
6.892 Computing on Encrypted Data September 23, 2013

Lecture 3
Lecturer: Vinod Vaikuntanathan Scribe: Chiraag Juvekar

1 Introduction

In this lecture we will see a fuller development of the LWE based homomorphic encryption scheme. The
multiplication operation in the naive LWE− HE scheme changes the form of the cipher text. In this lecture
we see a dimensionality reduction trick to restore the form of the original ciphertext. Finally we conclude
with reductions between LWE assumptions that relax the constraints on the probability distribution from
which the random matrix for the encryptions is drawn.

2 LWE based Homomorphic Encryption

In this lecture we mainly focus on the LWE based private-key HE scheme. We note that it is possible to
extend any compact private key homomorphic scheme into a public key homomorphic scheme that is just
slightly less homomorphic [Rot11]. However since our development will eventually lead to both levelled and
fully homomorphic schemes this slight reduction in homomorphic capability is not a very big concern.

2.1 Basic secret-key encryption scheme

We first discuss the basic LWE based scheme that we described in the last class. The security parameters
for this scheme are (n, q, χ) which are the dimension, modulus and the error distribution respectively. The
error distribution χ is B-bounded, that is Prx←χ [|x| ≥ B] = negl(·). The various algorithms are:

• Keygen(1n): Pick t← Znq

• Encsk(µ):
(
a,
〈
a, t
〉

+ e+ µ
⌊
q
2

⌉)
= (a, b) = c ∈ Zn+1

q where (a, e)← (Znq , χ) and µ ∈ {0, 1}

• Decsk(a, b): Round q
2

(
b−

〈
a, t
〉)

= Round q
2

(
e+ µ

⌊
q
2

⌉)
Let s = (−t, 1). Hence we have Decsk(a, b) = Round q

2

(〈
c, t
〉
〉
)
.

• Correctness: The scheme is correct as long as |e| ≤ q
4

• Security: The security is based on the hardness of the LWE problem. For LWE as long as q
B < 2n

ε

,

the run time of the best attacks against LWE is O
(

2n
1−ε
)

The Eval algorithms for add and mult are given as follows:

• add: cadd = c1 + c2 mod q.

Correctness of additions follows because:

〈c1, s〉 = e1 + µ1

⌊q
2

⌉
〈c2, s〉 = e2 + µ2

⌊q
2

⌉
〈cadd, s〉 = (e1 + e2) + (µ1 + µ2)

⌊q
2

⌉
= (eadd) + (µ1 ⊕ µ2)

⌊q
2

⌉

3-1

Thus eadd ≤ (e1 + e2 + 1) and the add function evaluates the ⊕ operation. As long as |eadd| < q
4 we

are good.

• mult: cmult = 2 · c1 ⊗ c2 mod q.

Correctness of multiplication follows because:

〈c1, s〉 = e1 + µ1

⌊q
2

⌉
〈c2, s〉 = e2 + µ2

⌊q
2

⌉
2 · 〈c1, s〉 · 〈c1, s〉 = 2 ·

(
e1 + µ1

⌊q
2

⌉)
·
(
e2 + µ2

⌊q
2

⌉)
= 2e1e2 + (µ1e2 + µ2e1) + µ1µ2

⌊q
2

⌉
But, 2 · 〈c1, s〉 · 〈c1, s〉 = 2 · 〈c1 ⊗ c2, s⊗ s〉

Hence, 2 · 〈c1 ⊗ c2, s⊗ s〉 = 2e1e2 + (µ1e2 + µ2e1) + µ1µ2

⌊q
2

⌉
= emult + µ1µ2

⌊q
2

⌉
The above approach for mult has two major drawbacks:

• The dimension of the output of the multiplication has changed. c1, c2 ← Zn+1
q but cmult ← Z(n+1)2

q .

Thus after evalutaing a circuit C of depth d the dimension of the output grows from (n+1)→ (n+1)2
d

.
This is a huge and unreasonable penalty to pay for outsourcing computation since the decryption
algorithm must deal with huge ciphertexts.

• emult grows as the square of the initial error. Thus when evaluating a circuit of depth d, the final error

is e2
d

init. We need to control the fast growth of this error.

3 Dimension Switching

To solve the first of the two problems mentioned above we use a technique called dimension switching. To
gain some intuition about this procedure we first discuss an “error-less” version that is insecure. We will
then convert to secure version using some error terms.

3.1 Error-less Dimension Switching

Consider that we have a vector cmult ∈ Z(n+1)2

q such that 〈cmult, s⊗ s〉 = µ
⌊
q
2

⌉
. We want to find a new

vector c′mult ∈ Zn+1
q such that

〈
c′mult, s

〉
= µ

⌊
q
2

⌉
. To accomplish this assume that the secret key owner

publishes a hint matrix D such that DT s = s⊗ s.
We can see that,

〈D · cmult, s〉 = sT (D · cmult) =
(
sT ·D

)
cmult =

(
DT · s

)T · cmult = (s⊗ s)T · cmult = 〈cmult, s⊗ s〉

Thus, c′mult = D · cmult. Unfortunately publishing such a D is completely insecure. Assume that ψij is
the ijth-row of DT . Then

ψij [n] =

{
s[i], if n = j.

0, otherwise.

Thus given D we can simply read off s.

3-2

3.2 Real Dimension Switching

In order to secure the D, we simply publish a noisy version such that,

ψij = Ẽncsk(s[i]s[j]) =
(
a,
〈
a, t
〉

+ eij + s[i]s[j]
)

Note that ψij is not a valid cipher text since s[i]s[j] ∈ Zn+1
q and not 0, 1. Thus ψij does not decrpyt to

a valid ciphertext. This is not an issue for us since we will never try to decrypt ψij . What matters is that
〈ψij , s〉 = s[i]s[j] + eij .

When sk 6= s, the security of the Ẽncsk operation is equivalent to the LWE-assumption. When sk = s,
this is equivalent to assuming that LWE is hard under a circular security assumption.

4 Homomorphic Multiplication with Dimension Switching

From the above discussion we can construct a new homomorphic multiplication algorithm as follows.

1. Tensoring: cmult = 2 · c1 ⊗ c2 ∈ Z(n+1)2

q

2. Dimension Switching: c′mult = D · cmult.

Thus we have, 〈
c′mult, s

〉
= 〈D · cmult, s〉

=

〈 ∑
i,j∈[n+1]

cmult[i, j] · ψij , s

〉

=
∑

cmult[i, j] · 〈ψij , s〉

=
∑

cmult[i, j] · (s[i]s[j] + eij)

=
∑

cmult[i, j]s[i]s[j] +
∑

cmult[i, j]eij

=
∑

2 · c1[i]c2[j]s[i]s[j] + edr

= 2 · 〈c1 ⊗ c2, s⊗ s〉+ edr

= µ1µ2

⌊q
2

⌉
+ emult + edr

Thus dimension switching convert an (n+1)2-dimension ciphertext back to (n+1)-dimension ciphertext.
Unfortunately this incurs an extra error penalty term. This is edr, the error of performing dimension
reduction. In general this error may be large because,

edr =
∑

i,j∈[n+1]

cmult[i, j]eij

≤
∑

i,j∈[n+1]

q · |B|

≤ (n+ 1)2q|B|

Thus edr may quite easily be greater than q
4 and the final result may not decode correctly. In order to

reduce the magnitude of edr we use a further trick involving the binary representations.

3-3

4.1 Binary Representation Trick

Instead of using a packed representation for cmult[i, j], we describe it using an expanded bit-representation.
Thus we can write,

cmult[i, j] =

blog qc∑
τ=0

cmult[i, j, τ] · 2τwhere cmult[i, j, τ] ∈ {0, 1}

Further let, ψijτ = s[i]s[j] · 2τ + eijτ . If we are to publish the extended D′ matrix with the columns as
ψijτ , we now have, 〈

c′mult, s
〉

= 〈D′ · cmult, s〉

=

〈 ∑
i,j∈[n+1]
τ∈[blog qc]

cmult[i, j, τ] · ψijτ , s

〉

=
∑

cmult[i, j, τ] · 〈ψijτ , s〉

=
∑

cmult[i, j, τ] · (s[i]s[j] · 2τ + eij)

=
∑

cmult[i, j, τ] · 2τs[i]s[j] +
∑

cmult[i, j, τ]eij

=
∑(∑

cmult[i, j, τ]2τ
)
s[i]s[j] + edr

=
∑

cmult[i, j]s[i]s[j] + edr

= µ1µ2

⌊q
2

⌉
+ emult + edr

Although this analysis is very similar to the packed representation cases, since cmult[i, j, τ] ∈ {0, 1} we
now have a tighter bound on edr. Infact we can show that edr ≤ (n+ 1)2 blog qc |B|.

4.2 Somewhat Homomorphic Encryption with Dimension Switching

Now that we have an efficient procedure for dimension switching we will look at an L-level LWE−SH scheme.
The scheme as described does not make any assumptions on circular security of the LWE problem but can
be made more efficient using that assumption.[BV11][BGV12]

• Keygen(1n): ∀i ∈ {0, 1, . . . , L} pick L+ 1-independent ti ← Znq . Let si = (−ti, 1).

• Encsk(µ):
(
a,
〈
a, t0

〉
+ e+ µ

⌊
q
2

⌉)
= (a, b) = c ∈ Zn+1

q where (a, e)← (Znq , χ) and µ ∈ {0, 1}

• Decsk(c): Round q
2

(〈c, sL〉) Round q
2

(
e+ µ

⌊
q
2

⌉)
In addition, to aid dimension switching we publish a set of L-evaluation keys evk = {evk1, ..., evkL} such

that,

evkl = Ẽncsl(sl−1[i]sl−1[j] · 2τ)where i, j ∈ [n+ 1], τ ∈ [blog qc]

• Correctness: The scheme is correct as long as the L-level ciphertexts are decodable. Thus B2L ≤ q
4

• Security: The security is based on the hardness of the LWE problem. Hence q
B < 2n

ε

.

The above two inequalities tells us that L ≈ ε log n

3-4

5 Reductions for the LWE problem

After reducing the error in the dimension reduction term we focus on the emult. In order to reduce this
error we first prove some result regarding the hardness of the lwe problem when the secret is chosen from
the error distribution χ.

In particular we will look at the following two results:

Lemma 1. [ACPS09] The LWE with secret t← χn is as hard as LWE with secret t← Znq .

Proof. Let LWE ∼ LWEn,m,q,χ,U : t← Znq , e← χ and let LWE′ ∼ LWEn,m,q,χ,χ: t← χn, e← χ.
Assume that we have an oracle that solves LWE. We wish to use the oracle to find the secret t ← χn

when given (A,
〈
A, t
〉

+ e). Pick s ← Znq . Hence s + t ← Znq . Now feed the oracle (A,
〈
A, t+ s

〉
+ e) which

it can now solve. Thus knowing s we can now recover the original t. Thus LWE′leqLWE
Assume that we have an oracle that solves LWE′. We wish to use the oracle to find the secret t ← Znq

when given (A,
〈
A, t
〉

+ e). We rewrite the above as,((
A1

A2

)
,

(
A1

A2

)
· t+

(
e1
e2

)
=

(
b1
b2

))
(1)

where A1 ← Zn2

q , A2 ← Zmnq .

Now b1 = A1 · t + e1. With very high probability A1 is an invertible matrix. Hence t = A−11 · (b1 − e1).
Thus we see that the error and secret in LWE are in some sense interchangeable. More precisely,

b2 = A2 · t+ e2

= A2A
−1
1 (b1 − e1) + e2

= A2A
−1
1 b1 −A2A

−1
1 e1 + e2

Thus if we feed our oracle
(
(−A2A

−1
1 ,−A2A

−1
1 e1 + e2)

)
, it will solve it since e1 ← χn. But once we get the

value of e1 we can find t and thus solve our orginal LWE instance. Thus LWE ≤ LWE′

Hence LWE = LWE′

Infact an even stronger result than the one shown above holds.

Lemma 2. [GKPV08] The LWE with secret t← Dn is as hard as LWE with secret t← Znq where D is any
distribution with large enough min-entropy.

References

[ACPS09] Benny Applebaum, David Cash, Chris Peikert, and Amit Sahai, Fast cryptographic primitives and
circular-secure encryption based on hard learning problems, Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference, Lecture Notes in Computer Science,
vol. 5677, Springer, 2009, pp. 595–618.

[BGV12] Zvika Brakerski, Craig Gentry, and Vinod Vaikuntanathan, (leveled) fully homomorphic encryp-
tion without bootstrapping, Proceedings of the 3rd Innovations in Theoretical Computer Science
Conference (New York, NY, USA), ITCS ’12, ACM, 2012, pp. 309–325.

[BV11] Z. Brakerski and V. Vaikuntanathan, Efficient fully homomorphic encryption from (standard)
lwe, Foundations of Computer Science (FOCS), 2011 IEEE 52nd Annual Symposium on, 2011,
pp. 97–106.

3-5

[GKPV08] Shafi Goldwasser, Yael Kalai, Chris Peikert, and Vinod Vaikuntanathan, Robustness of the learn-
ing with errors assumption, In ICS. 2010. [GPV08] [GRS08, 2008.

[Rot11] Ron Rothblum, Homomorphic encryption: From private-key to public-key, Theory of Cryptogra-
phy (Yuval Ishai, ed.), Lecture Notes in Computer Science, vol. 6597, Springer Berlin Heidelberg,
2011, pp. 219–234.

3-6

