
6.892 Computing on Encrypted Data September 16, 2013

Lecture 2
Lecturer: Vinod Vaikuntanathan Scribe: Britt Cyr

In this lecture, we will define the learning with errors (LWE) problem, show an equivalence between the
search and decision versions of LWE, construct encryption schemes based on the hardness of LWE, and begin
to see their homomorphic properties. We start with definitions.

1 Definitions

Definition 1 (Search LWEn,q,χ).

Search LWE is the Learning with Errors problem with the goal to find ~s
n is the security parameter
q is an odd modulus
χ is the probability distribution on Zq = {− q−12 , . . . q−12 }

Definition 2 (B-Bounded).

We will say that χ is B-bounded if Prx←χ[|x| > B] = negl(n)

Definition 3 (Search LWE assumption).

Given access to oracle, it must be computationally hard to find s.

∀PPTA,Prs[ALWEs(1n) = s] = negl(n)

Where the input to LWEs is
(a← Znq , 〈a, s〉+ e) where e← χ

Definition 4 (Decision LWE assumption).

Cannot distinguish samples of LWE and from uniform random∣∣Pr[DLWEs(1n) = 1]− Pr[Drandom(1n) = 1]
∣∣ = negl(n)

1.1 LWE Reductions

The reduction from search to decision is trivial.
Decision is as hard as search (proven later)
Search LWE (average case) → approximate gaps Vp on any lattice (worst case)
Search LWE (average case) → shortest independent vectors problem (worst case)

2 Encryption with LWE

2.1 OWF based on hardness of LWE

f(A, s, e) = (A,As+ e)

A ∈ Zm×nq

e ∈ χm

This is an injective OWF for m >> n, where m is the number of samples, since it is hard to find s by
the search LWE assumption.

2-1

2.2 PRG

Decision LWE gives a PRG
f : (A, s, e)→ (A,As+ e)

Consider the number of bits, ignore A since it is on both sides

n log q +m logB → m log q

This is a PRG for m >> n since then n log q +m logB < m log q

2.3 Private Key Encryption

Sending a single bit

SK = ~s← Znq

Enc(SK,m) = (a, 〈a, s〉+ e+m(
q + 1

2
) mod q) with a and e chosen at random

Dec(c) = b− 〈a, s〉 = e+m(
q + 1

2
)

Decrypts to 0 if the result is small and 1 if it is near q
2 . This works if |e| < q

4 .

m = 1 m = 1m = 0

−q
2

−q
4 0

Dec(c)

q
4

q
2

2.4 Public Key Encryption

In general, we can begin with a secret key homomorphic encryption scheme and create a public key homo-
morphic encryption scheme from it. This does not hold if the encryption scheme is not homomorphic.

2.4.1 First attempt

For the public key, publish an encryption of 0 and an encryption of 1. Then the person doing the encrypting
can choose which one to use.

This however does not work because the same key is used every time and the adversary can detect a
repeat.

2.4.2 Modification

This can be modified to be correct by instead publishing many encryptions of 0. The idea is to take a random
linear combination of these to get a fresh encryption of 0 for each use. [Regev ’05]

SK = ~s← Znq
PK = (A,As+ e) where A← Zm×nq

Enc(µ) = (rA, r(As+ e) + µ(
q + 1

2
) mod q)

Dec(c) = b− 〈a, s〉 = e+ µ(
q + 1

2
)

2-2

Encryption takes r ← {0, 1}m and makes a random linear combination of the public key to get a new
encryption of 0. Decryption is the same as the private key case. If the output is near zero, it is a 0, if it is
near q

2 , then it is a 1.
This will correctly decrypt as long as |〈r, e〉| < q

4 , when the error is not too large. This is true if |ei| < q
4m .

2.5 Security Argument

Because of the leftover hash lemma [ILL ’89]

(PK,EncPK(0)) ≈c (˜PK,Enc ˜PK(0))

˜PK = (A, y) where A← Zm×nq and y ← Zmq
By the Decision LWE Assumption

(˜PK,Enc ˜PK(0)) ≈s Uniform Random

Similarly, we can show
(PK,EncPK(1)) ≈c (˜PK,Enc ˜PK(1))

(˜PK,Enc ˜PK(1)) ≈s Uniform Random

Therefore the encryption is semantically secure

(PK,EncPK(0)) ≈c (PK,EncPK(1))

2.6 Leftover Hash Lemma [ILL ’89]

Given
A← Zm×(n+1)

q

r ← {0, 1}m

b← Zn+1
q uniformly random

Then
(A, rA) ≈ε (A, b)

2.7 Additive Homomorphism

c1 = (a1, 〈a1, s〉+ e1 +m1(
q + 1

2
))

c2 = (a2, 〈a2, s〉+ e2 +m2(
q + 1

2
))

To add, just add the two ciphers. Ignore the m1m2 term because it is negligible since we are just adding
single bits and q is big

c1 + c2 = (a1 + a2, 〈a1 + a2, s〉+ e1 + e2 + (m1 ⊕m2)
q + 1

2
)

We need to set appropriately sized parameters so errors do not get too large
q is subexponential
e is small polynomial

We can add A different ciphertexts as long as B = O(qA)

2-3

3 Detour: Search to Decision Reduction for LWE

Goal:

LWEn,q,χ,m ≤ dLWEn,q,χ,m′

m = poly(n,m′,
1

ε
)

t = poly(n, q,m′)

3.1 Reduction [Blum, Furst, Kearns, Lipton ’93]

Good Bad
Any Error Distribution q must be prime
No advantage for quantum algorithms Time is poly in q, not log q [Brakerski ’13]

m grows with 1
ε [Micciancio, Mol ’11]

3.2 Overview of Reduction

The reduction is in 3 steps. Beginning with a machine for dLWE for a random ~s, create a machine that
works for any ~s. Then amplify the advantage to make it a nearly perfect decider. Then with that machine,
make a decider that solves search with advantage 1

2 .

D0 :dLWEn,q,x,m′ advantage ε for a random s

D1 :dLWEn,q,x,m′ advantage ε for any s

D2 :dLWEn,q,x,m advantage 1−O(
n

q
)

D3 :searchLWEn,q,χ,m advantage
1

2

3.3 First Reduction: D0 → D1

Pick from uniform random t← Znq .
Let b = As + e. Give the machine (A, b + At). This confuses the machine enough to make it a decider

for any s.

3.4 Second Reduction: D1 → D2

Split m′ into chunks of m and run each which is the number of samples used in each instance of D1

Run D1 for O(lognq
ε) iterations with these independent sets of samples. Each result casts a vote with

probability of being correct 1
2 + ε. Using a Chernoff bound, the probability that the result of all the votes is

correct is 1−O(1
nq). This is amplification in a braindead way.

2-4

3.5 Third Reduction: D2 → D3

The method for this reduction from decision to search will be guess and check. For every coordinate si, step
through all possible values.

for i = 1 to n do
for gi = 1 to q − 1 do

sample random r ← Zq
Feed D2 with (a′ = a+ r · ui, b′ = 〈a, s〉+ e+ rgi) where ui is zero vector except 1 in ith location
if D2 says random then

step through
else

set si = gi
end if

end for
end for

3.6 Correctness of Reduction

Claim 1 (If gi = si, then set of samples ≈ LWE.).

The correct LWE is (a′, b′) = (a′, (〈a, s〉+ e) + r · si). So if si = gi, then they are the same.

Claim 2 (If g1 6= si then the set of samples ≈ random and so D2 will identify as random.).

(a′, b′ = 〈a′, s〉+ e+ r · (gi − si))

r is taken at random from Zq and gi− si is non-zero in this case. Since we are working in a prime field, this
whole term is random. This random term can be as big as q since r can be. Therefore b′ is indistinguishable
from random.

3.7 Best LWE algorithm

Lattice-basis reduction techniques [Peikert, Micciancio ’13]
Parameters

sLWEn,q,χ,poly(m)

t = 2Õ
n

log
q
B

When we set B and q as
B = poly(n)

q = 2O(nε)

t = 2Õ(n1−ε)

We can set q as large as 2O(
√
n) for decision LWE

2-5

4 Multiplicative homomorphism

There are two ways of looking at ciphertexts the encryption view and the decryption view.

4.1 Encryption View

This view thinks of the ciphertext as the encryption of a message

c1 = (a1, 〈a1, s〉+ e1 +m1
q + 1

2
)

c2 = (a2, 〈a2, s〉+ e2 +m2
q + 1

2
)

4.2 Decrytion View

This view thinks of the ciphertext as a preimage of the decryption function

〈c1, t〉 = e1 +m1
q + 1

2

〈c2, t〉 = e2 +m2
q + 1

2

Where |e1| and |e2| are both small

4.3 Homomorphism

Notation:

t = (−s, 1) ∈ Zn+1
q

= 〈2c1 ⊗ c2, t⊗ t〉

Where ⊗ is the tensor product and this expands to a quadratic polynomial of the original size
It is better to consider the decryption view for the multiplicative homomorphism. The product of the

ciphertexts does not need to look like the original ciphertexts.

2· < c1, t > · < c2, t > = (2e1 +m1)(e2 +m2
q + 1

2
)

= (2e1e2 +m1e2 + e1m2) +m1m2(
q + 1

2
)

Since the messages are just bits, and the product of the errors is small, we can ignore all but m1m2(q+1
2)

which is the product of the two messages.

2-6

