
6.892 Computing on Encrypted Data September 30, 2013

Lecture 4
Lecturer: Vinod Vaikuntanathan Scribe: Cheng Chen

1 Introduction

In the previous lecture we constructed a LWE-based secret-key encryption scheme that is somewhat homo-
morphic. More precisely, the scheme supports evaluation of ε log n depth circuits for every ε < 1 after using
the Dimension Reduction technique that we also introduced in the previous lecture.

Building upon this starting point, we will introduce two more techniques in this lecture. The first
technique is called Modulus Reduction[2] and can improve the scheme to support evaluation of O(nε) depth
circuits for every ε < 1, which results in a leveled FHE scheme, i.e. a FHE scheme that can evaluate L
depth circuit for every L. The second technique called Bootstrapping [4] is a general transformation from a
sufficiently strong HE scheme to a FHE scheme that can evaluate arbitrary circuits of polynomial size.

2 Starting point: Quadratic HE with Dimension Reduction

In the following, we provide a brief review of the LWE-based secret-key encryption scheme equipped
with Dimension Reduction technique. The choose of parameter will be discussed later. q is some odd
prime. Denote d q2c = q+1

2 and log q = dlog2 qe. All the operations throughout the note are in ring

Zq = {− q−12 , . . . , 0, . . . , q−12 } unless specified explicitly. We will also use a non standard notation [n] =
{0, 1, . . . , n− 1} for convenience.

• Gen(1λ, 1L)→ (sk, evk):

– For l ∈ [L+ 1], choose
#�

tl ← Znq , let #�sl = (− #�

tl , 1).

– For l ∈ [L], i, j ∈ [n+ 1], τ ∈ [log q], let
�

ψl,i,j,τ = (# �al,i,j,τ , 〈 # �al,i,j,τ ,
�

tl+1〉+ el,i,j,τ + 2τsl,isl,j) where
�al,i,j,τ ← Znq and el,i,j,τ ← χ are chosen independently.

– Output sk = (#�s0, . . . ,
�sL) and evk = ({ # �

ψl,i,j,τ}l,i,j,τ ,
#�

c∗) where (
#�

c∗, 0) ← Enc(sk, 1) will be used
later to raise level.

• Enc(sk, µ ∈ {0, 1})→ (#�c , l):

– Choose #�a ← Znq , e← χ. Let #�c = (#�a , 〈 #�a ,
#�

t0〉+ e+ µd q2c). Output (#�c , 0).

• Dec(sk, (#�c , l))→ µ:

– Compute µ′ = 〈 #�c , #�sl〉. Output 0 if − q4 ≤ µ
′ ≤ q

4 and 1 otherwise.

• Add(evk, (#�c1, l1), (#�c2, l2))→ (# �cadd, ladd):

– If l1 6= l2, raise the lower one by Mult with the help of
#�

c∗ until we have l = l1 = l2.

– Output # �cadd = #�c1 + #�c2 and ladd = l.

• Mult(evk, (#�c1, l1), (#�c2, l2))→ (# �cmult, lmult):

– If l1 6= l2, raise the lower one by Mult with the help of
#�

c∗ until we have l = l1 = l2.

– For i, j ∈ [n+ 1], τ ∈ [log q], let ci,j,τ be the τth bit1 of 2c1,ic2,j .

1Least Significant Bit (LSB) is 0th bit.

4-1

– Output # �cmult =
∑
i,j,τ ci,j,τ

�

ψl,i,j,τ and lmult = l + 1.

We briefly review the correctness and the maximum levels that can be correctly evaluated. To do this, we
inductively argue that a ciphertext #�c of message µ ∈ {0, 1} at level l satisfies 〈 #�c , #�sl〉 = e + µd q2c for some
e � q. Clearly, the ciphertext at level 0 outputted by Enc satisfies this condition and Dec can decrypt
ciphertext of this form perfectly.

• Addition correctness:
〈 # �cadd,

�sladd〉 = 〈 #�c1 + #�c2,
#�sl〉 = 〈 #�c1,

#�sl〉+ 〈 #�c2,
#�sl〉 = (e1 + e2) + (µ1 + µ2 mod 2)d q2c since 2d q2c = 1.

• Multiplication correctness:

〈 # �cmult,
�slmult〉 = 〈

∑
i,j,τ ci,j,τ

�

ψl,i,j,τ ,
�sl+1〉 =

∑
i,j,τ ci,j,τ 〈

�

ψl,i,j,τ ,
�sl+1〉 =

∑
i,j,τ ci,j,τ (el,i,j,τ + 2τsl,isl,j)

= edr +
∑
i,j 2c1,ic2,jsl,isl,j = edr + 〈2 #�c1 ⊗ #�c2,

#�sl ⊗ #�sl〉 = edr + 2 〈 #�c1,
#�sl〉 · 〈 #�c2,

#�sl〉
= edr + 2(e1 + µ1d q2c)(e2 + µ2d q2c) = edr + 2(e1e2 + µ1e2 + µ2e1) + µ1µ2d q2c.

where edr =
∑
i,j,τ ci,j,τel,i,j,τ is the error introduced by Dimension Reduction.

Denote the errors eadd = e1 + e2 and emult = edr + 2(e1e2 + µ1e2 + µ2e1). Assume e1 and e2 (and also
χ) are B-bounded, i.e. Pr[|e1| > B or |e2| > B] < negl(λ). Then we have |eadd| ≤ 2B and |emult| ≤
((n + 1)2 log q + 4)B + 2B2. Note that in our parameter setting, n and log q is polynomial in λ while B is
usually subexponential to λ, therefore |eadd| ≈ poly(λ)B and |emult| ≈ O(B2) and multiplication limits the
maximum level that can be evaluated.2

When χ is einit-bounded, the error at level L is approximately bounded by e2
L

init. We need e2
L

init <
q/4 for correct decryption. For security, the best known algorithm for LWE runs in time approximately
2n/ log(q/einit). Therefore we choose einit to be polynomial in n = λ and q = 2n

ε

for every ε < 1 and
L ≈ log log q ≈ ε log n.

3 Modulus Reduction

In this section, we will show a technique called Modulus Reduction[1] that can improve the construction
above to support evaluation of O(nε) depth circuit for every ε < 1. Before we start, note that most of the
operations in this section is in R and [·]q means modulo into Zq. The key observation is that to decrypt
correctly, we only care about the inner product 〈 #�c , #�s 〉 instead of #�c , while the increase of noise only depends
on the magnitude of the original noise. More precisely, [1] proves that if we have a ciphertext #�c in Zq for

some secret key #�s , we can construct a new ciphertext
#�

c′ = d q
′

q
#�c c in Zq′ for the same secret key, where the

multiplication is work in R in each coordinate. The correctness is ensured by [〈 #�c , #�s 〉]q = q
q′ [〈

#�

c′ , #�s 〉]q′ +small.
You might wonder why this is useful. And the magical part can be best described in the following table
excerpted from [5].

noise/modulus without modulus reduction using modulus reduction
fresh ciphertext B/B10 B/B10

level 1, deg = 2 B2/B10 B2/B10 = B/B9

level 2, deg = 4 B4/B10 B2/B9 = B/B8

level 3, deg = 8 B8/B10 B2/B8 = B/B7

level 4, deg = 16 decryption error! B16/B10 B2/B7 = B/B6

Suppose we choose χ to be B-bounded and the module q to be approximately B10. In our original scheme
without using modulus reduction, the noise squares after we increase one level, i.e. do one multiplication.
Therefore it can only support blog 10c levels at most and have decryption error after that. If we use this
modulus reduction technique, after the first multiplication, the noise squares to B2 alike. But using the

2We can write the circuit as a polynomial in the inputs, and usually the coefficients and the number of monomials are
polynomial in the number of inputs, and therefore also polynomial in λ.

4-2

claim we discussed above, we can divide both noise and modular by B, resulting in a ciphertext with noise
B in ring ZB9 .3 In this way, we can support 10 levels in total.

There were some concerns about security raised in the class. But none of them are necessary. First, all
the operations are done on the ciphertext and we are not going to publish any additional parameters. Thus
the original reduction to LWE still holds. Second, this noise control technique is not likely to be an attack
to LWE since the hardness of LWE depends on the dimension and the ratio between modulus and noise.
When using this technique, we change neither of them.

The technique talked in the class is a refined and more direct way to control noise. We will first show
the idea roughly and then present the full scheme. By induction, we already have 〈 #�c1,

#�sl〉 = z1q+ e1 +µ1d q2c
and 〈 #�c2,

#�sl〉 = z2q + e2 + µ2d q2c for some integer z1 and z2 in [−(n + 1)q, (n + 1)q]. Therefore, we have
〈 2q

#�c1 ⊗ #�c2,
#�sl ⊗ #�sl〉 = zmrq + emr + µ1µ2d q2c where zmr = 2z1z2 + z1µ2 + z2µ1 and emr = 2z1e2 + 2z2e1 +

z1µ2 + z2µ1 + e1µ2 + e2µ1 + µ1µ2/2 + 2e1e2+e1µ2+e2µ1+µ1µ2/2
q . The result has the same form as a correct

ciphertext, but we need to argue that the error term emr is much smaller than q. Clearly emr is dominated
by 2z1e2+2z2e1, which can be as large as [−4(n+1)qB, 4(n+1)qB]. We can improve this by using the result
we discussed in the last lecture that the secret key of LWE can be instead sampled from error distribution
χ and get a bound [−4(n + 1)B2, 4(n + 1)B2], but this alone actually doesn’t help us since it is just our
original error rate. To solve this, we will apply the bitdecomp trick we have seen in the last lecture on the
secret key sl. The full scheme is exactly the same as the one we showed in Section 2 except the Gen and
Mult parts, which we will show below. Also note that all the operations below are in ring Zq except the
ones to compute d′i,j,τ .

• Gen(1λ, 1L)→ (sk, evk):

– For l ∈ [L+ 1], choose
#�

tl ← Znq , let #�sl = (− #�

tl , 1).

– For l ∈ [L], i, j,∈ [n+ 1], τ ∈ [log q], let sl,i,j,τ be the τth bit of sl,isl,j .

– For l ∈ [L], i, j ∈ [n+1], τ, υ ∈ [log q], let
�

ψl,i,j,τ,υ = (# �al,i,j,τ,υ, 〈 # �al,i,j,τ,υ,
�

tl+1〉+el,i,j,τ,υ +2υsl,i,j,τ)
where # �al,i,j,τ,υ ← Znq and el,i,j,τ,υ ← χ are chosen independently.

– Output sk = (#�s0, . . . ,
�sL) and evk = ({ # �

ψl,i,j,τ}l,i,j,τ ,
#�

c∗) where (
#�

c∗, 0) ← Enc(sk, 1) will be used
to raise level.

• Mult(evk, (#�c1, l1), (#�c2, l2))→ (# �cmult, lmult):

– If l1 6= l2, raise the lower one by Mult with the help of
#�

c∗ until we have l = l1 = l2.

– For i, j ∈ [n+ 1], τ ∈ [log q], let d′i,j,τ = 2τ 2
q c1,ic2,j .

– For i, j ∈ [n+ 1], τ ∈ [log q], let di,j,τ = dd′i,j,τc, i.e. round to nearest integer.

– For i, j ∈ [n+ 1], τ, υ ∈ [log q], let ci,j,τ,υ be the υth bit of di,j,τ .

– Output # �cmult =
∑
i,j,τ,υ ci,j,τ,υ

�

ψl,i,j,τ,υ and lmult = l + 1.

The correctness of multiplication follows that

〈 # �cmult,
�slmult〉 = 〈

∑
i,j,τ,υ ci,j,τ,υ

�

ψl,i,j,τ,υ,
�sl+1〉 =

∑
i,j,τ,υ ci,j,τ,υ 〈

�

ψl,i,j,τ,υ,
�sl+1〉 =

∑
i,j,τ,υ ci,j,τ,υ(el,i,j,τ,υ + 2υsl,i,j,τ)

= edr +
∑
i,j,τ di,j,τsl,i,j,τ = edr + eround +

∑
i,j,τ d

′
i,j,τsl,i,j,τ = edr + eround +

∑
i,j

2
q c1,ic2,jsl,isl,j

= edr + eround + 〈 2q
#�c1 ⊗ #�c2,

#�sl ⊗ #�sl〉 = edr + eround + emr + µ1µ2d q2c
where edr =

∑
i,j,τ,υ ci,j,τ,υel,i,j,τ,υ is the error introduced by Dimension Reduction, eround =

∑
i,j,τ (dd′i,j,τc−

d′i,j,τ)sl,i,j,τ is the error introduced by rounding, and emr, which we have specified before, is the error intro-

duced by Modulus Reduction. We can simply get |edr| ≤ (n + 1)2 log2 qB and |eround| ≤ 1
2 (n + 1)2 log qB

using the aforementioned property of LWE. The key point is that after we bitdecomp sl above, z1 and z2
are in [−(n+1)2 log q, (n+1)2 log q]4, and therefore |emr| ≤ (4(n+1)2 log q+2)B+2(n+1)2 log q+ 1

2 +o(1).

3Choose q = B10 and q′ = B9

4z1 and z2 are even in [−(n+ 1)2 logB, (n+ 1)2 logB] using the aforementioned property of LWE.

4-3

Following the same argument as in the end of Section 2, when χ is einit-bounded, the error at level L is
approximately bounded by poly(n)Leinit. We need poly(n)Leinit < q/4 for correct decryption. For security,
the best known algorithm for LWE runs in time approximately 2n/ log(q/einit). Therefore we choose einit to
be polynomial in n = λ and q = 2n

ε

for every ε < 1 and L ≈ log q ≈ nε.
If we only require correctness to be held with high probability, we can get better noise bound. The

dominating term edr is the sum of independent discrete Gaussian random variables. We can use standard
way as tail inequality of Gaussian distribution (or Chernoff bound) to get a better maximum level by a
constant factor.

So far, we prove the following theorem.

Theorem 1. For every L > 0, there exists ε < 1 and a L-leveled FHE scheme under LWEn,q,B assumption,
where q/B ≤ 2n

ε

, and the size of the parameters are poly(L, n1/ε).

4 Bootstrapping

In this section, we will describe Gentry’s clever Bootstrapping framework[4] that transforms a “sufficiently
strong” homomorphic encryption scheme into a fully homomorphic encryption scheme.

Definition 2. (C-Homomorphism) An encryption scheme E is C-homomorphic for some circuit family C =
{Cλ}λ if for any λ, any C ∈ Cλ with t inputs, any message m1, . . . ,mt ∈ {0, 1}, and any fresh ciphertext c1 ←
E .Enc(sk,m1), . . . , ct ← E .Enc(sk,mt), it holds that E .Dec(sk, E .Eval(evk, C, c1, . . . , ct)) = C(m1, . . . ,mt).

It’s possible to define a weaker notion that only requires the above equation to hold with high probability.

Definition 3. (Augmented Decryption Circuit) The augmented decryption circuit ADE for some encryption
scheme E consists of a NAND-gate connecting two copies of DE , the decryption circuit5 of E that takes a
secret key and ciphertext as input and outputs a message bit.

Theorem 4. (Boostrapping[4]) Given an encryption scheme E that is {ADE}-homomorphic, there is a
black-box construction of a fully homomorphic encryption scheme E ′ with additional assumption that E is
weak circular secure. Alternatively, there is a black-box construction of a L-leveled homomorphic encryption
scheme with the same assumption for any L = poly(λ). Also, we call such scheme E bootstrappable.

Note that our current scheme can only support L-level homomorphic evaluation for L = nε for any ε < 1
and usually n = O(λ). We will give the black-box construction below and prove its correctness. For those
curious about the security proof, please refer to Section 4.2 of Gentry’s PhD thesis[3].

• E ′.Gen(1λ)→ (sk, evk):

– Let (sk, evk)← E .Gen(1L, 1λ) where L is the depth of ADE .

– For i ∈ [|sk|], compute ŝki ← E .Enc(sk, ski) where ski is the ith bit of sk.

– Output sk as the secret key and (evk, {ŝki]}i) as the evaluation key.

• E ′.Enc(sk, µ ∈ {0, 1})→ (c, l):

– Output (c, 0)← E .Enc(sk, µ).

• E ′.Dec(sk, (c, l))→ µ:

– Output µ← E .Dec(sk, (c, l)).

• E ′.Eval((evk, {ŝki}i), C, (c1, l1), . . . , (ct, lt))→ (c, l):

5We are assuming that all the ciphertexts are padded into the same length

4-4

– Transform C into a circuit with only NAND gate and possibly constant input 16. Label all the
non-input gates by {0, 1, . . . ,m} from lowest level to output level.

– For k ∈ [m+ 1] do the following.

∗ Let (c0, l0) and (c1, l1) be the ciphertexts corresponding to the two inputs of gate k that we
have computed.

∗ For j ∈ [|(c0, l0)|], compute ĉ0,j ← E .Enc(sk, c0,j) where c0,j is the jth bit of (c0, l0). Do the
same calculation for (c1, l1) and get ĉ1,j .

∗ Compute (c, l)← E .Eval(evk,AE , {ŝki}i, {ĉ0,j}j , {ŝki}i, {ĉ1,j}j) corresponding to gate k.

– Output (c, l) corresponding to the output gate m.

We prove the correctness of E ′.Eval by inductively prove that the ciphertext (c, l) corresponding to gate k
satisfies that E .Dec(sk, (c, l)) = m for m corresponding to the real value at gate k when evaluating circuit
C, from lowest level to output level. Clearly, it holds for input level. Now for gate k with input (c0, l0)
and (c1, l1) such that E .Dec(sk, (c0, l0)) = m0 and E .Dec(sk, (c1, l1)) = m1, we have E .Dec(sk, (c, l)) =

E .Dec(sk, E .Eval(evk,ADE , {ŝki}i, {ĉ0,j}j , {ŝki}i, {ĉ1,j}j)) = ADE(sk, c0, sk, c1) = NAND(m0,m1) as de-
sired since E is ADE -homomorphic when L is chosen to be the depth of ADE .

The second part of the theorem can be proved by constructing E ′ using a chain of encrypted secret
keys of E instead of a self-cycle. Also, when assuming weak circular security, we no longer need a chain of
“encrypted” secret key for Dimension Reduction.

5 [BGV12] is bootstrappable

In this section, we will shown that our current scheme is bootstrappable, i.e. can evaluate its own augmented
decryption circuit. It suffices to prove that the decryption circuit of our current scheme is much shallower
than nε, the maximum depth the scheme can support. More precisely, we will show that the decryption
circuit is of depth O(log n) with constant factor bigger than 1. This illustrates why Dimension Reduction
alone is not enough.

The decryption algorithm for our scheme is basically Roundq/2(〈c, s〉 mod q). The multiplication of cisi
of each coordinate can be implemented in O(log log q) = O(log n) depth circuit using FFT. The addition
of n + 1 integers with size at most O(log n) can be reduced to the addition of 2 integers with size slightly
increased but still O(log n) in O(log n) depth circuit using a technique called three-for-two trick. The
rounding actually only depends on the first constant number of bits and can be implemented in constant
depth circuit. However, we never actually compute the modulo q operation. So we need to rounding and
compare for each possible slot. There are at most 2(n+1)B+1 = poly(n) slots, the conjunction of them can
be computed in O(log n) depth circuit. Above all, the decryption circuit can be implemented in O(log n)
circuit and therefore our scheme is bootstrappable.

Theorem 5. There is a FHE scheme under LWE and weak circular secure assumption. Also, there is a
L-leveled FHE scheme for every L = poly(λ) under LWE assumption.

References

[1] Zvika Brakerski, Craig Gentry, Vinod Vaikuntanathan: (Leveled) fully homomorphic encryption without
bootstrapping. ITCS 2012: 309-325

[2] Zvika Brakerski, Vinod Vaikuntanathan: Efficient fully homomorphic encryption from (standard) LWE.
FOCS 2011: 97-106

[3] Craig Gentry: A fully homorphic encryption scheme. (PhD thesis) Stanford University 2009

6We can assume without loss of generality that there is always an encryption of 1 in evk.

4-5

[4] Craig Gentry: Fully homomorphic encryption using ideal lattices. STOC 2009: 169-178

[5] Shai Halevi, Reut Levi: FHE from LWE, without bootstrapping [BV11, Gen11]. Lecture note of Homo-
morphic Encryption and Lattices 2011

4-6

