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History of Zero Knowledge
[GMR85]: introduced ZKP, with its simulator-based 
definition, and gave an example

[GKR89]: gave ZKP for an NP-complete problem 
(3-colorability), and thus for all of NP



History of Non-Interactive Arguments
[FS87]: generically turn public-coin IP into non-interactive 
proof by generating verifier’s next queries from input and 
conversation so far



History of Non-Interactive Arguments

(secure assuming random oracle, but heuristically valid)
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History of Succinct Arguments



PCPs
P V



The PCP Theorem
NP ⊆ PCP[O(log n), O(1)]

& easy to add ZK!

Randomness Queries



From PCP to Succinct Argument
Send entire PCP? 

Verifier sends query locations?

Not succinct!

Easy for prover to cheat!



From PCP to Succinct Argument
[Kil93, Mic94]: Encode PCP over Merkle tree



From PCP to Succinct Argument

P V



From PCP to Succinct Argument
[Kil93, Mic94]: Encode PCP over Merkle tree

Gives good asymptotics, but bad practical efficiency



Linear PCPs
PCP

query

query

query

inner product

Achieved by moving to the exponent of a group with hard discrete logs

Requires shared structured reference string, involving trusted setup

Introduced in [IKO07], made efficient in [GGPR13] using pairings



Linear PCPs
Computation

Algebraic Circuit

R1CS

QAP

Linear PCP

zkSNARK



IOPs
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IP
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IOPs
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Linear IOPs
IOP where each PCP is linear

[GKR08] & protocols based off it



Polynomial IOPs
Special case of linear IOP:

PCP is coefficients

Query is of the form 1 z z2 z3 z4 • • • zn

STARK

DARK

PLONK

Marlin!



Polynomial IOPs
Computation

Algebraic Circuit

R1CS

Polynomial IOP

(using polynomial commitments)

zkSNARK
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Argument System for CSAT

Preprocessing zkSNARKs with 
circuit-specific setup

SETUP(1λ, C) → (pkC, vkC)

PROVE(pkC, x, w) → π

VERIFY(vkC, x, π) → b

Problem: new setup for every 
circuit; to be trustworthy, this 

requires a global MPC

CircuitPublic
Input

Private 
Input



Goal: universal setup
Universal Trusted Setup:

USETUP(1λ, N) → (upk, uvk)

CPROCESS(upk, C1) 
↓

(cpk1, cvk1)

CPROCESS(upk, C2) 
↓

(cpk2, cvk2)

CPROCESS(upk, C3) 
↓

(cpk3, cvk3)

Circuit-specific deterministic preprocessing:

PROVE(cpk2, x, w) → π

VERIFY(cvk2, x, π) → b



Goal: updatable setup

Initial Setup:
SETUP(1λ) → (srs, ρ)

Each update:
UPDATE(1λ, srs, (ρi)i=1,..,n) → (srs', ρ')

Verification:
VERIFY(1λ, srs, (ρi)i=1,..,n) → b



Marlin: 
Preprocessing 
zkSNARK for 

R1CS

Preprocessing 
zkSNARK with
Universal SRS
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1. Methodology

2. Efficient ingredients
for an efficient SNARK

3. Rust implementation https://github.com/scipr-lab/
marlin

AHP 
for 

R1CS

Extended
KZG10
Scheme

https://github.com/scipr-lab/marlin
https://github.com/scipr-lab/marlin


Evaluation over BLS12-381
MARLIN:   1296B
Groth16: 192BProof size:

Prover time Verifier time

~10x
~4x

Concurrent Work:
Marlin:    good for R1CS
PLONK: good for CSAT



This Talk

1. Methodology

2. Efficient ingredients
for an efficient SNARK

3. Rust implementation

A. Provides a clean and straightforward way to 
construct preprocessing SNARKs

B. Shows that the key to achieving preprocessing 
is holography
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[ ]x
w

where z =

A set of triples (i, x, w) satisfying a prescribed condition

Example: Arithmetic Circuit Satisfaction (CSAT): 

IndexPublic
Input

Private 
Input

IndexPublic
Input

Private 
Input

Example: Rank-1 Constraint System (R1CS): 

Index Public
Input

Private 
Input



Algebraic Holographic Proofs
PROVER VERIFIERp1

r1

…

QUERYQ

DECISIONb

• Completeness: Whenever (i, x, w) ∈ R, V accepts.

• Proof of Knowledge: Whenever V accepts, P “knows” w such that (i, x, w) ∈ R.

• Bounded-query ZK: Whenever (i, x, w) ∈ R, a verifier that makes up to b queries to 
polys learns nothing about w.

pn
rn

What about verifier 
efficiency?



Problem: Verifier is linear in circuit!
PROVER VERIFIERp1

r1

…

QUERYQ

DECISIONb

pn
rn

• When size of circuit << size of computation (like in machine 
computations), this is OK.

• When size of circuit = size of computation (like in CSAT/R1CS), 
this is bad!

Has to read circuit!



VERIFIER

Algebraic Holographic Proofs

PROVER
p1

r1

…
QUERYQ

DECISIONb

pn
rn

PREPROCESS
Circuit 
polys C

C

Verifier efficiency: |x| +T(Interaction) + T(QUERY) + T(DECISION) 
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Polynomial Commitments

SENDER RECEIVER
cm

z

SETUP
Maximum
degree D

Committer key ck
Verifier key       vk

1. cm ← COMMIT(ck, p)

(v, π)

2. v ← p(z)
3. π ← OPEN(ck, cm, p, z) CHECK(vk, cm, z, v, π)

• Completeness: Whenever p(z) = v, R accepts.

• Extractability: Whenever R accepts, S’s commitment cm “contains” a 
polynomial p of degree at most D.

• Hiding: If R makes up to b queries, it learns nothing about p.



RECEIVER

CHECK(vk, [cm], Q, [v], [d], π)

SENDER

2. [v] ← [p](Q) z
3. π ← OPEN(pk, [p], [d], Q)

Q

1. [cm] ← COMMIT(pk, [p], [d]) cm[cm]

Polynomial Commitments

SETUP
Maximum
degree D

Committer key ck
Verifier key       vk

(v, π)

Our compiler needs more
● Batch commitment

● Multiple rounds

([v], π)

● Batch opening

● Per-poly degree bounds
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Idea underlying compiler: 

Holography ⇒ Preprocessing



Preprocessing zkSNARKs
ARG.SETUP(1λ, N) → (upk, uvk)
ARG.INDEX(upk, i) → (ipk, ivk)
ARG.PROVE(ipk, x, w) → π
ARG.VERIFY(ivk, x, π) → b ∈{0, 1}

• Completeness: Whenever (i, x, w) ∈ R, V accepts.

• Proof of Knowledge: Whenever V accepts, P “knows” w such that 
(i, x, w) ∈ R.

• Zero Knowledge: Whenever (i, x, w) ∈ R, V learns nothing about w. 

• Verifier efficiency: T(V) = O(log(|i|) + |x|)



ARG.SETUP(1λ, N)

Universal Setup

Maximum degree D

Committer key ck
Verifier key       vk

AHP(N)1.

2.

Universal prover key upk = (ck, vk)
Universal verifier key uvk =  vk

3. Output 

PC.SETUP(D)



ARG.INDEXER(upk, i)

Index-specific Setup

Index polys I

Index comms. [cm]

AHP.INDEXER(i)1.

2.

Index verifier key ivk =  (upk.uvk, [cm] )
Index prover key ipk = (ivk, upk, I )

3. Output 

PC.COMMIT(upk, I )
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PC.COMMIT

QUERYQ

PC.OPEN(upk, [cm], [p], [d], Q)

pn
rn

PC.COMMIT

cm1

cmn

[v] ← [p](Q)
DECISION[v]

π PC.CHECK(uvk, [cm], Q, [v], [d], π)

+ Fiat-Shamir to get non-interactivity



Properties
• Completeness: Follows from completeness of PC and AHP.

• Proof of Knowledge: Whenever ARG.VERIFY accepts but 
(i, x, w) ∉ R, we can construct either an adversarial prover against 
AHP, or an adversary that breaks extractability of PC.

• Zero Knowledge: Follows from hiding of PC and bounded-query 
ZK of AHP. 

• Verifier efficiency: T(ARG.VERIFY) = T(AHP.VERIFIER) + 
T(PC.CHECK)



Conclusion
algebraic holographic proof 

+

extractable polynomial commitment scheme
into a

universal preprocessing zkSNARK

In the talk:

Efficient AHP for R1CS:

• Protocol to evaluate low-degree extension for arbitrary R1CS 
matrices

Extending KZG10 to achieve:

• Extractability across multiple rounds

• Batch commitment and opening

• Individual degree bounds

In the paper:



https://github.com/scipr-lab/marlinCode: 

https://eprint.iacr.org/2019/1047Paper: 

https://github.com/scipr-lab/marlin
https://eprint.iacr.org/2019/1047


[KZG10] Polynomial Commitments



Polynomial Commitments: Definition

PC.Setup(1λ, degree bound D) → (committer key ck, 

receiver key rk)

PC.Commit(ck, polynomial p) → commitment c

PC.Open(ck, p, eval point z) → proof π

PC.Check(rk, c, z, claimed value v, π) → bit b



Polynomial Commitments: Security

Completeness: if v = p(z), then PC.Check outputs 1

Extractability: anyone who produces a commitment c that 

cause PC.Check to accept “knows” a corresponding poly p

Succinctness: c and π sizes, PC.Check time independent of D

Hiding: commitment reveals no information about polynomial



“open”

What Are Polynomial Commitments?
polynomial f

“query”

“commit”

polynomial 
oracle

polynomial 
commitment

“respond” “prove”

evaluation f(z)

prover

evaluation point z

“encode”

verifier



A Wider View: Oracles & Primitives

set

oracle type

vector

low-degree

polynomial

inner product

accumulator

cryptographic primitive

vector
commitment

low-degree test

polynomial
commitment

inner product 
argument
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Kate et al. Polynomial Commitments
Setup(1λ, D):

● computes groups G, GT of prime order p with pairing e

● chooses generator g ∈ G, random α from {1, …, p-1}

● outputs pk = rk = (g, αg, α2g, …, αtg)



Kate et al. Polynomial Commitments
Commit(ck, p):

● outputs c = p(α)g, pulling monomials from ck



Kate et al. Polynomial Commitments
Open(ck, p, z):

● computes witness poly ϕ(x) := (p(x) - p(z))/(x - z)

● outputs proof π = ϕ(α)g

witness poly because it shows the value for p(z) is correct



Check(rk, c, z, v, π):

● checks whether

Kate et al. Polynomial Commitments

e(c, g) = e(p(α)g, g)

e(c, g) = e(π, (α - z)g) e(g, g)v

if c = p(α)g, v = p(z), π = ϕ(α)g= e(π, (α-z)g) e(g, g)v    

      = e(ϕ(α)g, (α-z)g) e(g, g)p(z)

= e(g, g)ϕ(α)(α-z)+p(z)= e(g, g)p(α)


