
6.892 Computing on Encrypted Data October 21, 2013

Lecture 6
Lecturer: Vinod Vaikuntanathan Scribe: Aakanksha Sarda, Yilei Chen

0.1 Recap

So far, we have covered ways to outsource computations privately, via Fully Homomorphic Encryption (FHE),
and verifiably, via 1-round computationally secure probabilistically checkable proofs.

0.2 Overview

Today, we will motivate and define functional encryption (FE), and then describe a rudimentary ”single-key”
FE scheme based on Yao’s Garbled Circuits.

0.3 Open problem

We previously described a general way of transforming a private-key FHE scheme into a public-key FHE
scheme. The existence of such a transformation for FE is an open problem.

1 Motivation: Limitation of FHE

1.1 Motivating scenario for FHE

We motivated FHE by describing a ”canonical” two-party scenario, where a ”client” would like to privately
outsource computation to an untrusted party (the ”server”). In this scenario, the server doesn’t need to do
any action with the results of the computation. Now, two kinds of practical limitations arise with FHE: first,
practical limitations of the motivating scenario (maybe we want the server to do some action based on the
computation) and second, practical limitations of FHE even assuming the motivating scenario is applicable.

This is because, in the two-party FHE scheme the server never gains access to any cleartext: the input,
final results and intermediate results are all encrypted.

1.2 Practical limitations of motivating scenario

One straightforward limitation of the motivating scenario is when we actually want the server to do an action
based on the results of the computation. For example,

Encrypted Spam Filter: We would like the server to be able to run the spam-detection algorithm
on encrypted emails and get the answer in clear-text. If the server can thus identify whether an encrypted
message is spam or not, then the client doesn’t have to download spam.

1.3 Practical limitations of FHE within motivating scenario

Note that even if we don’t generally think of it as ”results of a computation”, any information derived from
the input will be protected under FHE. So even in the our motivating scenario, where the server doesn’t
need access to any results except to do the computation, the efficiency of the computaiton could be affected,
since the server can’t follow data-dependant control flows. Some examples are:

• Encrypted Turing Machines/C programs: We would like to run a Turing Machine (or C program)
on encrypted inputs in time proportional to the run-time on the same input in clear-text. This requires
leaking at least the run-time of the TM on the clear-text input, which is not allowed under FHE!

6-1

• Encrypted Binary Search: This requires data-dependant loops, and following the control flow of
the algorithm on unencrypted data would leak at least the position of the encrypted data in the array.
Thus we can’t do search in sublinear time with FHE, even on a sorted array.

2 Defining FE

Informally, Functional Encryption (FE) is an encryption scheme that can reveal the result (in the clear)
of applying a function on an encrypted input without revealing any other information about the encrypted
input.

Note that a scheme that reveals the result in the clear of applying any arbitrary function (for example,
the identity function) to the input can’t reasonably be thought of as secure. Similarly, if we had a scheme
that revealed the run-time of any arbitrary Turing machines on an input, then a clever choice of function
(for example, a function that runs in time m seconds for integer input m) would reveal everything about the
encrypted input. So, instead, we will focus on schemes that reveal the result only for a specific function (or
class of functions) or, analogously, schemes that support running only a specific Turing machine (or class of
Turing machines) in input-specific run-time.

We follow [?] in to define function-specific FE.

2.1 Function-specific FE

Definition 1. A Functional Encryption scheme for a class of functions Fn = {f : {0, 1}n → {0, 1}} is a
tuple of Probabilistic Polynomial Time (PPT) algorithms (Setup, KeyGen, Enc, Dec) such that:

• The master key generation algorithm Setup takes as input the security parameter 1λ and outputs a
pair (pk, sk), i.e. public key and secret key.

• The function-specific key generation algorithm KeyGen takes as input the secret key sk and a function
f ∈ Fn and ouputs a function-specific secret key skf .

• The encryption algorithm Enc takes as input the public key pk and the message m ∈ {0, 1}n and outputs
a ciphertext c.

• The input-specific decryption algorithm Dec takes as input a ciphertext c (corresponding to a message
m) and a function-specific secret key skf (corresponding to a function f) and outputs (in the clear)
the result f(m) of applying the function on the message.

We require that:
(Correctness.) For every message m ∈ {0, 1}n and function f ∈ Fn we have:

Pr

r = f(m)

∣∣∣∣∣∣∣∣
(pk, sk) ← Setup(1λ)
skf ← KeyGen(sk,f)
c ← Enc(pk,m)
r ← Dec(c, skf)

 = 1− neg(λ)

Where the probability is taken over the randomness used by Setup, KeyGen, Enc and Dec.
(Security.) We require that for every (oracle) PPT adversary A and (oracle) PPT algorithm M, there

exists an (oracle) PPT S such that the following two distributions are indistinguishable:
Real distribution:

1. (pk, sk) ← Setup(1λ)

2. skf ← KeyGen(sk,f) for several f ∈ Fn chosen by A

3. (m1,m2, . . .mk)←M such that mi ∈ {0, 1}n,∀i ∈ [1, 2 . . . k].

6-2

4. ci ← Enc(pk,mi),∀i ∈ [1, 2 . . . k].

5. skf ← KeyGen(sk,f) for several f ∈ Fn adaptively chosen by A

6. α← A(pk, skf1 . . . skfj , c1 . . . ck)

7. Output(f1, f2 . . . fj , x1, x2 . . . xk, α)

Ideal distribution:

1. (m1,m2, . . .mk)←M such that mi ∈ {0, 1}n,∀i ∈ [1, 2 . . . k].

2. fj(m1 . . .mk) for several fj ∈ Fn adaptively chosen by A

3. α← S(n, f1(x1) . . . fj(x1) . . . fj(xk))

4. Output (f1, f2 . . . fj , x1, x2 . . . xk, α)

Informally, the security requirement means that we require the adversary to not gain any additional
information over what we explicitly want to give it.

So, we consider the capabilities of the adversary, in the real world, who follows the protocol. Thus, in
addition to the answers f1(m1) . . . fj(m1) . . . fj(mk) that we explicitly want to give it, the adversary also
gets access to various ciphertexts and function-specific secret keys. We now compare the capabilities of this
adversary in the real world to the capabilities of a simulator in an ideal world.

In the ideal world, we only give the simulator access to the answers f1(m1) . . . fj(m1) . . . fj(mk), that we
explicitly wanted to give, and nothing else. Note that we don’t use any encryption in this ideal world - it
just corresponds to the best case scenario where the simulator gets nothing (not even seemingly irrelevant
things) besides what we wanted to explicitly give it.

Now, if we can prove that the (computationally bounded) adversary in the real world gains no additional
capabilities (as manifested in its output α) over the simulator that gets the same - i.e. the two Ouput
distributions are computationally indistinguishable - then we say that the functional encryption scheme is
secure.

2.2 A solution for the Turing Machine example

Consider the desiderata of Functional Encryption:

1. Collusion resistance: For any two party with different secret keys on their own, even if they collude,
they still cannot learn more. (Many key security)

2. Succinctness: Running time of Encryption and the length of ciphertext |c| equals poly(|x|, λ), and it
doesn’t depend on the complexity of the computation (i.e. the circuit size).

Let’s start with a construction with the functional encryption defined above, for the Turing Machine
example. We might revise the revised goal for a moment: we allow the server to have a heavy preprocessing
phase - the server can do whatever 1 it wants before getting the input. But once the input comes, the
server should run in time proportional to the input size, and to the actual running time. The preprocessing
phase take the Turing Machine as a input. The running time is proportional to the running time of Turing
Machine.

If we have a functional encryption scheme, plus FHE, which is a natural starting point since the semantic
security of FHE provides the desired security that nothing leaks about input x. We encrypt the input x
using FHE, write the Turing Machine as a circuit2. But the size of the circuit is proportional to the worst
case running time, which is exactly what we want to get around.

1Do as long as the worst case running time is in polynomial.
2Since FHE works on circuit.

6-3

As we said in the beginning, to achieve this goal we have to leak some information of x. In some
applications, leaking the running time of some input is not that bad. Let’s just leak the running time t of
machine M on x (t = M(x)), but nothing more. The idea is to use functional encryption to enable the server
to determine at various intermediary steps in the evaluation whether the computation is finished. For each
intermediary step, the client provides a secret key for a function that returns a bit indicating whether the
computation finishes or not.

However, if the client provides a key for each step, then the amount of keys is still proportional to the
worst-case running time Tworst. But now the client could get rid of that by choosing intermediate steps
which increase exponentially, say, providing the secret keys skM1

, skM2
, skM4

, ... for the machines 3 that halt
in 1, 2, 4, ..., 2i, ..., 2dlog Tworste steps, each key being generated with a different master secret key. The work
in the preprocessing phase is at least O(Tworst), which is costly but once and for all.

In the online phase, the client provides FE encryptions of (M,x) and an FHE ciphertext (M̃, x̃) for (M,x),
to be used for a separate FHE evaluation. The server learns the smallest t for which the computation of M
on x stops in 2t steps, by the keys generated in the preprocessing phase. Then homomorphically evaluate
(M̃, x̃) by Ct(·), which is the (universal) circuit that runs M on t steps. Notice that |Ct(x) = poly(t)|, i.e.
the circuit runs in time polynomial in the runtime of M on x.

3 A construction of FE with single-key security by Yao’s Garbled
Circuits

We will start with a simple and rudimentary construction of functional encryption, which will give us one-key
security.

Before we start, let’s think how to construct FE for a function family with polynomially many functions.
It turns out there’s a trivial construction that you can just encrypt the result of all the f on input x. However,
if the function family has exponentially many functions, then the problem of the above construction is, when
you encrypt the input, you don’t know which function is it going to be evaluated. Hence a function family
with exponentially many function is a non-trivial task.

To achieve one-key security of such a function family, where one-key security means the scheme is secure
as long as the adversary ask for the secret key for one function, we will use Yao’s Garbled Circuits.

There are different ways to describe the garbled circuits, but we will focus on a construction that is
motivated by functional encryption - we have a circuit C (of some function f), and want to do outsource
computation. We will describe the construction in the offline-online manner:

1. Offline phase: client got circuit C, garble it as GC, sk = Garbled.Ckt(1λ, C), send GC to the server.

2. Online phase: client garble the input x as gx = Garbled.Input(1λ, x, sk) send gx to the server.

3. Server evaluate as y = Garbled.Eval(GC, gx).

In the garbled scheme presented by Yao, the secret key is of the form sk = {L0
i , L

1
i }ni=1, and the encoding

of an input x of n bits is of the form (Lx1
1 , ..., L

xn
n), where xi is the i-th bit of x.

We need the correctness guarantee that y should be equal to C(x) with high probability. Also we require
efficiency that the evaluation runs in time specific to the input.

Two security guarantees are of concern: the input privacy and circuit privacy. For Yao’s garbled scheme,
the security holds only for one-time evaluation of the circuit, since if the adversary receive more than one
encoding of input, it breaks these security guarantees.

Formally, the security is defined as: there exists a PPT simulator Sim: (G̃C, g̃x) = Sim(C(x), 1λ, 1|C|, 1|x|),
that is computationally indistinguishable from the real garbled circuit and the garbled input:

(GC, gx) ≈c (G̃C, g̃x)

3Here we would think the machines as Universal Turing Machines, which takes M and an input x, runs M on x for 2i steps.
Therefore it’s not limited with an a priori fixed number of Turing Machines. The simulation could be done in polynomial time.

6-4

Here we show an example of how to construct the scheme above for the NAND gate 4.

GCNAND =

EncL0

0
(EncL0

1
(L1

out))

EncL0
0
(EncL1

1
(L1

out))

EncL1
0
(EncL0

1
(L1

out))

EncL1
0
(EncL1

1
(L0

out))

The garbled circuit is represent by a table, which is generated by the client in the offline phase, and send
to the server. Each pair of input garblings serves as a key to the encryption of the corresponding output
garbling. In the online phase, for example, if the client receive the input x = (0, 1), he gives the server
gx = (L0

0, L
1
1). The server evaluate as the following: he attempts to decrypt each row of the table, but only

one decryption will succeed, which will reveal the output wire secret Lout, which is L1
out in our example.

If there are more gates (all boolean functions could be a combination of NAND gates), the server then
proceeds evaluating the entire garbled circuit as above, and eventually obtains the result.

We will formally prove security in the next lecture.

References

[BSW11] Boneh, Dan, Amit Sahai, and Brent Waters. ”Functional encryption: Definitions and challenges.”
Theory of Cryptography. Springer Berlin Heidelberg, 2011. 253-273.

[GKPVZ12] Shafi Goldwasser, Yael Kalai, Raluca Ada Popa, Vinod Vaikuntanathan and Nickolai Zeldovich.
”Reusable Garbled Circuits and Succinct Functional Encryption.” Cryptology ePrint Archive, Report
2012/733, 2012.

4In addition, we need to pick a permutation of the table to hide the input.

6-5

