
Fine-grained Cryptography
Nagaganesh Jaladanki



Fine-grained Cryptography



Modern 
Cryptography

P ≠ NP

Hardness of Discrete Log

Hardness of Factoring

MD5 Collision Resistance



Chon = Time(n) Cadv = Time(n2)

Chon= Space(s) Cadv= Space(s2)

Chon= ParTime(d) Cadv= ParTime(d2)

Fine-Grained Cryptography
(also called moderately hard cryptography [Dwork-Naor])

● Honest prover: complexity class Chon
● Adversary: complexity class Cadv > Chon

Examples:



Time resource bounds

Space resource bounds

Parallel time resource 
bounds



Time resource bounds

Space resource bounds

Parallel time resource 
bounds



Merkle Puzzles [Mer78]
● Chon = Time(n)
● Cadv = Time(n2)
● Key exchange protocol



Merkle Puzzles [Mer78]

Enc(X || Y, k)

X = message ID (think UUID)
Y = randomly generated symmetric key
k = randomly generated encryption key

k ∈ K such that |K| = n
Time to break: O(n)



Merkle Puzzles [Mer78]

Alice Bob

M = {Enc(Xi || Yi, ki)}i∈[m]

(Eve)

1. Select some j ∈ [m] 
at random.

2. Decrypt puzzle j.
3. Send back puzzle ID 

Xj.

M

Xj

Key Exchange: both parties know Yj at the end. 
Honest party time: O(m + n)

Adversary time: O(mn)



Recent advances 
● [VLW15] gave a key-exchange protocol extending Merkle’s Puzzles to exchange a 

lg(n) bit key in time n2k-g for the honest prover and O(n3k-2g) for an adversary. 
○ Constants k, g depend on the difficulty of particular “puzzle” used for the protocol. Described 3 

sufficient properties needed of a computational problem to work with this protocol.

● [BRSV17] used specific reductions in fine-grained complexity to obtain a 
worst-case to average-case reduction, used to build a Proof Of Work cryptographic 
primitive.

○ Unfortunately, they showed that building a true one-way function using their approach would 
violate NSETH, a popular hardness assumption.



Time resource bounds

Space resource bounds

Parallel time resource 
bounds



Memory-bounded Adversaries [CM97]
● Chon = Space(s)
● Cadv = Space(s2)
● Key exchange protocol



1. Select q uniform and 
pairwise independent 
indices V1, …, Vq∈ [n]. 
Record values of stream at 
those indices.

Memory-bounded Adversaries [CM97]
Bob(Eve)

M ← {0,1}n

V1, …, Vq

Alice

1. Select q uniform and 
pairwise independent 
indices T1, …, Tq∈ [n]. 
Record values of stream 
at those indices.

T1, …, Tq2. Compute common 
indices: S = T ⋂ V.
3. Compute key K as 
values of stream at 
common indices.

2. Compute common 
indices: S = T ⋂ V.
3. Compute key K as 
values of stream at 
common indices.



Memory-bounded Adversaries [CM97]

Lemma 1: The expected number of common indices l = q2 / n.

So, for a constant key size c, we would expect to set q = O(sqrt(n))

Lemma 2: If T1, …, Tq and V1, …, Vq are independent sequences of uniform and pairwise 
independent random variables, then their intersection {S1,...,Sl} = T ⋂ V is pairwise 
independent.

So, Eve has no hope but to store all information from the stream until the indices are 
exchanged between Alice and Bob.



Memory-bounded Adversaries [CM97]

Theorem: This protocol uses O(s) space for the honest party and O(s2) space for any 
adversary with a constant probability of guessing the key, where s = O(sqrt(n)).

For a constant key size c, we would expect to set q = sqrt(cn). Alice and Bob only need to 
save sqrt(cn) information, but Alice needs to store the entire stream of n bits. 



Recent advances 
● Lots of recent advances with memory-bounded adversaries

○ Oblivious Transfer [Ding01] [Ding04]
○ Randomness Extractors [Vad03]
○ Quantum Adversaries [Ding01]



Time resource bounds

Space resource bounds

Parallel time resource 
bounds



Circuit Complexity

AC0 NC1NC0 ⊆ ⊆



OWFs in NC0 [Has87]

Definition: (One-Way Function). Let F = {fn : {0, 1}n  → {0, 1}l(n)} be a function family. F is 
a C1-One-Way Function against C2 if: 

● Computability: for each n, fn is deterministic and can be computed in C1.

● One-wayness: for any G = {gn : {0, 1}l(n)  → {0, 1}n} ∈ C2, and any n, we have:

Pr[fn(gn(y) = y | y ← fn(x)] < negl(n)

We show a NC0-One-Way Function against AC0.



OWFs in NC0 [Has87]

Theorem: (OWFs against AC0) Let:

 fn(x) = (x1⊕ x2, x2⊕ x3, …, xn-1⊕ xn, xn )
Then fn(x) is an NC0-One-Way Function against AC0.

Proof: Computability is satisfied, since fn is deterministic.

Note that fn is bijective. That is, every y has a unique inverse under fn, which is

. In particular, the first bit of the inverse is PARITY(y).



OWFs in NC0 [Has87]

Proof: (ctd). Consider any AC0 function family G = {gn}. Then, we can define another 
function family H = {hn}, where hn does the following on input y:

1. Compute z ← gn(y)

2. Check whether fn(z) = y

3. If so, output the first bit of z.

4. If not, output a random bit.

Note H is also an AC0 function family, because fn and gn can be computed in equal 
depth, as well as checking equality. 



OWFs in NC0 [Has87]

Proof: (ctd). By that observation, we get that for any n:

Pr[hn(y) = PARITY(y)] = Pr[gn(y) = fn
-1(y)] + 0.5 Pr[gn(y) ≠ fn

-1(y)]

= Pr[gn(y) = fn
-1(y)] + 0.5 (1 - Pr[gn(y) = fn

-1(y)])

= 0.5 + 0.5 Pr[gn(y) = fn
-1(y)]

However, a seminal result from Hastad shows that no AC0 function can compute 
parity with probability greater than:

Pr[hn(y) = PARITY(y)] ≤ 0.5 + 2-O(n / (log s(n)))

So, there cannot be an AC0 family of functions G that has a non-negligible 
advantage in inverted F.



Randomized Encodings [IK00, AIK04]

Inputs
Outputs

f(x) = 0

f(y) = 1

x

y

Efficiently 
computable 
in NC0

Encode(x)
S(0; r)

S(1; r)

Decode(Encode(x)) = f(x)
[expensive operation]



Randomized Encodings [IK00, AIK04]

Inputs
Outputs

f(x) = 0

f(y) = 1

x

y

Efficiently 
computable 
in NC0

Encode(x)

Surjective Perfect Randomized Encoding:

Given a deterministic function f : {0, 1}n → {0, 1}t, 
we say that the deterministic function g : {0, 1}n 
x {0, 1}m → {0, 1}s is a perfect randomized 
encoding of f if the following conditions are 
satisfied:

1. Input independence
2. Output disjointness
3. Uniformity
4. Balance
5. Stretch preservation
6. Surjectivity

Theorem: [AIK04] Any logspace f has NC0 
randomized encodings.



OWFs against NC1 [BVV15]

Assumption: L ≠ NC1. Then, there must exist some f ∈ L, f ∉ NC1.

Construction:

g(r) = S(1; r)

is a one-way function secure against NC1 adversaries.



OWFs against NC1 [BVV15]
Proof Sketch:

Inputs

Outputs

f(x) = 0

f(y) = 1

x

y

Efficiently 
computable 
in NC0

Encode(x)

g(r) = S(1; r)

Assume an NC1 adversary could invert 
g(r).

Then, if we fed the adversary Encode(x) 
(where f(x) = 1), the adversary would tell 
us what x was. 

If we fed them Encode(x) (where f(x) = 0), 
the adversary cannot invert it, since the 
two distributions are disjoint.

So, we have a decider for the language 
f(x) that runs in NC1. This is a 
contradiction, since we took f to be in L 
but not NC1.



OWFs against NC1 [BVV15]
Proof Sketch:

Inputs

Outputs

f(x) = 0

f(y) = 1

x

y

Efficiently 
computable 
in NC0

Encode(x)

g(r) = S(1; r)

More generally, we have:

S(0; Um) ≈NC1 S(1; Um)

Or, the two distributions of the 
randomized encoding are 
indistinguishable under NC1.



AC0[2]-PKE against NC1 [BVV15]
We open the black box of randomized encodings [IK00]:

LSamp(n):
1. Output an n × n upper triangular matrix where all entries in the diagonal are 1 and all other entries in 

the upper triangular part are chosen at random.
Rsamp(n):

1. Sample at random r ← {0, 1}n-1.
2. Output M0 with the last column [r 1]T.

n n



AC0[2]-PKE against NC1 [BVV15]
We open the black box of randomized encodings [IK00]:

LSamp(n):
1. Output an n × n upper triangular matrix where all entries in the diagonal are 1 and all other entries in 

the upper triangular part are chosen at random.
Rsamp(n):

1. Sample at random r ← {0, 1}n-1.
2. Output M0 with the last column [r 1]T.

n n



AC0[2]-PKE against NC1 [BVV15]

Randomized Encoding scheme:
● Sample R1 ← LSamp(n) and R2 ← RSamp(n).
● When f(x) = 0, sample and return matrix M ← R1M0

n R2. This matrix has rank (n-1).
● When f(x) = 1, sample and return matrix M ← R1M1

n R2. This matrix has rank n.

We know from earlier that 
Mf(x) = 1 ≈NC1 Mf(x) = 0

In other words, the two distributions are indistinguishable to an NC1 adversary.



AC0[2]-PKE against NC1 [BVV15]

Theorem: Assume ⊕L/poly ⊈ NC1. Then, the following construction is an AC0[2]-Public Key Encryption 
Scheme against NC1.
KeyGenn:

1. Sample R1 ← LSamp(n) and R2 ← RSamp(n).
2. Let k = (r 1)T be the last column of R2.
3. Compute M = R1M0

nR2.
4. Output (pk = M, sk = k).

Encn(pk = M, b):
1. Sample r ∈ {0, 1}n.
2. Let tT = (0 … 0 1) of length n.
3. Output cT = rTM + btT.

Decn(sk = k, c):
1. Output ⟨c, k⟩.



AC0[2]-PKE against NC1 [BVV15]

ZeroSamp(n):

1. Sample R1← LSamp(n) and R2← RSamp(n).
2. Output R1M0R2.

OneSamp(n):

1. Sample R1← LSamp(n) and R2← RSamp(n).
2. Output R1M1R2.

Theorem: [IK00, AIK04] For any boolean function family F = {fn} in ⊕L/poly, there exists a polynomial p and a 
perfect randomized encoding gn for fn such that the distribution of gn is identical to ZeroSamp(p(n)) when 
fn(x) = 0 and identical to OneSamp(p(n)) when fn(x) = 1.

Essentially, this theorem implies that if there is some function in ⊕L/poly that is hard to compute in the 
worst-case, then it is hard to distinguish between samples from S(0; r) and S(1; r).



AC0[2]-PKE against NC1 [BVV15]

So, this means that:

(pk, Encn(pk, 0)) = (M, rTM | M ← ZeroSamp(p(n)), r) ≈NC1 (M, rTM | M ← OneSamp(p(n)), r)

However, the output of OneSamp is always full rank. So, the distribution of rTM is just uniform over {0, 1}n. s 
a result, we get:

 (M, rTM | M ← OneSamp(p(n)), r) =  (M, rTM + tT | M ← OneSamp(p(n)), r)

since flipping the last bit does not change the distribution. Using the same idea as above, we get:

(M, rTM | M ← OneSamp(p(n)), r) ≈NC1(M, rTM + tT | M ← ZeroSamp(p(n)), r) = (pk, Encn(pk, 1))

Since the distributions are the same regardless of which bit we’ve encrypted, we have shown semantic 
security.



Conclusion



Thank you!


