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ABSTRACT
In this work we study interactive proofs for tractable lan-
guages. The (honest) prover should be efficient and run in
polynomial time, or in other words a “muggle”.1 The veri-
fier should be super-efficient and run in nearly-linear time.
These proof systems can be used for delegating computation:
a server can run a computation for a client and interactively
prove the correctness of the result. The client can verify the
result’s correctness in nearly-linear time (instead of running
the entire computation itself).

Previously, related questions were considered in the Holo-
graphic Proof setting by Babai, Fortnow, Levin and Szegedy,
in the argument setting under computational assumptions
by Kilian, and in the random oracle model by Micali. Our
focus, however, is on the original interactive proof model
where no assumptions are made on the computational power
or adaptiveness of dishonest provers.

Our main technical theorem gives a public coin interactive
proof for any language computable by a log-space uniform
boolean circuit with depth d and input length n. The verifier
runs in time (n+d)·polylog(n) and space O(log(n)), the com-
munication complexity is d ·polylog(n), and the prover runs
in time poly(n). In particular, for languages computable
by log-space uniform NC (circuits of polylog(n) depth), the
prover is efficient, the verifier runs in time n · polylog(n)
and space O(log(n)), and the communication complexity is
polylog(n).
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Using this theorem we make progress on several questions:

• We show how to construct short (polylog size) com-
putationally sound non-interactive certificates of cor-
rectness for any log-space uniform NC computation, in
the public-key model. The certificates can be verified
in quasi-linear time and are for a designated verifier:
each certificate is tailored to the verifier’s public key.
This result uses a recent transformation of Kalai and
Raz from public-coin interactive proofs to one-round
arguments. The soundness of the certificates is based
on the existence of a PIR scheme with polylog com-
munication.

• Interactive proofs with public-coin, log-space, poly-time
verifiers for all of P. This settles an open question
regarding the expressive power of proof systems with
such verifiers.

• Zero-knowledge interactive proofs with communication
complexity that is quasi-linear in the witness length
for any NP language verifiable in NC , based on the
existence of one-way functions.

• Probabilistically checkable arguments (a model due to
Kalai and Raz) of size polynomial in the witness length
(rather than the instance length) for any NP language
verifiable in NC , under computational assumptions.

Categories and Subject Descriptors
F.2.0 [Theory of Computation]: Analysis of Algorithms
and problem complexity—General

General Terms
Theory
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1. INTRODUCTION
Efficient proof verification lies at the heart of complex-

ity theory. Classically, this was captured by the idea of a
deterministic polynomial time verification procedure which
receives the proof, a certificate of polynomial length, and
verifies its validity. Extending classical proof systems, in-
teractive proof systems [37, 9] provide a model in which the



polynomial time verification procedure (the verifier) is ran-
domized and can interact with a prover that may employ an
adaptive strategy.

Much of the complexity-theoretic research on interactive
proofs has focused on studying their expressive power while
improving the verifier’s complexity in terms of various re-
source measures (e.g. time, space, depth, rounds or ran-
domness). The complexity of proving has received less at-
tention. Indeed, since research focused on proofs for in-
tractable languages, the honest prover is often2 assumed to
be able to perform intractable computations in the interest
of efficient verifiability. In Arthur-Merlin games, the honest
prover is accordingly named after Merlin, a computationally
unbounded magician.

Even in cryptographic contexts, where parties in interac-
tive proof systems must run in polynomial time, the main
focus of research remains on intractable languages such as
deciding quadratic-residuosity modulo a composite number.
To allow the honest prover to perform computations oth-
erwise impossible in polynomial time, he can use auxiliary
secrets, e.g. the factorization of the input modulos in the
quadratic residuosity example. This model is reasonable in
protocol settings where the input is generated by the prover
himself. The prover can generate the input along with an
auxiliary secret which enables him prove non-BPP proper-
ties. However, in settings where the input is generated by
an external source, an efficient prover does not have access
to auxiliary information about the input.

Our Setting and Goal. In this paper, we embark on the study
of interactive proofs in the real world, where both the verifier
and the prover are efficient. Thus, we replace the unbounded
magical Merlin with a“Muggle”prover who is limited to run-
ning probabilistic polynomial-time computations. We think
of the input to the interactive proof as dictated by an out-
side source, possibly even by the verifier. Thus, the prover
has no auxiliary information to help him in the proving task.

Clearly, if both the prover and the verifier are efficient,
then the language is tractable (in BPP). This may seem
puzzling at first glance, since usually one allows the verifier
to run arbitrary polynomial-time computations, and thus it
could compute on its own whether or not the input is in the
language! This obviously is not very interesting. Indeed, we
want verification to be considerably faster than computing.

The question we ask in this work is which polynomial-time
computable languages have interactive proofs with a super-
efficient verifier and an efficient prover. We emphasize that
although we aim for the honest prover to be efficient, we still
require the soundness of the proof system to hold uncondi-
tionally. Namely, we make no assumptions on the compu-
tational power of a dishonest prover. Specifically, let L be
an efficiently computable language. We seek an interactive
proof system that simultaneously achieves:

• Verifier time complexity that is linear in the size of
the input x and poly-logarithmic in the size of the
computation of L. More generally, we ask that the
verifier run in time and space that are considerably
smaller than those required to compute the language.

• Prover time complexity that is polynomial in the size
of the input.

2We note that there are important exceptions to the above,
e.g. the work of Beigel, Bellare, Feigenbaum and Goldwasser
[13] on competitive proof systems.

• Communication complexity that is polylogarithmic in
the size of the computation.

Delegating Computation. Beyond its complexity theoretic in-
terest, the question of interactive proofs for efficient players
is motivated by real-world applications. The main appli-
cation we consider is delegating polynomial time computa-
tions to an untrusted party. The general setting is of several
computational devices of differing computational abilities in-
teracting with each other over a network. Some of these
devices are computationally weak due to various resource
constraints. As a consequence there are tasks, which poten-
tially could enlarge a device’s range of application, that are
beyond its reach. A natural solution is to delegate computa-
tions that are too expensive for one device, to other devices
which are more powerful or numerous and connected to the
same network. This approach comes up naturally in today’s
and tomorrow’s computing reality as illustrated in the fol-
lowing two examples.

1. Large Scale Distributed Computing. The idea of Vol-
unteer Computing is for a server to split large computations
into small units, send these units to volunteers for process-
ing, and reassemble the result (via a much easier computa-
tion). The Berkeley Open Infrastructure for Network Com-
puting (BOINC) [5, 6] is such a platform whose intent is
to make it possible for researchers in fields as diverse as
physics, biology and mathematics to tap into the enormous
processing power of personal computers around the world.
A famous project using the BOINC platform is SETI@home
[3, 1], where large chunks of radio transmission data are
scanned for signs of extraterrestrial intelligence. Anyone
can participate by running a free program that downloads
and analyzes radio telescope data. Thus, getting many com-
puters to pitch into the larger task of scanning space for the
existence of extraterrestrial intelligence, and getting people
interested in science at the same time. Another example of a
similar flavor is the Great Internet Mersenne Prime Search
[2], where volunteers search for Mersenne prime numbers
and communicate

2. Weak Peripheral Devices. More and more, small or
cheap computational devices with limited computational ca-
pabilities, such as cell-phones, printers, cameras, security
access-cards, music players, and sensors, are connected via
networks to stronger remote computers whose help they can
use. Consider, for example, a sensor that is presented with
an access-card, sends it a random challenge, and receives a
digital signature of the random challenge. The computation
required to verify the signature involves public-key opera-
tions which are too expensive both in time and space for
the sensor to run. Instead, it could interact with a remote
mainframe (delegatee), which can do the computation.

The fundamental problem that arises is: how can a delega-
tor verify that the delegatees performed the computation cor-
rectly, without running the computation itself? For example,
in the volunteer computing setting, an adversarial volunteer
may introduce errors into the computation, by claiming that
a chunk of radio transmissions contains no signs of extrater-
restrial intelligence. In the Mersenne Prime search example,
an adversary may claim that a given range of numbers does
not contain a Mersenne prime. Or in the sensor example,
the communication channel between the main-frame and the
sensor may be corrupted by an adversary.

All would be well if the delegatee could provide the del-
egator with a proof that the computation was performed



correctly. The challenge is that for the whole idea to pay
off, it is essential that the time to verify such a proof of cor-
rectness be significantly smaller than the time needed to run
the entire computation.3 At the same time, the delegatee
should not invest more than a reasonable amount of time
in this endeavor. Interactive proofs with efficient provers
(the delegatees) and super-efficient verifiers (the delegators)
provide a natural solution to this problem.4

Prior Work in Other Models. Variants of the question of
checking the correctness of computations have been studied
previously in several settings outside of the interactive proof
model. These studies include the work of Babai, Fortnow,
Levin, and Szegedy [10] in the Holographic Proofs model (or
alternatively the PCP model), and the works of Micali [50]
and Kilian [45] on computationally sound argument systems.
These works raise similar goals to ours, but in their respec-
tive models, requiring super-efficient verifiability, and effi-
cient provability (polynomial time in the non-deterministic
time complexity of accepting the input). We elaborate on
these seminal related works in Section 1.1. In contrast, our
work is in the standard interactive proof model [37] where
soundness is achieved unconditionally, making no assump-
tions on the power of the dishonest prover (as in [50, 45]),
nor making assumptions on the non-adaptivity of the dis-
honest prover(as in [10]).

Roadmap. Our main result is described in Section 1.1 We
further use our techniques to obtain several other results:
Constructing computationally-sound succinct certificates of
correctness for any (L-uniform)NC computation, under com-
putational assumptions (Section 1.2); Characterizing public-
coin log-space interactive proofs (Section 1.3); Construct-
ing low communication zero-knowledge proofs (Section 1.5);
Constructing IPCP and PCA proof-systems, improving on
[41, 42] (Section 1.6). A high-level overview of our tech-
niques is given Section 2, and a protocol overview is given
in Section 3. All details are deferred to the full version of
this paper due to lack of space.

1.1 Our Main Result
Our most general result is a public-coin interactive proof

for any language computable by an L-uniform family of
Boolean circuits5, where the communication complexity is
polynomial in the depth of the computation rather than its
size; the running time of the verifier is linear in the input
and polynomial in the depth; and the prover is efficient.

Theorem 1. Let L be a language that can be computed
by a family of O(log(S(n)))-space uniform boolean circuits
of size S(n) and depth d(n).

Then, L has a public-coin interactive proof with perfect
completeness and soundness 1/2 where: the prover’s running
time is poly(S(n)); the verifier runs in time (n + d(n)) ·
3With regard to the Mersenne Prime example, we note that
current methods for verifying the output of polynomial time
deterministic primality tests [4] are not significantly faster
than running the test itself.
4We note that in practice in BOINC [6], it is suggested to
give out each computational task to multiple users, and as-
sume that most of them answer correctly. We will make no
such assumptions here.
5A circuit family is s(n)-space uniform if there exists a Tur-
ing Machine that on input 1n runs in space O(s(n)) and
outputs the circuit for inputs of length n. A circuit family
is L-uniform if it is log-space uniform.

polylog(S(n)) and space O(log(S(n))); the communication
complexity is d(n) · polylog(S(n)).

An overview of the proof idea is given in Sections 2 and
3. The interactive proofs constructed in Theorem 1 provide
a natural solution to the delegating computation problem
mentioned above. Namely, the statement to be proved is
that the delegated computation was executed correctly; the
delegator is the verifier in the interactive proof ; the delega-
tee is the prover in the interactive proof, who convinces the
delegatee that he performed the computation correctly (and
runs in polynomial time).

As a primary implication, we get that any computation
with low parallel time (significantly smaller than the com-
putation’s total size) has a very efficient interactive proof.
In particular, for languages in L-uniform NC , we have:

Corollary 1. Let L be a language in L uniform NC ,
i.e. computable by a family of O(log(n))-space uniform cir-
cuits of size poly(n) and depth polylog(n).

L has a public-coin interactive proof with perfect complete-
ness and soundness 1/2: the prover runs in time poly(n);
the verifier runs in time n · polylog(n) and space O(log(n));
the communication complexity is polylog(n).

A natural question is how this can be done when the veri-
fier cannot even take the circuit in question as an additional
input (it has no time to read it!). This is where the condition
on the log-space uniformity of the circuit family comes in.
For such circuit families, the circuit has a “short” implicit
representation which the verifier can use without ever con-
structing the entire circuit. We view log-space-uniformity as
a relaxed notion of uniformity (though admittedly less re-
laxed than poly-time-uniformity). In particular, Corollary
1 applies to any language in NL, and even to any language
computable by a PRAM in poly-logarithmic parallel time.

Alternatively, by modifying the model (to include an on-
line and an off-line stage of computation) we also obtain
results for the non-uniform setting. See Sections 1.4 and 2,
as well as the full version for details.

Comparison to Prior Work on Interactive Proofs. We empha-
size that Theorem 1 improves previous work on interactive
proofs, including the works of Lund, Fortnow, Karloff and
Nissan [49], Shamir [53], and Fortnow and Lund [33] in terms
of the honest prover’s running time. In particular, Corollary
1 gives efficient honest provers, whereas the honest provers
in previous results run in super-polynomial time (even for
log-space languages). Both of the works [49, 53] address
complete languages for #P and for PSPACE , and thus nat-
urally the honest prover needs to perform non-polynomial
time computation (scale-down of the protocols to P or even
to L retains the non-polynomial time provers). The work
of Fortnow and Lund [33], using algebraic methods extend-
ing [49, 53], on the other hand, does explicitly address the
question of interactive proofs for polynomial time languages
and in particular NC . They show how to improve the space
complexity of the verifier, in particular achieving log-space
and poly-time verifiers for NC computations. Their proto-
col, however, has a non-polynomial time prover as in [49,
53].

Our work puts severe restrictions on the sequential run-
time (and space) of the verifier. This continues a sequence
of works which investigated the power of interactive proofs
with weak verifiers (but often with unbounded provers).



Dwork and Stockmeyer [27, 28] investigated the power of fi-
nite state verifiers (with and without zero-knowledge). Con-
don and Ladner [23], Condon and Lipton [24], and Con-
don [22] studied space (and time) bounded verifiers. Kilian
[43] considered zero-knowledge for space-bounded verifiers.
Fortnow and Sipser (see results in [32]) and Fortnow and
Lund [33] focused on public-coin restricted space verifiers.
A recent work by Goldwasser et al. [35] considers the par-
allel running time of a verifier (who can still use a polyno-
mial number of processors and communication complexity),
and shows that all of PSPACE can still be recognized by
constant-depth (NC0) verifiers.

Comparison to Prior Work in Other Models. The goal of the
work of Babai, Fortnow, Lund and Szegedy [10] on Holo-
graphic Proofs for NP (i.e PCP-proofs where the input is
assumed to be given to the verifier in an error-correcting-
code format), was to extend Blum and Kannan’s program
checking model [19] to checking the results of executions (the
combination of software and hardware) of long computa-
tions. They show how to achieve checking time that is poly-
logarithmic in the length of the computation (on top of the
time taken to convert the input into an error correcting code
format), and a proof-string (which can be randomly accessed
by the verifier) of length close to the computation time it-
self. However the soundness of proofs in this PCP like model
(as well as its more efficient descendants [52, 16, 17, 25]) re-
quires that the verifier/delegator either “posses” the entire
PCP proof string (though only a few of its bits are read), or
somehow have a guarantee that the prover/delegatee cannot
change the PCP proof string after the verifier has started re-
questing bits of it. Such guarantees seem difficult to achieve
over a network as required in the delegation setting.

Kilian [44, 45] gives an argument system for any NP com-
putation, with communication complexity that is polyloga-
rithmic, and verifier runtime which is linear in the input
length (up to polylogarithmic factors). This is achieved by a
constant round protocol, in which the prover first constructs
a PCP for the correctness of the computation, and then
Merkle-hashes it down to a short string and sends it to the
verifier. To do this, one must assume the existence of strong
collision-intractable hash functions: where collisions cannot
be formed in sub-exponential time.6 We emphasize, that
an argument system achieves only computational soundness
(soundness with respect to a computationally bounded dis-
honest prover). In the interactive proof setting soundness is
guaranteed against any cheating prover.

Finally, Micali raises similar goals to ours in his work on
Computationally Sound (CS) proofs [50]. His results are
however obtained in the random oracle model. This al-
lows him to achieve CS-proofs for the correctness of gen-
eral time computations with a nearly linear time verifier, a
prover whose runtime is polynomial in the time complexity
of the computation, and a poly-log length non-interactive
(“written down” rather than interactive) proof. Alterna-
tively viewed, Micali’s work gets non-interactive CS-proofs
under the same assumption as [44], and assuming the exis-
tence of Fiat-Shamir-hash-functions [31] to remove interac-
tion. The plausibility of realizing Fiat-Shamir-hash-functions
by any explicit function ensemble has been shown to be
highly questionable [21, 26, 36].

6With standard intractability assumptions, one could get
arguments of linear size communication complexity (using
Universal arguments [12]).

Finally, we note that all of the above [10, 44, 45, 50] use
the full PCP machinery, whereas this is unnecessary to ob-
tain our results.

1.2 Non-Interactive CS Certificates
Throughout the paper until this point we mostly con-

sidered interactive settings. We find it very interesting to
pursue the question of delegating computation in the non-
interactive setting as well. One may envision a delegator
farming out computations to a computing facility (say by
renting computer time at a super-computer facility during
the night hours), where the result is later returned via e-mail
with a fully written-down “certificate” of correctness.

Thus, we further ask: for which polynomial time compu-
tations can a polynomial time prover write down certificates
of correctness that are super-efficiently verifiable, and in par-
ticular are significantly shorter than the time of computation
(otherwise the verifier cannot even receive the certificate!).
As discussed above, Micali’s CS-proofs result [50] is the only
solution known to this problem, and it is in the random or-
acle model.

We address this problem in the public-key model. In this
model each verifier has a secret and public key pair. A proof
(or certificate) is tailored for a specific verifier, in the sense
that it depends on the verifier’s public key. The verifier, in
turn, needs to use his secret key for verification. We note
that there is no need for a general public key infrastructure.
The keys do not need to be approved or checked. Each
verifier simply generates and publishes his public key (say
on his web-page) or sends his public-key as a first message
to the prover.

We show how to construct computationally sound cer-
tificates of correctness for any L-uniform NC computation
in the public key model, assuming the existence of a com-
putational private information retrieval (PIR) scheme with
poly(κ)-communication, where κ is the security parameter.
We note that such a PIR scheme exists for any κ ≥ log |DB|
(where |DB| is the database size) under the N -th Residuos-
ity Assumption [48, 40], and under the Φ-Hiding Assump-
tion [20]. For a polynomially small security parameter, such
PIR schemes exist under a variety of computational assump-
tions (see e.g. [46]).

For security parameter κ, the size of the certificates is
poly(κ, log n), the (honest) prover runs in polynomial time,
and the verifier runs in time n · poly(κ, log n) to verify a
certificate (as in [50]). Soundness holds only against com-
putationally bounded cheating provers.

Formally, we state the result as a 1-round (2-message)
argument system, where the verifier sends his public key to
the prover and then receives back the certificate.

Theorem 2. Let κ ≥ log n be a security parameter. As-
sume the existence of a PIR scheme with communication
complexity poly(κ) and receiver work poly(κ). Then any
language L in L-uniform NC has a 1-round (private coin)
argument system with the following properties:
1. The prover runs in time poly(n, κ), the verifier runs in
time n · poly(κ).
2. The protocol has perfect completeness (assuming the PIR
scheme has prefect completeness)7 and computational sound-

7We note that the construction of [20] does not have per-
fect completeness. Using it would result in a protocol that
inherits this imperfect completeness.



ness ≤ 1/2 (can be amplified): for any input x /∈ L and for

any cheating prover running in time ≤ 2κ3
, the probability

that the verifier accepts is ≤ 1/2.
3. The certificate (the prover’s message) and the verifier’s
challenge are of size poly(κ, log n). The verifier’s challenge
depends only on the parameters n and κ, and is independent
of the language L and the input x.

The idea of the proof is as follows. We apply to the pro-
tocol of Corollary 1 a new transformation due to Kalai and
Raz in their paper on probabilistically checkable arguments
[42]. They use a computational PIR scheme to transform
any public-coin interactive proof into a one-round argument
system (where the verifier’s first and only message can be
computed independently and ahead of the input).

More specifically, [42] show how to convert any public-coin
interactive proof system (P,V) (for a language L), with com-
munication complexity `, completeness c, and soundness s,
into a one-round (two-message) argument system (P ′,V ′)
(for L), with communication complexity poly(`, κ), com-

pleteness c, and soundness s+2−κ2
against malicious provers

of size ≤ 2κ3
, where κ ≥ log n is the security parameter. The

verifier V ′ runs in time tV · poly(κ), where tV is V’s running
time. The prover P ′ runs in time tP · poly(κ, 2λ), where tP
is P’s running time, and λ satisfies that each message sent
by the prover P depends only on the λ previous bits sent by
V.

Note that if λ is super-logarithmic, then the resulting
prover P ′ is inefficient. Fortunately, the protocol of Corol-
lary 1 has the property that λ = O(log n), and thus the
resulting P ′ is efficient.8

As discussed above, the resulting one-round argument sys-
tem (P ′,V ′) has the property that the first message, sent by
V ′, depends only on the random coin tosses of V ′ (and is
independent of the language L and the instance x), and can
be computed in time poly(κ). Thus, we can think of this
message as a public key, associated with the verifier. For
further details, see the full version.

1.3 Public-Coin Log-Space Verifiers
Theorem 1 as presented above, leads to the resolution of

an open problem on characterizing public-coin interactive
proofs for log-space verifiers.

The power of interactive proof systems with a log-space
verifier has received significant attention (see Condon [22]
and Fortnow and Sipser [32]). It was shown that any lan-
guage that has a public-coin interactive proof with a log-
space verifier is in P. Fortnow and Sipser [32] showed that
such proof systems exist for the class LOGCFL. Fortnow
and Lund [33] improved this result, showing such protocols
for any language in NC . In fact, for the class P, [33] achieve
log2(n)

log log(n)
-space verifiers.

We resolve this question. As a corollary of Theorem 1, and
using the fact that languages in P have L-uniform poly-size
circuits, we show the following theorem (see the full version
for the proof and details):

Theorem 3. Let L be a language in P, i.e. one that
can be computed by a deterministic Turing machine in time
poly(n).

8Other interactive proofs, such as those in [49, 53, 41], do
not yield efficient provers.

Then, L has a public-coin interactive proof with perfect
completeness and soundness 1/2, where: The prover runs
in time poly(n); the verifier runs in time poly(n) and space
O(log(n)); the communication complexity of the protocol is
poly(n).

1.4 Non-Uniform Circuit Families
We also obtain results for non-uniform circuits. In the

non-uniform setting the verifier must read the entire cir-
cuit, which is as expensive as carrying out the computa-
tion. Thus, we separate the verification into an off-line (non-
interactive) pre-processing phase, and an on-line interactive
proof phase. In the off-line phase, before the input x is speci-
fied, the verifier is allowed to run in poly(S) time, but retains
only poly(d, log(S)) bits of information about C (where d is
the depth and S is the size of the circuit C). These bits
are retained for the on-line interactive proof phase, where
the verifier gets the input x and interacts with the prover
who tries to prove C(x) = 1. We note that the information
computed in the off-line phase can only be used one time, if
it is used twice (even for different inputs) then soundness is
compromised.

Theorem 4. Let C : {0, 1}n → {0, 1} be a boolean circuit
of size S and depth d.

There exists an on-line/off-line interactive proof, where
both parties take an input x, and the prover proves that
C(x) = 1. The protocol has completeness 1 and soundness
1
2
. The (honest) prover runs in time poly(S) and communi-

cation complexity poly(d, log(S)).
The verifier runs in two phases: (1) an off-line phase be-
fore the input x is specified, where the verifier runs in time
poly(S); (2) an on-line phase which is carried out after
the input x is specified, where the verifier runs in time n ·
poly(d, log(S)).

1.5 Short Zero Knowledge Proofs
Aside from the primary interest (to us) of delegating com-

putation, Theorem 1 above, and more importantly the tech-
niques used, enables us to improve previous results on com-
munication efficient zero-knowledge interactive proofs. The
literature on zero-knowledge interactive proofs and interac-
tive arguments for NP is immense. In this setting we have
an NP relation R which takes as input an n-bit instance x
and a k-bit witness w. A prover (who knows both x and w)
wants to convince a verifier (who knows only x and does not
know w) in zero-knowledge that R(x, w) = 1.

Recently, attention has shifted to constructing zero knowl-
edge interactive proofs with communication complexity that
is polynomial or even linear in the length of the witness w,
rather than in R’s worst case running time, as in traditional
zero-knowledge proofs [34, 18].

Working towards this goal, Ishai, Kushilevitz, Ostrovsky,
and Sahai [39] showed that if one-way functions exist, then
for any NP relation R that can be verified by an AC0 circuit
(i.e., a constant-depth circuit of unbounded fan-in), there
is a zero-knowledge interactive proof with communication
complexity k · poly(κ, log(n)), where κ is a security param-
eter.9

9A similar result (with slightly higher communication:
poly(k, κ, log(n))) was obtained independently by Kalai and
Raz [41].



We improve the results of [39, 41] significantly. We en-
large the set of languages that have zero-knowledge proofs
with communication complexity quasi-linear in the witness
size, from relations R which can be verified by AC0 circuits
(constant depth) to relations R which can be verified by
NC (polylog depth) circuits. More generally, we relate the
communication complexity to the depth of the relation R:

Theorem 5. Assume one-way functions exist, and let κ =
κ(n) ≥ log(n) be a security parameter. Let L be an NP lan-
guage whose relation R can be computed on inputs of length
n with witnesses of length k = k(n) by Boolean circuits of
size poly(n) and depth d(n).

Then L has a zero-knowledge interactive proof with per-
fect completeness, soundness 1

2
(can be amplified), and com-

munication complexity k · poly(κ, d(n)); the run time of the
prover (given a witness) is poly(n).

In particular, for relations R in NC , the protocol of The-
orem 5 matches the communication complexity achieved by
[39] for AC0; i.e., the communication complexity is quasi-
linear in the witness length.

From an application point of view, enlarging the set of
communication efficient protocols from relations verifiable
in AC0 to relations verifiable in NC , is significant. Many
typical statements that one wants to prove in zero knowledge
involve proving the correctness of cryptographic operations
in zero knowledge, such as “The following is the result of
proper decryption” or “The following is a result of a pseudo
random function”. Many such operations are generally not
implementable in AC0 (see [47]), but can often be done in
NC .

The idea behind this theorem is to use our public-coin
interactive protocol from Theorem 1, and carefully apply to
it the (standard) transformation from public-coin interactive
proofs to zero knowledge interactive proofs of [14]. This is
done using statistically binding commitments, which can be
implemented using one-way functions [51, 38]. Details are
in the full version.

For languages inNC that are L-uniform, the verifier in our
zero knowledge proof runs in time that is quasi-linear in the
input size. The works of [39, 41] mentioned above on zero
knowledge interactive proofs for AC0 computable relations
do not address (nor do they achieve) improvements in the
verifier’s computation time.

We note that in the setting of arguments and computa-
tional soundness, it is known by [44] how to obtain asymp-
totically very efficient zero-knowledge argument systems with
polylogarithmic communication complexity for all of NP.
Besides the weaker soundness guarantees, those results re-
quire assuming collision-resistant hashing (we assume only
one-way functions), and use the full PCP machinery.

1.6 Results on IPCP and PCA
Building on our interactive proofs, we show constructions,

with better parameters and novel features, of two new proof
systems introduced by Kalai and Raz [41, 42].

Low communication and short Interactive PCP. In [41] Kalai
and Raz proposed the notion of an interactive PCP (IPCP):
a proof system in which a polynomial time verifier has access
to a proof-string (a la PCP) as well as an interactive prover.
When an NP relation R is implementable by a constant-
depth circuit (i.e., R ∈ AC0) they show an IPCP for R with

polylog query complexity, where the proof-string is of size
polynomial in the length of the witness to R (rather than the
size of R) and an interactive phase of communication com-
plexity polylog(n). We extend this result to NP relations
implementable by poly-size circuits of depth d. Namely, we
demonstrate an IPCP with a proof-string of length polyno-
mial in the length of the witness and an interactive phase
of communication complexity poly(log n, d). In particular,
this extends the results of [41] from relations in AC0 to re-
lations in NC . Moreover, the work of [41] focuses on the
communication complexity of the proof system, but not the
runtime of the verifier10 (the complexity of their verifier is
proportional to the size of R). For relations in L-uniform
NC , our techniques yield IPCPs with verifier time complex-
ity that is quasi-linear in the input and witness sizes. See
the full version for details.

PCA with Efficient Provers. Another work of Kalai and Raz
[42] proposes a new proof system model in the public-key
setting called probabilistically checkable argument (PCA). A
PCA is a relaxation of a probabilistically checkable proof
(PCP) in two ways. First, it is assumed that each verifier is
associated with a public key and that the PCA is designated-
verifier (i.e., depends on the verifier’s public key). Second,
the soundness property is required to hold only computation-
ally. Other than these differences, the setting is the same as
that of PCPs: a probabilistic polynomial time verifier only
reads a few bits of the proof string in order to verify. A PCA
is said to be efficient if the honest prover, given a witness,
runs in time poly(n).

Using the assumption that (computational) PIR schemes
with polylog communication exist, [42] show a transforma-
tion from any IPCP with certain properties to a short PCA.
Applying this transformation to our IPCP (the conditions
of the transformation are met) yields an efficient PCA with
proof-string length poly(witness size, log n, d) and query com-
plexity with poly(log n, d) for any language in NP whose
relation can be computed by depth d and poly-size circuits.
We note that the efficiency of the prover is derived from a
special property of our proof system. In particular, previous
PCAs (obtained when one starts with the IPCPs of [41]) re-
quire non-polynomial time provers. See the full version for
details and theorem statements.

2. MAIN TECHNIQUES OVERVIEW
The Big Picture. In a nutshell, our goal is to reduce the ver-
ifier’s runtime to be proportional to the depth of the circuit
C being computed, rather than its size, without increasing
the prover’s runtime by too much.

To do this we use many of the ideas developed for the
MIP and PCP setting starting with the works of [15, 11, 10,
8, 7, 29], applying them to the problem of proving that the
computation of a (uniform) circuit C is progressing properly,
without the verifier actually performing it or even looking
at the entire circuit. Applying the ideas pioneered in the
MIP/PCP setting to our setting, however, runs into im-
mediate difficulties. The MIP/PCP constructions require
assuming that the verifier somehow has access to a commit-
ted string (usually the string should contain a low degree
extension—a high-distance encoding—of C’s computation
on the input x). This assumption is built into the PCP

10In both this work and in [41], the prover always runs in
polynomial time.



model, and is implicitly achieved in the MIP model by the
fact that the provers cannot communicate. Our challenge is
that in our setting we cannot assume such a commitment!
Instead, we force the prover to recursively prove the values
he claims for this low-degree extension, and do this while
preserving the prover’s time complexity.

Elaborating on the above, we proceed to give the idea of
the proof of our main theorem.

Assume without loss of generality that the circuit C is a
depth d arithmetic circuit in a layered form where there are
as many layers as the depth of the circuit.11

In previous work, spanning both the single and multi
prover models [49, 53, 11, 41],12 the entire computation of
the underlying machine is arithmetized and turned into an
algebraic expression whose value is claimed and proved by
the prover.

Departing from previous work, here we instead employ
an interactive protocol that closely follows the (parallelized)
computation of C, layer by layer, from the output layer to
the input layer, numbering the layers in increasing order
from the top (output) of the circuit to the bottom (input)
of the circuit.13 The verifier has no time to compute points
in the low-degree extension of the computation on x in layer
i: this is the low-degree extension (a high distance encod-
ing) of the vector of values that the gates in the circuit’s
i-th layer take on input x, and to compute it one needs to
actually evaluate C, which we want to avoid! Thus, the low-
degree extension of the i-th layer, will be instead supplied
by the prover. Of course, the prover may cheat. Thus, each
phase of the protocol lets the verifier reduce verification of
a single point in the low-degree extension of an advanced
step (layer) in the parallel computation, to verification of a
single point in the low-degree extension of the previous step
(layer). This process is repeated iteratively (for as many
layers as the circuit has), until at the end the verification
has been reduced to verifying a single point in the exten-
sion of the first step in the computation. In the first step
of the computation (the input layer), the only information
“computed” is the input x, the verifier can compute the low
degree extension of the input x on its own.

Going from Layer to Layer. Given the outline above, the main
remaining challenge is how to reduce verification of a single
point in the low degree extension of a layer in the circuit, to
verification of a single point in the low degree extension of
the previous layer.

We observe that every point in the low degree extension
(LDE) of the advanced layer (layer i) is a linear combination,
or a weighted sum, of the values of that layer’s gates. The
circuit has fan-in 2, and thus we can express the value of
each gate g in layer i as a sum, over all possible pairs (k, `)
of gates in the layer below (layer i+1), of some (low degree)
function of the values of gates k and `, as well as a predicate
that indicates whether those gates are indeed the “children”
of gate g. Arithmetizing this entire sum of sums, we run a
sum-check protocol to verify the value of one point in the
low-degree extension of layer i. To simplify matters, we

11Every circuit can be converted into this format by at most
squaring its size and not changing the depth.

12One exception is the work of Feige and Kilian on refereed
games [30], which is in a different model. See the full version
for details.

13I.e., layer 0 is the output layer, and layer d is the input
layer.

assume for now that the verifier has access to (a low-degree
extension of) the predicate that says whether a pair of gates
(k, `) are the children of the gate g. Then (modulo many
details) at the end of this sum-check protocol the verifier
only needs to verify the values of a pair of points in the
LDE of layer i + 1. This is still not enough, as we need to
reduce the verification of a single point in the LDE of layer
i to the verification of a single point in layer i + 1 and not
of a pair of points. We finally use an interactive protocol
to reduce verifying two points in the LDE of layer i + 1 to
verifying just one.

We assumed for simplicity of exposition above that the
verifier has access to a low degree extension of the predi-
cate describing arbitrary circuit gates. Thus, the (central)
remaining question is how the verifier gains access to such
LDE’s of predicates that decide whether circuit gates are
connected, without looking at the entire circuit (as the cir-
cuit itself is much larger than the verifier’s sunning time).
This is where we use the uniformity of the circuit, described
below.

The verifier’s running time in each of these phases is poly-
logarithmic in the circuit size. In the final phase, computing
one point in the low-degree extension of the input requires
only nearly-linear time, independent of the rest of the cir-
cuit. Another important point is that the verifier does not
need to remember anything about earlier phases of the veri-
fication, at any point in time it only needs to remember what
is being verified about a certain point in the computation.
This results in very space-efficient verifiers. The savings in
the prover’s running time comes (intuitively) from the fact
that the prover does not need to arithmetize the entire com-
putation, but rather proves statements about one (parallel)
computation step at a time.

Utilizing Uniformity. It remains then to show how the verifier
can compute (a low-degree extensions of) a predicate that
decides whether circuit gates are connected, without looking
at the entire circuit. To do this, we use the uniformity of
the circuit. Namely, the fact that it has a very short implicit
representation. A similar problem was faced by [11], there a
computation is reduced to an (exponential) 3SAT formula,
and the (polynomial-time) verifier needs to access a low-
degree extension of a function computing which variables are
in a specific clause of the formula. In the [11] setting this can
be done because the Cook-Levin reduction transforms even
exponential-time uniform computations into formulas where
information on specific clauses can be computed efficiently.
Unfortunately, we cannot use the Cook-Levin reduction as
[11] and other works do, because we need to transform uni-
form computations into low-depth circuits without blowing
up the input size.

To do this, we proceed in two steps. First, we exam-
ine low space computations, e.g. uniform log-space Turing
Machines (deterministic or non-deterministic). A log-space
machine can be transformed into a family of boolean circuits
with poly-logarithmic depth and polynomial size. We show
that in this family of circuits, it is possible to compute the
predicate that decides whether circuit gates are connected in
poly-logarithmic time and constant (AC0) depth. This com-
putation can itself be arithmetized, which allows the verifier
to compute a low-degree extension of the predicate in poly-
logarithmic time. Thus we obtain an interactive proof with
an efficient prover and super-efficient verifier for any L or
NL computation.



Still, the result above took advantage of the (strong) uni-
formity of very specific circuits that are constructed from
log-space Turing Machines. We want to give interactive
proofs for general log-space uniform circuits, and not only for
the specific ones we can construct for log-space languages.
How then can a verifier compute even the predicate that de-
cides whether circuit gates in a log-space uniform circuit are
connected (let alone its low degree extension)? In general,
computing this predicate might require nearly as much time
as evaluating the entire circuit. We overcome this obsta-
cle by observing that the verifier does not have to compute
this predicate on its own: it can ask the prover to compute
the predicate for it! Of course, the prover may cheat, but
the verifier can use the above interactive proof for log-space
computations to force the prover to prove that it computed
the (low degree extensions of) the predicate correctly. This
final protocol gives an interactive proof for general log-space
uniform circuits with low depth.

Finally, we note that even for non-uniform circuits, the
only “heavy” computation that the verifier needs to do is
computing low-degree extensions of the predicate that de-
cides whether circuit gates are connected. The locations at
which the verifier needs to access this predicate are only a
function of its own randomness (and not of the input or
the prover’s responses). This means that even for a com-
pletely non-uniform circuit, the verifier can compute these
evaluations of the predicate’s low-degree extension off-line
on its own, without knowing the input or interacting with
the prover. This off-line phase requires run-time that is pro-
portional to the circuit size. Once the input is specified,
the verifier, who has the (poly-logarithmically many) eval-
uations of the predicate’s low degree extension that it com-
puted off-line, can run the interactive proof on-line with the
prover. The verifier will be super efficient in this on-line
phase. See the full version for further details.

3. A BARE-BONES PROTOCOL
Our goal is constructing a protocol in which a prover,

who is given a circuit C : {0, 1}k → {0, 1} of size S and of
depth d, and a string x ∈ {0, 1}k, proves to a verifier that
C(x) = 0. The verifier’s running time should be significantly
smaller than S (the time it would take him to evaluate C(x)
on his own). At the same time, we want the prover to be
efficient, running in time that is polynomial in S.

Since we want the verifier to run in time that is smaller
than the circuit size, we must utilize the uniformity of the
circuit, as discussed in Section 2. In this section, however,
we do not focus on this issue. Rather, we work around the
circuit uniformity issue by giving the verifier oracle access
to (an extension of) the function that on input three gates
outputs 1 if one gate is the addition (or the multiplication)
of the other two gates. The verifier will run in quasi-linear
time given this oracle. We call this protocol a bare-bones
interactive proof protocol, it should be taken as an abstrac-
tion, meant to highlight and clarify some of the new tech-
nical ideas in our work. It is not an interactive proof in the
standard model. For the details on how we realize the bare-
bones protocol as an interactive proof (removing the oracle),
see the overview in Section 2 and the full version.

Preliminaries. Fix H to be an extension field of GF[2], and
fix F an extension field of H, where |F| = poly(|H|). Fix an
integer m ∈ N, and α : Hm → {0, 1, . . . , |Hm| − 1} to be

an (efficiently computable) lexicographic order of Hm. We
can view a k-element string (w0, w1, . . . , wk−1) as a function

W : Hm → F, where W (z)
def
= wα(z) when α(z) ≤ k − 1 and

W (z) = 0 otherwise.
A low degree extension of a function W (or a k-element

string W ) is a function W̃ : Fm → F that agrees with W on

Hm: W̃ |Hm ≡ W , such that W̃ is an m-variate polynomial
of degree significantly smaller than |F|. A basic fact is that
there exists a unique extension of W into a function (the
unique low-degree extension) of degree at most |H| − 1 in
each variable. Moreover, the unique low-degree extension
can be expressed as W̃ (z) =

∑
p∈Hm β̃(z, p) · wi, where β̃ :

Fm×Fm → F is an easily computable m-variate polynomial
of degree at most |H| − 1 in each variable.

Notation and Conventions. Recall that the circuit C has size
S and depth d ≤ S. We chooseH such that max{d, log(S)} ≤
|H| ≤ poly(d, log(S)). We choose m to be an integer such
that S ≤ |H|m ≤ poly(S), and F such that |F| ≤ poly(|H|).
Finally, let δ ∈ N be a (degree) parameter such that |H|−1 ≤
δ < |F|. We assume w.l.o.g that C is a layered arithmetic
circuit of fan-in 2 (over the gates × and + and the field F),
and that all its layers are of size S.14 When considering the
d layers of C, we think of the 0 layer as the output layer,
and of the d layer as the input layer.

For each 0 ≤ i ≤ d, we label the S gates in the i’th layer of
C by values in {0, . . . , S − 1}. For each i ∈ [d], we associate
with C two functions addi, multi : Hm×Hm×Hm → {0, 1}.
Both these functions take 3 gate labels (j1, j2, j3) as input
(gate labels in [S] are represented as vectors in Hm), and
return 1 if and only if the gate j1 in layer i−1 is the addition
or multiplication (respectively) of gates (j2, j3) in layer i,

and 0 otherwise. For each i ∈ [d], let ˜addi, ˜multi : F3m → F
be (some) low-degree extensions of addi, multi (respectively)
with respect to H,F, m, of degree δ in each variable (recall
δ < |F|). In this bare-bones protocol we simply assume that

the verifier has oracle access to the functions ˜addi, ˜multi for
every i ∈ [d− 1].

Finally, for each 0 ≤ i ≤ d we associate a vector vi =
(vi,0, . . . , vi,S−1) ∈ FS with the i’th layer of the circuit C.
These vectors are functions of the input x = (x1, . . . , xk) ∈
Fk, and are defined as follows: For each 0 ≤ i ≤ d we let vi

be the vector that consists of the values of all the gates in the
i-th layer of the circuit when it is evaluated on input x. So,
the vector v0, that corresponds to the output layer, satisfies
v0 = (C(x), 0, . . . , 0) ∈ FS . Similarly, the vector vd, that
corresponds to the input layer, satisfies vd = (x1, . . . , xk).

Similarly, for each 0 ≤ i ≤ d, let Ṽi : Fm → F be the
(unique) low degree extension of vi with respect to H,F, m.

Recall that the function Ṽi is of degree ≤ |H| − 1 in each of
its m variables and is efficiently computable.

Protocol Overview. The prover wants to prove C(x) = 0, or

equivalently, that Ṽ0(0, . . . , 0) = 0. This is done in d phases
(where d is the depth of C). In the i’th phase (1 ≤ i ≤ d) the

prover reduces the task of proving that Ṽi−1(zi−1) = ri−1

to the task of proving that Ṽi(zi) = ri, where zi is a ran-
dom value determined by the protocol (and z0 = (0, . . . , 0),
r0 = 0). Finally, after the d’th phase, the verifier checks on

his own that Ṽd(zd) = rd. Note that Ṽd is the low degree

14The one exception is the input layer, which is of size n, but
we ignore this technicality throughout the exposition. See
the full version for details.



extension of the input x with respect to H,F, m. Thus, this
last verification task requires computing a single point in the
low degree extension of the input x. This is the “heaviest”
computation run by the verifier, and this final computation
is independent of the circuit C; it can be done in quasi-linear
time in the input length. Moreover, if the verifier is given
oracle access to the low-degree extension of x, then this only
requires a single oracle call.

In what follows we describe these phases. In each phase,
the communication complexity is poly(d, log S), the running
time of the prover is at most poly(S), and the running time
of the verifier is poly(d, log S).

In the i-th phase (i ∈ [d]), we reduce the task of proving

that Ṽi−1(zi−1) = ri−1 to the task of proving that Ṽi(zi) = ri

where zi ∈ Fm is a random value determined by the verifier,
and ri is a value determined by the protocol. For p, ω1, ω2 ∈
Fm, we define

fi(p, ω1, ω2)
def
= ˜addi(p, ω1, ω2) ·

(
Ṽi(ω1) + Ṽi(ω2)

)

+ ˜multi(p, ω1, ω2) · Ṽi(ω1) · Ṽi(ω2).

For every p ∈ Hm, Ṽi−1(p) =
∑

ω1,ω2∈Hm fi(p, ω1, ω2). From
the definition of the low-degree extension, for every z ∈ Fm,
we get that Ṽi−1(z) =

∑
p∈Hm β̃(z, p) · Ṽi−1(p), where β̃ :

Fm × Fm → F is a polynomial of degree at most |H| − 1 in
each variable, that can be computed in time ≤ poly(|H|, m).
We conclude that for every z ∈ Fm,

Ṽi−1(z) =
∑

p,ω1,ω2∈Hm

β̃(z, p) · fi(p, ω1, ω2).

Thus, proving that Ṽi−1(zi−1) = ri−1 reduces to proving

that ri−1 =
∑

p,ω1,ω2∈Hm β̃(zi−1, p) · fi(p, ω1, ω2). This is

done by running an interactive sum-check protocol (see the
full version for the details).

Finally, in order to carry out the last verification task in
the sum-check protocol, the verifier needs to compute on
his own the value β̃(zi−1, p) · fi(p, ω1, ω2), on random in-
puts p, ω1, ω2 ∈R Fm (chosen by the verifier). Recall that
we assumed for now that the verifier has oracle access to
the functions ˜addi and ˜multi. Computing the function β̃ re-
quires time ≤ poly(|H|, m). So, the main computational

burden in this verification task is computing Ṽi(ω1) and

Ṽi(ω2), which requires time poly(S) (and thus cannot be
computed by our computationally bounded verifier). In the

protocol, the prover now sends both these values, Ṽi(ω1) and

Ṽi(ω2), to the verifier. The verifier V1 (who knows ω1 and
ω2) receives two values v1, v2 and now wants to verify that

Ṽi(ω1) = v1 and Ṽi(ω2) = v2.
Thus, so far, using the sum-check protocol, we reduced

task of proving that Ṽi−1(zi−1) = ri−1 to the task of proving

that both Ṽi(ω1) = v1 and Ṽi(ω2) = v2. However, recall that

our goal was to reduce the task of proving that Ṽi−1(zi−1) =
ri−1 to the task of proving a single equality of the form
Ṽi(zi) = ri. Therefore, what remains (in the i’th phase)
is to reduce the task of proving two equalities of the form
Ṽi(ω1) = v1 and Ṽi(ω2) = v2 to the task of proving a single

equality of the form Ṽi(zi) = ri. This is done via a more
standard interactive process, see the full version for details.
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