
History of Succinct
Arguments

Nicholas Ward

zero knowledge

zkSNARKs

succinct

non-interactive

argument

of knowledge

Delegation of Computation

Why?

P

V

History of Zero Knowledge
[GMR85]: introduced ZKP, with its simulator-based
definition, and gave an example

[GKR89]: gave ZKP for an NP-complete problem
(3-colorability), and thus for all of NP

History of Non-Interactive Arguments
[FS87]: generically turn public-coin IP into non-interactive
proof by generating verifier’s next queries from input and
conversation so far

History of Non-Interactive Arguments

(secure assuming random oracle, but heuristically valid)

P V P

σ0

H

H

arg V

History of Succinct Arguments

PCPs
P V

The PCP Theorem
NP ⊆ PCP[O(log n), O(1)]

& easy to add ZK!

Randomness Queries

From PCP to Succinct Argument
Send entire PCP?

Verifier sends query locations?

Not succinct!

Easy for prover to cheat!

From PCP to Succinct Argument
[Kil93, Mic94]: Encode PCP over Merkle tree

From PCP to Succinct Argument

P V

From PCP to Succinct Argument
[Kil93, Mic94]: Encode PCP over Merkle tree

Gives good asymptotics, but bad practical efficiency

Linear PCPs
PCP

query

query

query

inner product

Achieved by moving to the exponent of a group with hard discrete logs

Requires shared structured reference string, involving trusted setup

Introduced in [IKO07], made efficient in [GGPR13] using pairings

Linear PCPs
Computation

Algebraic Circuit

R1CS

QAP

Linear PCP

zkSNARK

IOPs

P V

IP

P V

PCP

IOPs

P V

IOP

Linear IOPs
IOP where each PCP is linear

[GKR08] & protocols based off it

Polynomial IOPs
Special case of linear IOP:

PCP is coefficients

Query is of the form 1 z z2 z3 z4 • • • zn

STARK

DARK

PLONK

Marlin!

Polynomial IOPs
Computation

Algebraic Circuit

R1CS

Polynomial IOP

(using polynomial commitments)

zkSNARK

MARLIN:
Preprocessing zkSNARKs with

Universal and Updatable Setup
Alessandro Chiesa

Yuncong Hu
Mary Maller

Pratyush Mishra
Noah Vesely

Nicholas Ward

UC Berkeley
UC Berkeley
University College London
UC Berkeley
University College London
UC Berkeley

https://erint.iacr.org/2019/1047

https://eprint.iacr.org/2019/1047

Argument System for CSAT

Preprocessing zkSNARKs with
circuit-specific setup

SETUP(1λ, C) → (pkC, vkC)

PROVE(pkC, x, w) → π

VERIFY(vkC, x, π) → b

Problem: new setup for every
circuit; to be trustworthy, this

requires a global MPC

CircuitPublic
Input

Private
Input

Goal: universal setup
Universal Trusted Setup:

USETUP(1λ, N) → (upk, uvk)

CPROCESS(upk, C1)
↓

(cpk1, cvk1)

CPROCESS(upk, C2)
↓

(cpk2, cvk2)

CPROCESS(upk, C3)
↓

(cpk3, cvk3)

Circuit-specific deterministic preprocessing:

PROVE(cpk2, x, w) → π

VERIFY(cvk2, x, π) → b

Goal: updatable setup

Initial Setup:
SETUP(1λ) → (srs, ρ)

Each update:
UPDATE(1λ, srs, (ρi)i=1,..,n) → (srs', ρ')

Verification:
VERIFY(1λ, srs, (ρi)i=1,..,n) → b

Marlin:
Preprocessing
zkSNARK for

R1CS

Preprocessing
zkSNARK with
Universal SRS

Contributions

C
om

pi
le

r

Algebraic
Holographic

Proof

Extractable
Polynomial

Commitment

1. Methodology

2. Efficient ingredients
for an efficient SNARK

3. Rust implementation https://github.com/scipr-lab/
marlin

AHP
for

R1CS

Extended
KZG10
Scheme

https://github.com/scipr-lab/marlin
https://github.com/scipr-lab/marlin

Evaluation over BLS12-381
MARLIN: 1296B
Groth16: 192BProof size:

Prover time Verifier time

~10x
~4x

Concurrent Work:
Marlin: good for R1CS
PLONK: good for CSAT

This Talk

1. Methodology

2. Efficient ingredients
for an efficient SNARK

3. Rust implementation

A. Provides a clean and straightforward way to
construct preprocessing SNARKs

B. Shows that the key to achieving preprocessing
is holography

C
om

pi
le

r

Algebraic
Holographic

Proof
Extractable
Polynomial

Commitment

Preprocessing
zkSNARK with
Universal SRS

Algebraic
Holographic

Proof

Extractable
Polynomial

Commitment

[]x
w

where z =

A set of triples (i, x, w) satisfying a prescribed condition

Example: Arithmetic Circuit Satisfaction (CSAT):

IndexPublic
Input

Private
Input

IndexPublic
Input

Private
Input

Example: Rank-1 Constraint System (R1CS):

Index Public
Input

Private
Input

Algebraic Holographic Proofs
PROVER VERIFIERp1

r1

…

QUERYQ

DECISIONb

• Completeness: Whenever (i, x, w) ∈ R, V accepts.

• Proof of Knowledge: Whenever V accepts, P “knows” w such that (i, x, w) ∈ R.

• Bounded-query ZK: Whenever (i, x, w) ∈ R, a verifier that makes up to b queries to
polys learns nothing about w.

pn
rn

What about verifier
efficiency?

Problem: Verifier is linear in circuit!
PROVER VERIFIERp1

r1

…

QUERYQ

DECISIONb

pn
rn

• When size of circuit << size of computation (like in machine
computations), this is OK.

• When size of circuit = size of computation (like in CSAT/R1CS),
this is bad!

Has to read circuit!

VERIFIER

Algebraic Holographic Proofs

PROVER
p1

r1

…
QUERYQ

DECISIONb

pn
rn

PREPROCESS
Circuit
polys C

C

Verifier efficiency: |x| +T(Interaction) + T(QUERY) + T(DECISION)

C
om

pi
le

r

Algebraic
Holographic

Proof

Extractable
Polynomial

Commitment

Preprocessing
zkSNARK with
Universal SRS

Polynomial Commitments

SENDER RECEIVER
cm

z

SETUP
Maximum
degree D

Committer key ck
Verifier key vk

1. cm ← COMMIT(ck, p)

(v, π)

2. v ← p(z)
3. π ← OPEN(ck, cm, p, z) CHECK(vk, cm, z, v, π)

• Completeness: Whenever p(z) = v, R accepts.

• Extractability: Whenever R accepts, S’s commitment cm “contains” a
polynomial p of degree at most D.

• Hiding: If R makes up to b queries, it learns nothing about p.

RECEIVER

CHECK(vk, [cm], Q, [v], [d], π)

SENDER

2. [v] ← [p](Q) z
3. π ← OPEN(pk, [p], [d], Q)

Q

1. [cm] ← COMMIT(pk, [p], [d]) cm[cm]

Polynomial Commitments

SETUP
Maximum
degree D

Committer key ck
Verifier key vk

(v, π)

Our compiler needs more
● Batch commitment

● Multiple rounds

([v], π)

● Batch opening

● Per-poly degree bounds

C
om

pi
le

r

Algebraic
Holographic

Proof

Extractable
Polynomial

Commitment

Preprocessing
zkSNARK with
Universal SRS

Idea underlying compiler:

Holography ⇒ Preprocessing

Preprocessing zkSNARKs
ARG.SETUP(1λ, N) → (upk, uvk)
ARG.INDEX(upk, i) → (ipk, ivk)
ARG.PROVE(ipk, x, w) → π
ARG.VERIFY(ivk, x, π) → b ∈{0, 1}

• Completeness: Whenever (i, x, w) ∈ R, V accepts.

• Proof of Knowledge: Whenever V accepts, P “knows” w such that
(i, x, w) ∈ R.

• Zero Knowledge: Whenever (i, x, w) ∈ R, V learns nothing about w.

• Verifier efficiency: T(V) = O(log(|i|) + |x|)

ARG.SETUP(1λ, N)

Universal Setup

Maximum degree D

Committer key ck
Verifier key vk

AHP(N)1.

2.

Universal prover key upk = (ck, vk)
Universal verifier key uvk = vk

3. Output

PC.SETUP(D)

ARG.INDEXER(upk, i)

Index-specific Setup

Index polys I

Index comms. [cm]

AHP.INDEXER(i)1.

2.

Index verifier key ivk = (upk.uvk, [cm])
Index prover key ipk = (ivk, upk, I)

3. Output

PC.COMMIT(upk, I)

 ARG.V ARG.P
A

H
P.

P
R

O
VE

R

Prove and Verify

 A
H

P.
VE

R
IF

IE
R

p1
r1

…

PC.COMMIT

QUERYQ

PC.OPEN(upk, [cm], [p], [d], Q)

pn
rn

PC.COMMIT

cm1

cmn

[v] ← [p](Q)
DECISION[v]

π PC.CHECK(uvk, [cm], Q, [v], [d], π)

+ Fiat-Shamir to get non-interactivity

Properties
• Completeness: Follows from completeness of PC and AHP.

• Proof of Knowledge: Whenever ARG.VERIFY accepts but
(i, x, w) ∉ R, we can construct either an adversarial prover against
AHP, or an adversary that breaks extractability of PC.

• Zero Knowledge: Follows from hiding of PC and bounded-query
ZK of AHP.

• Verifier efficiency: T(ARG.VERIFY) = T(AHP.VERIFIER) +
T(PC.CHECK)

Conclusion
algebraic holographic proof

+

extractable polynomial commitment scheme
into a

universal preprocessing zkSNARK

In the talk:

Efficient AHP for R1CS:

• Protocol to evaluate low-degree extension for arbitrary R1CS
matrices

Extending KZG10 to achieve:

• Extractability across multiple rounds

• Batch commitment and opening

• Individual degree bounds

In the paper:

https://github.com/scipr-lab/marlinCode:

https://eprint.iacr.org/2019/1047Paper:

https://github.com/scipr-lab/marlin
https://eprint.iacr.org/2019/1047

[KZG10] Polynomial Commitments

Polynomial Commitments: Definition

PC.Setup(1λ, degree bound D) → (committer key ck,

receiver key rk)

PC.Commit(ck, polynomial p) → commitment c

PC.Open(ck, p, eval point z) → proof π

PC.Check(rk, c, z, claimed value v, π) → bit b

Polynomial Commitments: Security

Completeness: if v = p(z), then PC.Check outputs 1

Extractability: anyone who produces a commitment c that

cause PC.Check to accept “knows” a corresponding poly p

Succinctness: c and π sizes, PC.Check time independent of D

Hiding: commitment reveals no information about polynomial

“open”

What Are Polynomial Commitments?
polynomial f

“query”

“commit”

polynomial
oracle

polynomial
commitment

“respond” “prove”

evaluation f(z)

prover

evaluation point z

“encode”

verifier

A Wider View: Oracles & Primitives

set

oracle type

vector

low-degree

polynomial

inner product

accumulator

cryptographic primitive

vector
commitment

low-degree test

polynomial
commitment

inner product
argument

m
or

e
ex

p
re

ss
iv

e m
ore exp

en
sive

Kate et al. Polynomial Commitments
Setup(1λ, D):

● computes groups G, GT of prime order p with pairing e

● chooses generator g ∈ G, random α from {1, …, p-1}

● outputs pk = rk = (g, αg, α2g, …, αtg)

Kate et al. Polynomial Commitments
Commit(ck, p):

● outputs c = p(α)g, pulling monomials from ck

Kate et al. Polynomial Commitments
Open(ck, p, z):

● computes witness poly ϕ(x) := (p(x) - p(z))/(x - z)

● outputs proof π = ϕ(α)g

witness poly because it shows the value for p(z) is correct

Check(rk, c, z, v, π):

● checks whether

Kate et al. Polynomial Commitments

e(c, g) = e(p(α)g, g)

e(c, g) = e(π, (α - z)g) e(g, g)v

if c = p(α)g, v = p(z), π = ϕ(α)g= e(π, (α-z)g) e(g, g)v

 = e(ϕ(α)g, (α-z)g) e(g, g)p(z)

= e(g, g)ϕ(α)(α-z)+p(z)= e(g, g)p(α)

