Fine-grained Cryptography

Nagaganesh Jaladanki

Fine-grained Cryptography

Modern
Cryptography

Fine-Grained Cryptography

(also called moderately hard cryptography [Dwork-Naor])

e Honest prover: complexity classC,
e Adversary: complexity class C.iv” Cion

Examples:
—_ M _ . 2
C..,= Time(n) C.,, = Time(n?)
- — 2
C, ..~ Space(s) C. .~ Space(s?)

C, .= ParTime(d) C,,,~ ParTime(d?)

Time resource bounds

|

Space resource bounds

|

Parallel time resource
bounds

Time resource bounds

|

Merkle Puzzles [Mer78]

e C__=Time(n)
on
e C_ =Time(n?
e Key exchange protocol

Merkle Puzzles [Mer78]

Enc(X || Y, k)

X =message ID (think UUID)
Y =randomly generated symmetric key
k =randomly generated encryption key

k € Ksuch that |[K|=n
Time to break: O(n)

Merkle Puzzles [Mer78]

(Eve)
Alice Bob
M={Enc(X |I'Y, ki)}iE[m] N "| 1. Select somej € [m]
at random.
2. Decrypt puzzle|.

X, 3. Send back puzzle ID

X.

j

Key Exchange: both parties know Y, at the end.
Honest party time: O(m + n)
Adversary time: O(mn)

Recent advances

e [VLWI15] gave a key-exchange protocol extending Merkle’s Puzzles to exchange a

lg(n) bit key in time n?*& for the honest prover and O(n**28) for an adversary.
o Constants k, g depend on the difficulty of particular “puzzle” used for the protocol. Described 3
sufficient properties needed of a computational problem to work with this protocol.

e [BRSV17] used specific reductions in fine-grained complexity to obtain a
worst-case to average-case reduction, used to build a Proof Of Work cryptographic
primitive.

o Unfortunately, they showed that building a true one-way function using their approach would
violate NSETH, a popular hardness assumption.

|

Space resource bounds

|

Memory-bounded Adversaries [CM97]

e C _=Space(s)
e C_, =Space(s’)
e Key exchange protocol

Memory-bounded Adversaries [CM97]

Alice (Eve) Bob

1. Select q uniform and M« {0,1}" 1. Select q uniform and
pairwise independent ~ pairwise independent
indices T, ..., T_€ [n]. indicesV_, ...,V_€& [n].

Record values o?stream Record values o?stream at
at those indices.

V...,V those indices.

y oo Vg

2. Compute common LETREE Tq _ 2. Compute common
indices: S=TNV. indices: S=TNV.

3. Compute key K as 3. Compute key K as
values of stream at values of stream at

common indices. common indices.

Memory-bounded Adversaries [CM97]

Lemma 1: The expected number of common indices l=q?/ n.
So, for a constant key size ¢, we would expect to set q = O(sqrt(n))

Lemma 2: IfT, ..., T, andV,, ..., V,are independent sequences of uniform and pairwise
independent random variables, then their intersection {S_,...,S} = TV is pairwise
independent.

So, Eve has no hope but to store all information from the stream until the indices are
exchanged between Alice and Bob.

Memory-bounded Adversaries [CM97]

Theorem: This protocol uses O(s) space for the honest party and O(s?) space for any
adversary with a constant probability of guessing the key, where s = O(sqrt(n)).

For a constant key size ¢, we would expect to set q = sqrt(cn). Alice and Bob only need to
save sqgrt(cn) information, but Alice needs to store the entire stream of n bits.

Recent advances

e Lots of recent advances with memory-bounded adversaries
o Oblivious Transfer [Ding01] [Ding04]
o Randomness Extractors [Vad03]
o Quantum Adversaries [Ding01]

|
|

Parallel time resource
bounds

Circuit Complexity

(om’f"“)‘
’F@Y\ mn

-

polynomial
fan-in

x1 x2

C NC?

constant b)

depth

congtont
’Fﬁ“ m

|

OWFs in NC° [Has87]

Definition: (One-Way Function). Let F={f :{0, 1}" » {0, 1}'} be a function family. F is
a C,-One-Way Function against C, if:

e Computability: for each n, f_is deterministic and can be computed in C,.
e One-wayness: forany G ={g_:{0, 1} » {0, 1}"} € C_, and any n, we have:

Prif (g,(y) =y |y« f_ (x)] <negl(n)

We show a NC°-One-Way Function against AC°.

OWFs in NC° [Has87]

Theorem: (OWFs against AC?) Let:

f(%)=(X@X, X,2X,, ..., X OX,X)

n-1 n n
Then f_(x) is an NC°-One-Way Function against AC’.
Proof: Computability is satisfied, since f_is deterministic.

Note that f_is bijective. That is, every y has a unique inverse under f_, which is

(BFo1Yis &1o¥is - - - Yn—1 © Yn. Yn) . In particular, the first bit of the inverse is PARITY(y).

OWFs in NC° [Has87]

Proof: (ctd). Consider any AC® function family G = {g }. Then, we can define another
function family H={h }, where h_does the following on input y:

1. Computez<g (y)

2. Check whetherf (z)=y

3. Ifso, output the first bit of z.
4, If not, output a random bit.

Note H is also an AC° function family, because f andg_canbe computed in equal
depth, as well as checking equality.

OWFs in NC° [Has87]

Proof: (ctd). By that observation, we get that for any n:
Prlh_(y) = PARITY(y)] = Pr[g_(y) =f “(y)] + 0.5 Pr[g _(y) # f “(y)]

=Prig,(y)=f, *(y)] + 0.5 (1- Pr[g (y) =f “*(y)])
=0.5+0.5Pr[g, (y) =f *(y)]

However, a seminal result from Hastad shows that no AC® function can compute
parity with probability greater than:

Pr[h_(y) = PARITY(y)] < 0.5 + 2°0(n/ {tegs(n))

So, there cannot be an AC® family of functions G that has a non-negligible
advantage in inverted F.

Randomized Encodings [IKoo, AlK0o4]

\Er\codebq /

S(0;r)
X
y fly) = 1 il
Inputs Efficiently Outputs
computable

in NC°

Decode(Encode(x)) = f(x)
[expensive operation]

Randomized Encodings [IKoo, AlK0o4]

Surjective Perfect Randomized Encoding:

Given a deterministic function f: {0, 1}" > {0, 1}},
we say that the deterministic function g : {0, 1}"
x {0, 1}™ > {0, 1} is a perfect randomized
encoding of f if the following conditions are

satisfied:
1. Inputindependence
2. Outputdisjointness
3. Uniformity
4. Balance
5. Stretch preservation
6. Surjectivity

Inputs Efficiently Outputs

Theorem: [AIK04] Any logspace f has NC°

computable
in NC° randomized encodings.

OWFs against NC* [BVV15]

Assumption: L # NC. Then, there must exist some f € L, f & NC™.

Construction:

is a one-way function secure against NC* adversaries.

OWFs against NC* [BVV15]

Proof Sketch:

Efficiently
computable
in NC°

Outputs

g(r)=s(1;r)

Assume an NC! adversary could invert
g(r).

Then, if we fed the adversary Encode(x)
(where f(x) = 1), the adversary would tell
us what x was.

If we fed them Encode(x) (where f(x) =0),
the adversary cannot invert it, since the
two distributions are disjoint.

So, we have a decider for the language
f(x) that runs in NCY. Thisis a
contradiction, since we took fto be in L
but not NCL.

OWFs against NC* [BVV15]

Proof Sketch:

More generally, we have:

S(0;U_) =, S(L; U)

Or, the two distributions of the
randomized encoding are
indistinguishable under NC™.

g(r)=S(1;r)

Efficiently
computable
in NC°

Outputs

AC°[2]-PKE against NC* [BVV15]

We open the black box of randomized encodings [IK0O0]:

0 - 00 0 .0 1
(1 0 0\ (1 0 0\
Mo=] 0 1 Mi=1]0 1
' 0

LSamp(n):
1. Outputannxnuppertriangular matrix where all entries in the diagonal are 1 and all other entries in
the upper triangular part are chosen at random.
Rsamp(n):
1. Sample atrandomr < {0, 1}"1,
2. Output M, with the last column [r 1]".

AC°[2]-PKE against NC* [BVV15]

We open the black box of randomized encodings [IK0O0]:

0 - 00 0 .0 1
(1 0 0\ (1 0 0\
Mo=] 0 1 Mi=1]0 1
' 0

LSamp(n):
1. Outputannxnuppertriangular matrix where all entries in the diagonal are 1 and all other entries in
the upper triangular part are chosen at random.
Rsamp(n):
1. Sample atrandomr < {0, 1}"1,
2. Output M, with the last column [r 1]".

AC°[2]-PKE against NC* [BVV15]

Randomized Encoding scheme:
e Sample R, < LSamp(n) and R, < RSamp(n).
e When f(x) =0, sample and return matrix M <« RlMO“ R,. This matrix has rank (n-1).
e When f(x) =1, sample and return matrix M <« R M "R.. This matrix has rank n.

We know from earlier that

M M

f(x)=1 zNCl f(x)=0

In other words, the two distributions are indistinguishable to an NC! adversary.

AC°[2]-PKE against NC* [BVV15]

Theorem: Assume @L/poly & NC*. Then, the following construction is an AC°[2]-Public Key Encryption
Scheme against NC™.
KeyGen :
1. Sample R, «LSamp(n)and R, < RSamp(n).
2. Letk=(r1)" bethe last column of R,.
3. ComputeM=R M/ R,
4, Output (pk =M, sk =k).
Enc (pk=M, b):
1. Sampler € {0, 1}".
2. Lett'=(0...01)of lengthn.
3. Outputc’=r'"M+bt'.
Dec_(sk=k, c):
1. Output{(c, k).

AC°[2]-PKE against NC* [BVV15]

ZeroSamp(n):

1. Sample R « LSamp(n) and R,< RSamp(n).
2. OutputR MR..

OneSamp(n):

1. Sample R « LSamp(n) and R,< RSamp(n).
2. OutputRMR.

Theorem: [IK00, AIK04] For any boolean function family F = {fn} in ©L/poly, there exists a polynomial p and a
perfect randomized encoding g_for f_such that the distribution of g_is identical to ZeroSamp(p(n)) when
f (x) =0 and identical to OneSamp(p(n)) when f (x) = 1.

Essentially, this theorem implies that if there is some function in ©L/poly that is hard to compute in the
worst-case, then it is hard to distinguish between samples from S(0; r) and S(1; r).

AC°[2]-PKE against NC* [BVV15]

So, this means that:

(pk, Enc_(pk, 0)) = (M, r'M | M < ZeroSamp(p(n)),r) = .. (M, r'M | M < OneSamp(p(n)), r)

“NC1
However, the output of OneSamp is always full rank. So, the distribution of r'M is just uniform over {0, 1}". s
a result, we get:
(M, r'™M | M < OneSamp(p(n)),r) = (M, r'M +t" | M < OneSamp(p(n)), r)

since flipping the last bit does not change the distribution. Using the same idea as above, we get:

(M, r'M | M < OneSamp(p(n)), r) =, (M, r'M +t" | M < ZeroSamp(p(n)), r) = (pk, Enc_(pk, 1))

Since the distributions are the same regardless of which bit we’ve encrypted, we have shown semantic
security.

Conclusion

Thank you!

