
6.892 Computing on Encrypted Data October 07, 2013

Lecture 5
Lecturer: Yael Kalai Scribe: Justin Holmgren

1 Introduction

So far, we have studied the problem of outsourcing computation when we want our data to be private
from the server. Today, we will forget about privacy and focus on the problem of verifying that the server
computes correctly for us. Specifically, we will look at decision problems. We consider the problem where
we send the cloud x, and the cloud (efficiently) computes both f(x) as well as a proof of correctness. This
is called delegation [2].

Definition 1. A (statistical) delegation protocol for a language L which is computable in time T is a protocol
between a prover P and verifier V satisfying the following properties.

1. (Completeness) If x is in the language, the prover always succeeds.

∀x ∈ L,Pr [(P, V)(x) = 1] = 1

2. (Soundness) If x is not in the language, the prover almost certainly fails. For computational delegation
protocols, this only must be true for computationally bounded provers.

∀x 6∈ L,∀P ∗,Pr [(P ∗, V)(x) = 1] = negl(|x|)

3. (Efficiency) The prover must run in time poly(T), and the verifier must run in time much less than
T (we will show a runnning time of polylog(T) · n).

An example of a language L is the set of all tuples (x, f(x)) for some polynomial-time computable function
f . Thus if the prover proves membership in L, he is proving that f(x) was computed correctly.

2 What is known

There has been a lot of work on computational delegation, but much less work has been done on statistical
delegation.

2.1 Statistical Delegation

One result that seems relevant to statistical delegation is the theorem that IP = PSPACE [5, 7]. This
theorem shows that if a language is computable in space S, a prover can prove to a verifier that x is in
the language, satisfying the completeness and soundness conditions given above. However, the efficiency
conditions are not satisfied. The verifier runs in time poly(S) · n, and the prover runs in time 2Θ(S2).

In particular, if the language is decidable in Ω(n) space and 2O(n) time, then the prover is too slow.
Note: if in our definition of delegation scheme efficiency, we were concerned with space usage rather than

time usage, the IP = PSPACE construction would constitute an efficient delegation scheme.

Open Problem 1. Construct a statistical delegation scheme for languages (decidable in time T and space
S) such that the prover runs in time poly(T) and the verifier runs in time poly(S) · n.

This is best possible.

5-1

2.2 Computational Delegation

Computational delegation is a strictly easier problem than statistical delegation, and there are fantastic
results for it.

To construct a computational delegation scheme, we will make use of the PCP theorem [1]. We show a
4 round protocol in which the prover runs in time poly(T), the verifier runs in time polylog(T) · n, and the
communication complexity is polylog(T), assuming the existence of collision-resistant hash functions.

The question of whether this can be improved to a 2 round protocol has been an area of intense interest.
V ’s first message to P is typically independent of x, so P ’s response in a 2-round protocol would be a
certification of x’s membership in L, which is appealing.

2-round protocols are known to exist, but only under strong and non-standard cryptographic assumptions
(like the random oracle model).

2.2.1 Kilian-Micali Protocol

The Kilian-Micali delegation protocol [6, 4] makes use of probabilistically checkable proofs (PCP). Essentially,
given any language L decidable in time T and any x in L, a prover can construct a proof πx of x’s membership
in L which is of length poly(T) (and also takes time poly(T) to compute πx. The verifier is given oracle
access to bits of π, and in polylog(T) time, it can decide whether x is in L with perfect completeness and
negligible soundness error. To be precise,

Theorem 2. For any language L ∈ NP, there exists a verifier V making O(1) oracle queries using O(log n)
randomness such that:

1. ∀x ∈ L∃π : Pr [V π(x) = 1] = 1

2. ∀x 6∈ L∀π : Pr [V π(x) = 1] ≤ 1
2

Furthermore, when x is in L and L is decidable in time T , π is computable in time poly(T).

This is not yet a delegation scheme because V ’s oracle access to πx is outside our model. In particular, V
receiving the entirety of πx would require time poly(T), which is too much. P ’s commitment to the entirety
of πx is essential - if V were to make queries to P which could be answered arbitrarily, then soundness would
be entirely lost. What we need is a way for P to commit to poly(T) bits in a polylog(T)-bit message, and a
way for P to open polylog(T) bits of V ’s choosing in a polylog(T)-bit message. We do not need the hiding
properties of the commitment; we only require that the commitment be binding.

Merkle hashes, also known as tree commitments, provide a way to achieve this. The idea is that a
collision-resistant hash function automatically provides a binding commitment, and that an n-bit message
can be hashed in a tree structure such that only O(log(n)) bits need be revealed to open the commitment
(see Figure 1).

In more detail, assume we have a family of collision-resistant hash functionsH = {Hk : {0, 1}∗ → {0, 1}k}.
That is, for any PPT adversary A, the probability over hash functions h in Hk that A outputs distinct x1

and x2 with h(x1) = h(x2) is negligible in k. If we split our input into blocks of size k, and repeatedly hash
adjacent blocks into a single k-bit block, we have a tree of depth logk(n), where a node is the hash of the
concatenation of its children. The root of this tree together with the depth comprises a commitment of all
the leaf nodes. In order to properly utilize the collision resistance properties of our hash function family, we
let the verifier first send a description of the hash function to use to the prover.

P V
H

C−−−−−−−−−−−−−−−−−−−−−−−−−−
H-commitment of PCP proof π
−−−−−−−−−−−−−−−−−−−−−−−−−−B

queries for bits of π
C−−−−−−−−−−−−−−−−−−−−−−−−−−

openings of corresponding committed bits
−−−−−−−−−−−−−−−−−−−−−−−−−−B

5-2

EA 51

A0

DE 2A

CD

7E

BE 38

17

CA FE

BA

6F

B3

revealed bit

h h h h

hh

h

Figure 1: A Merkle hash tree

It is easy to see that any adversary which can open any bit in two different ways must have found a hash
collision at one of the levels of the tree (see Figure 2), so this is impossible assuming the collision-resistance
of the hash family.

When we use this commitment scheme in our template for a delegation scheme, completeness is easy
to see. Efficiency also follows easily. We will prove computational soundness by demonstrating that if an
adversary breaks the soundness of our delegation scheme, this adversary violates the PCP theorem.

Suppose there is a cheating prover P ∗ such that for some x not in L, (P ∗, V)(x) = 1 with non-negligible
probability ε. Recall that P ∗’s first message must be a tuple of a root node together with a depth. If P ∗ has
non-negligible probability of successfully cheating, then a non-negligible fraction of the time he must produce
a (root, depth) tuple for which he has a non-negligible probability of satisfying the verifier’s challenges. So
if we run the verifier polynomially many times (in n and 1/ε, rewinding the prover each time), either P ∗

will open a bit in two different ways, or the prover will have demonstrated a false proof for which a constant
fraction of the bits are convincing, thus violating the PCP theorem.

2.2.2 Reducing Round Complexity

If we assume the random oracle model, we can use the Fiat-Shamir heuristic to transform this protocol
(or any public-coin protocol) into a 2-round protocol. Essentially all but the first of the verifier’s messages
are computed by the prover, using “randomness” which is computed as a random function of all previous
messages.

Given a protocol of the form

P V
α

C−−−−−−−−−−−−−−−−−−−−−−−−−−
β

−−−−−−−−−−−−−−−−−−−−−−−−−−B
γ

C−−−−−−−−−−−−−−−−−−−−−−−−−−
δ−−−−−−−−−−−−−−−−−−−−−−−−−−B

5-3

BE EF

17

CA FE

BA

6F

revealed bit

BE AD

36

CA FE

BA

6F

revealed bit

Hash Collision

Figure 2: Opening a committed bit in two different ways requires finding a hash collision

We transform this into the protocol

P V
α,H

C−−−−−−−−−−−−−−−−−−−−−−−−−−
β, γ, δ

−−−−−−−−−−−−−−−−−−−−−−−−−−B
γ is generated using randomness H(α|β)

The verifier accepts if α, β, γ, δ would have been an accepting transcript in the original protocol.

2.3 Public-coin Statistical Delegation to Computational Delegation

We now show another way to get a two-round computational delegation scheme, assuming the existence
of a public-coin statistical delegation scheme and fully homomorphic encryption which is secure against all
subexponential-time adversaries. Here for simplicity we will assume that the language of our delegation
scheme is polynomial time. If the language is not polynomial time, then some security parameters need to
be appropriately larger (e.g. the security parameter for FHE).

Suppose we are given a public-coin statistical delegation protocol in which each of the verifier’s messages
are chosen independently of any previous prover messages.

P V
v1

C−−−−−−−−−−−−−−−−−−−−−−−−−−
p1−−−−−−−−−−−−−−−−−−−−−−−−−−B
...
vn

C−−−−−−−−−−−−−−−−−−−−−−−−−−
pn−−−−−−−−−−−−−−−−−−−−−−−−−−B

We construct the following two-round computational delegation scheme.
P ′ V ′

v1,Encpk2(v2), . . . ,Encpkn(v2| · · · |vn)
C−−−−−−−−−−−−−−−−−−−−−−−−−−
p1,Encpk2(p2), . . . ,Encpkn(pn)
−−−−−−−−−−−−−−−−−−−−−−−−−−B

In the first round, the verifier sends an encryption of each of the messages he would have sent (he can
compute this ahead of time because none of the messages depend on what the prover sends). vi is encrypted
under keys pki . . . pkn, and each of the provers outputs pi is encrypted under pki. Intuitively, this ensures

5-4

that the prover cannot use the value of vi to influence pj for any j < i.
Efficiency and completeness easily carry over from the statistical delegation scheme. The interesting

property to prove is soundness. We reduce the soundness of (P ′, V ′) to the IND-CPA security of the FHE
cryptosystem against subexponential time adversaries. We only show the case where n = 2.

Suppose there is a cheating prover P ∗ and an element x not in L such that Pr [(P ∗, V ′)(x) = 1] ≥ ε for
some non-negligible ε. Define the predicate valid(v1, p1, v2, p2) to be true if the corresponding transcript
in (P, V) would cause the verifier to accept. This is efficiently computable because (P, V) is a public-coin
protocol. Define the adversary A to break FHE as follows. First, A independently chooses a random verifier
message v1 and two random verifier messages v0

2 and v1
2 and outputs these as the two plaintexts it would like

to distinguish. A then receives some ciphertext C where C = Encpk(vb2) for b ∈ {0, 1}, and passes (v1, C)
to P ∗ as a simulated message from V ′. Then with some non-negligible probability ε, P ∗ computes p1 and
Enc(p2) such that valid(v1, p1, v

b
2, p2). In particular, Pr

[
∃p2 : valid(v1, p1, v

b
2, p2)

]
≥ ε.

However, by the statistical soundness of (P, V), since x is not in L, ∀v1, p1, there are negligibly many v2

such that ∃p2 : valid(v1, p1, v2, p2). This means that intuitively P ∗ must have extracted some information
from Encpk(vb2) to compute p1, but this is not really a formal statement. Because v1−b

2 was chosen uniformly at
random independently of inputs to P ∗, there is negligible probability that ∃p2 : valid(v1, p1, v

1−b
2 , p2). When

compared with the conclusion of the last paragraph, this gives a non-negligible advantage in distinguishing
which ciphertext we received. A checks all possibilities for p2, and checks whether valid(v1, p1, v

0
2 , p2) is ever

true. If it is, then A returns v0
2 . Otherwise, it returns v1

2 .
Because of the requirements on verifier efficiency, p2 must have length o(n), so the running time of alA

is subexponential - 2o(n). So we have reduced the soundness of our constructed computational delegation
scheme to the IND-CPA security of our FHE scheme against subexponential adversaries.

Note that this transformation only works on public-coin, history-ignoring protocols. We do know how
to transform IP into a public-coin, history-ignoring protocol [3], but this causes a large increase in prover
running time.

Open Problem 1. Is there a prover efficiency preserving mechanism for transforming IP into a public-coin,
history-ignoring protocol?

References

[1] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy. Proof verification
and the hardness of approximation problems. Journal of the ACM (JACM), 45(3):501–555, 1998.

[2] Shafi Goldwasser, Yael Tauman Kalai, and Guy N Rothblum. Delegating computation: interactive proofs
for muggles. In Proceedings of the 40th annual ACM symposium on Theory of computing, pages 113–122.
ACM, 2008.

[3] Shafi Goldwasser and Michael Sipser. Private coins versus public coins in interactive proof systems. In
Proceedings of the eighteenth annual ACM symposium on Theory of computing, pages 59–68. ACM, 1986.

[4] Joe Kilian. A note on efficient zero-knowledge proofs and arguments. In Proceedings of the twenty-fourth
annual ACM symposium on Theory of computing, pages 723–732. ACM, 1992.

[5] Carsten Lund, Lance Fortnow, Howard Karloff, and Noam Nisan. Algebraic methods for interactive proof
systems. Journal of the ACM (JACM), 39(4):859–868, 1992.

[6] Silvio Micali. Computationally sound proofs. SIAM Journal on Computing, 30(4):1253–1298, 2000.

[7] Adi Shamir. Ip = pspace. Journal of the ACM (JACM), 39(4):869–877, 1992.

5-5

	Introduction
	What is known
	Statistical Delegation
	Computational Delegation
	Kilian-Micali Protocol
	Reducing Round Complexity

	Public-coin Statistical Delegation to Computational Delegation

