-1)/4} \cdot \det(L)^{1/n}\).
2. For any \(1 \leq i \leq n\), \(\|b_i\| \leq 2^{(i-1)/2} \cdot \|\tilde{b}_i\|\).
3. \(\prod_{i=1}^n \|b_i\| \leq 2^{n(n-1)/4} \cdot \det(L)\).
4. For \(1 \leq i \leq n\), consider the hyperplane \(H = \text{Span}(b_1, \ldots, b_{i-1}, b_{i+1}, \ldots, b_n)\). Show that

\[
2^{-n(n-1)/4} \|b_i\| \leq \text{dist}(H, b_i) \leq \|b_i\|
\]

Hint: use (3).

Problem 5: Rounding to find an Approximately Close Lattice Vector (15 points)

Show that there is a constant \(c > 0\) such that the following algorithm, given a basis \(B \in \mathbb{Z}^{m \times n}\) and a target vector \(t \in \mathbb{Z}^m\), finds a lattice point \(y \in L(B)\) where

\[
\|y - t\| \leq 2^{cn} \cdot \text{dist}(t, L(B))
\]
Algorithm Round(B, t):

1. Run the LLL-reduction algorithm on B to get an LLL-reduced basis B'.

2. Find $s = (s_1, \ldots, s_n) \in \mathbb{R}^n$ such that $B's = t$, say, by Gaussian Elimination.

3. Let $\hat{s} \triangleq (\lfloor s_1 \rfloor, \ldots, \lfloor s_n \rfloor)$ be the vector consisting of the entries of s rounded to the nearest integer.
 (e.g., $\lfloor 0.5 \rfloor = 1$ and $\lfloor 0.49 \rfloor = 0$).
 Output $y = B'\hat{s}$.

Problem 6: Running Time of LLL (15 points)

Show that our analysis of the LLL algorithm using LLL-reduced bases is tight (up to some constant). More specifically, find a δ-LLL reduced basis b_1, \ldots, b_n for $\delta = 3/4$ such that b_1 is longer than the shortest vector by a factor or $c \cdot 2^{n/2}$, for some constant c.
(Note that this does not mean that b_1, \ldots, b_n is the output of the LLL algorithm when run on some input basis. You do not have to demonstrate that.).

Extra Credit*

For any vector $v = (v_1, v_2, \ldots, v_n) \in \mathbb{Z}^n$, let $\text{Rot}(v) \triangleq (v_2, v_3, \ldots, v_n, v_1)$ denote the cyclic rotation of v. A cyclic lattice is one that is closed under the $\text{Rot}(\cdot)$ operation. That is, a lattice L is cyclic if for every $v \in L$, $\text{Rot}(v) \in L$ too. Show any of the following:

- CVP on cyclic lattices is NP-hard (Recall, we saw in class that CVP for general lattices is NP-hard).
- An interactive proof for gapCVP, on cyclic lattices, for any $\gamma = o(\sqrt{n}/\log n)$, improving on the Goldreich-Goldwasser interactive proof we saw in class.
- A polynomial-time algorithm that finds $2^{o(n)}$-approximate shortest vectors on cyclic lattices, improving on the LLL algorithm.