
6.876 Advanced Topics in Cryptography: Lattices Instructor: Vinod Vaikuntanathan

Problem Set 1
Handed Out: October 1, 2015 Due: October 24, 2015

Notes

• This problem set is worth 100 points.

• Collaboration is allowed, but you must write up the solutions by yourself without consulting to notes
from the discussions. You must also reference your sources.

• Grading is based on correctness as well as the clarity of the solutions. When writing proofs, it is
generally a good idea to first explain the intuition behind your solution in words (wherever appropriate),
before jumping in to the formalisms.

• Notation: N denotes the natural numbers, Z denotes the integers, Q denotes rational numbers and R
the set of real numbers.

Warmup: Lattice Bases (10 points)

Consider the basis

B =

(
123 1
6764 55

)
• Which of the following vectors belong to the lattice L(B)?

v1 =

(
129
143

)
v2 =

(
1/2
10

)
v1 =

(
1
0

)
• What is the determinant of L(B)?

• Find the Gram-Schmidt orthogonalization of B.

• Find a shortest vector in L(B) (note that there may be many).

• Find a shortest basis of L(B) (note that there may be many).

Problem 2: Bases (20 points)

• Given a basis B, check if L(B) is a cyclic lattice, where a lattice L is called cyclic if for every lattice
vector x ∈ L, any cyclic rotation of the coordinates of x is also in L. For example, the lattice
L(b1,b2,b3) where b1 = (2, 0, 0)T , b2 = (0, 2, 0)T and b3 = (1, 1, 1)T is cyclic.

• Describe a procedure that given any set of vectors b1, . . . ,bn ∈ Zm, find a basis for the lattice
L(b1, . . . ,bn) (notice that these vectors are not necessarily linearly independent and that in par-
ticular, n might be greater than m). There is no need to analyze the running time. A corollary is that
any set of vectors in Zm spans a lattice.
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Problem 3: Minkowski’s First Theorem (20 points)

• (5 points) Find the analog of Minkowski’s first theorem for the `1 and `∞ norms.

[Hint: Which part of the proof of Minkowski’s first theorem is specific to the `2 norm?]

• (15 points) Despite lattices with much shorter vectors than predicted, Minkowski’s theorem is tight for
general lattices. In particular, there is a family of lattices {Ln}n∈N where Ln lives in n dimensions,
and

λ1(Ln) ≥ c ·
√
n · det(Ln)1/n

where c is a universal constant independent of n.

Show that such a family of lattices exists (your proof doesn’t have to construct this family, you merely
have to show existence).

Problem 4: Properties of LLL-Reduced Bases (20 points)

Show that a δ-LLL reduced basis b1, . . . ,bn of a lattice L with δ = 3/4 satisfies the following properties.

1. ‖b1‖ ≤ 2(n−1)/4 · det(L)1/n.

2. For any 1 ≤ i ≤ n, ‖bi‖ ≤ 2(i−1)/2 · ‖b̃i‖.

3.
∏n
i=1 ‖bi‖ ≤ 2n(n−1)/4 · det(L).

4. For 1 ≤ i ≤ n, consider the hyperplane H = Span(b1, . . . ,bi−1,bi+1, . . . ,bn). Show that

2−n(n−1)/4‖bi‖ ≤ dist(H,bi) ≤ ‖bi‖

Hint: use (3).

Problem 5: Rounding to find an Approximately Close Lattice Vector (15 points)

Show that there is a constant c > 0 such that the following algorithm, given a basis B ∈ Zm×n and a target
vector t ∈ Zm, finds a lattice point y ∈ L(B) where

‖y − t‖ ≤ 2cn · dist(t,L(B))
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Algorithm Round(B, t):

1. Run the LLL-reduction algorithm on B to get an LLL-reduced basis B′.

2. Find s = (s1, . . . , sn) ∈ Rn such that B′s = t, say, by Gaussian Elimination.

3. Let ŝ , (bs1e, . . . , bsne) be the vector consisting of the entries of s rounded to the nearest integer.
(e.g., b0.5e = 1 and b0.49e = 0).

Output y = B′ŝ.

Problem 6: Running Time of LLL (15 points)

Show that our analysis of the LLL algorithm using LLL-reduced bases is tight (up to some constant). More
specifically, find a δ-LLL reduced basis b1, . . . ,bn for δ = 3/4 such that b1 is longer than the shortest vector
by a factor or c · 2n/2, for some constant c.
(Note that this does not mean that b1, . . . ,bn is the output of the LLL algorithm when run on some input
basis. You do not have to demonstrate that.).

Extra Credit*

For any vector v = (v1, v2, . . . , vn) ∈ Zn, let Rot(v) , (v2, v3, . . . , vn, v1) denote the cyclic rotation of v. A
cyclic lattice is one that is closed under the Rot(·) operation. That is, a lattice L is cyclic if for every v ∈ L,
Rot(v) ∈ L too. Show any of the following:

• CVP on cyclic lattices is NP-hard (Recall, we saw in class that CVP for general lattices is NP-hard).

• An interactive proof for gapCVPγ on cyclic lattices, for any γ = o(
√
n/ log n), improving on the

Goldreich-Goldwasser interactive proof we saw in class.

• A polynomial-time algorithm that finds 2o(n)-approximate shortest vectors on cyclic lattices, improving
on the LLL algorithm.
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