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Lecture 7
Lecturer: Vinod Vaikuntanathan Scribe: Prashant Vasudevan

1 Garbled Circuits

Picking up from the previous lecture, we start by defining a garbling scheme for circuits, formalised a
suprisingly short time ago in [BHR12].

Definition 1. Garbling Scheme
A garbling scheme is a tuple of three algorithms (GarbleCkt,GarbleInp,GarbleEval).

• GarbleCkt takes as input the description of a circuit C (on say n inputs, with 1 output) and security
parameter 1λ and outputs (GC, sk), where GC is the garbled circuit and sk is a key that may later be
used to garble an input.

• GarbleInp takes as input the security parameter 1λ, a key sk (that is supposed to have been previously
generated by GarbleCkt) and an n-bit string x and outputs gx, which is the garbled input corresponding
to x under sk.

• GarbleEval takes as input a garbled circuit GC and a garbled input gx and, if both are associated with
the same key sk, computes C(x), where GC is a garbling of C and gx of x.

We require the following of any reasonable Garbling Scheme:

• Correctness: ∀(GC, gx) such that (GC, sk) ← GarbleCkt(C) and gx ← GarbleInp(x, sk), we need
GarbleEval(GC, gx) = C(x)

• Efficiency: The running time of GarbleInp must be poly(λ, |x|).

• Security: ∃PPT simulator SIM such that ∀(C, x) : SIM(C(x), 1|C|, 1|x|) ≈ (GC, gx).

The security condition goes to say that the garbled circuit and input reveal almost nothing more than
the evaluation of the circuit on that input.

1.1 A scheme for inner products

Consider the following example of garbling for this family of functions that compute inner products: {fy :
{0, 1}|y| → {0, 1} : fy(x) =< x, y >}.

• GarbleCkt(C): GC = ⊥, sk =

(
r1 r2 · · · rn

r1 ⊕ y1 r2 ⊕ y2 · · · rn ⊕ yn

)
, where ri’s are random bits subject

to
⊕

i ri = 0.

• GarbleInp(sk, x) : gx is computed as gxi = skxi,i (gxi = ri if xi = 0 and gxi = ri ⊕ yi if xi = 1)

• GarbleEval(GC, gx) =
⊕

i gxi
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• This is correct because x∧ y is 0 if x = 0 and y when x = 1, and hence gxi is always ri ⊕ (xi ∧ yi). So
we have: ⊕

i

gxi =
⊕
i

(ri ⊕ (xi ∧ yi))

=
⊕
i

ri ⊕
⊕
i

(xi ∧ yi)

= 0⊕
⊕
i

(xi ∧ yi) =< x, y >

• It is also efficient because the work done by GarbleInp is only the selection of what to set gxi as, which
is linear in |x|.

• That it reveals nothing about x may be proven using the Leftover Hash Lemma.

– Define a family of hash functions H = {hx}x∈{0,1}n from {0, 1}2n → {0, 1}n such that hx(y, r) is
computed similar to the garbled input in the above scheme.

– H is pair-wise independent and (y, r) has 2n bits of entropy while the range of hx is n-bit strings.

– The Leftover Hash Lemma tells us that the distribution of (x, hx(y, r)) is statistically close to
(x, U) (where U is a uniform random variable).

– Hence hx(y, r) (and so GarbleInp(x)) reveals no information about x.

1.2 Relations to Functional encryption

We now look at how garbling circuits could give us (some form of) functional encryption. We start by
reviewing the components of an FE scheme.

• Setup→ (mpk,msk) (These are the master public and secret keys.)

• KeyGen(msk,C) → skC (This is the secret key that may be used to compute the circuit C on an
encrypted input.)

• Enc(mpk, x)→ CT

• Dec(skC , CT )→ C(x) when CT is a valid encryption of x.

Consider a garbling scheme that is such that the secret key generated by GarbleCkt is of the form(
L10 · · · Ln0
L11 · · · Ln1

)
for some Lib’s and GarbleInp(x) is (L1x1 , · · · , Lnxn). The scheme for inner products pre-

sented above is an example of such a scheme.
Garbling schemes of this form may be used, along with a public key encryption scheme, to realise a

modified notion of functional encryption as described below.

• Setup:

– Obtain 2n key pairs (pkib, skib)i∈[n],b∈{0,1} from the encryption scheme.

– Set mpk =

(
pk10 · · · pkn0
pk11 · · · pkn1

)
, and msk =

(
sk10 · · · skn0
sk11 · · · skn1

)
.

• KeyGen(msk, x) : skx = (sk1x1
, · · · , sknxn

) (Similar to the garbled input in the inner product scheme.)

• Enc(mpk,C):

– Obtain (GC, sk) from GarbleCkt of the garbling scheme.
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– sk is of the form

(
L10 · · · Ln0
L11 · · · Ln1

)
– CTC = (GC, {Encpkib(Lib)}(i,b))

• Dec(skx, CTC):

– Given skx and CTC , it is possible to obtain GarbleInp(x) = (L1x1
, · · · , Lnxn

) by using the keys in
skx to decrypt the appropriate encryptions of the Lib’s in CTC .

– The evaluation algorithm of the garbling scheme may then be used to find C(x) given GC and
GarbleInp(x).

The above realisation has the following shortcomings:

• Garbling schemes are single-use objects. They do not guarantee anything about security if a given
garbled circuit is evaluated on more than one input.

• As the encryption algorithm involves encrypting the circuit and not the input, the size of the ciphertext
produced grows with the size of the computation that is to be performed rather than with the size of
the input.

1.3 Yao’s Garbled Circuits

Before we look into resolving these issues, we present a construction of a garbling scheme due to Yao
(in [Yao82]).

Without loss of generality, we assume that all circuits (of any given size) in the class of circuits we wish
to garble have the same topology. That is, the underlying directed graph of each circuit is the same, and
they differ only in the identities of the gates at the vertices of this graph. This may be ensured by adding
dummy gates to circuits that have differing topologies.

We make use of a checkable secret-key encryption scheme. This is a secret-key encryption scheme with
an additional algorithm check with the following properties:

• check(sk, CT ) =

{
1 if Encsk(m) = CT for some m
0 otherwise

• ∀sk : Pr
[
A(1λ) = CT ′ | check(sk, CT ) = 1

]
= negl(λ)

– That is, it is not possible to produce a valid ciphertext under a key without knowledge of the key.

The garbling scheme for such a class of circuits, with security parameter λ, is as follows:

• GarbleCkt(C):

– For each wire w in the circuit, choose at random a pair of labels

(
Lw0

Lw1

)
, Lwb ∈ {0, 1}λ. We shall

use these labels to indicate the value carried by this wire.

– The secret key is the set of pairs of labels corresponding to the input wires. That is,

sk =

(
L10 · · · Ln0
L11 · · · Ln1

)
– For each gate g that has input wires u and v and output wire w, we compute the following ’table’

using the encryption scheme:
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EncLu0
(EncLv0

(Lwg(0,0)))
EncLu0

(EncLv1
(Lwg(0,1)))

EncLu1
(EncLv0

(Lwg(1,0)))
EncLu1(EncLv1(Lwg(1,1)))

This enables one to obtain the label on w according to g given labels on u and v.

– We publish as the garbled circuit (GC) the tables for each gate and the mapping (Lout0, Lout1)→
(0, 1) for the labels of the output wire.

• GarbleInp(x): gx = (L1x1
, · · · , Lnxn

)

• GarbleEval(GC, gx):

– For any gate, given a label for each of its input wires, we can find the label that its output wire
should have by decrypting the appropriate entry in the gate’s table. We will know which of the
four to decrypt given the input labels because the encryption scheme we use is checkable. This
way, we can obtain a label for the gate’s output wire that corresponds to computing the gate on
the inputs corresponding to the input labels.

– To begin with, gx gives us labels on the input wires of the circuit corresponding to the input
values. This lets us ’evaluate’ gates whose inputs are among these input wires and obtain the
labels for their output wires. Proceeding thus in a topological fashion, we can find the label for
the output wire of the circuit. At this point, as we know which of Lout0 and Lout1 is which, we
may learn the output of the circuit.

The correctness of the above garbling scheme is obvious given correctness of the encryption scheme used.
It is also efficient because computing gx consists simply of picking Lixi

’s.
That this is secure is proven in the appendix, based on [LP09].

2 Identity-based Encryption

In a traditional public-key encryption scheme, in order to encrypt information such that only a specific user
is able to decrypt it, one needs knowledge of a public encryption key that the user has generated some time
in the past and has a decryption key for. This is generally realised by the establishment of a public-key
infrastructure that allows a lookup of such a key given the identity of the user. But what if it were possible to
encrypt data for a specific user given only the identity of the user? This is what Identity-Based Encryption
(IBE) lets one do.

The standard model for IBE is one where there is a trusted authority that, given an identity (and an
authentication that it is of the party submitting the query), produces a key that may be used to decrypt
any ciphertext that was encrypted using that identity. To encrypt to a user, one now needs to know only
the user’s identity, which could be anything - a phone number or an email address, which one needs to know
to communicate with the user anyway.

Definition 2. An Identity-Based Encryption Scheme consists of the following algorithms:

• Setup(1λ) takes a security parameter 1λ and outputs MPK, the Master Public Key, which is released,
and MSK, the Master Secret Key, which is used to generate other secret keys.

• KeyGen(MSK, id) generates the secret key skid for identity id using the master secret key MSK.

• Enc(MPK, id,M) outputs an encryption CTid of M for the identity id using the master public key
MPK.

• Dec(skid,CTid′) outputs a decryption of CTid′ using secret key skid if id = id′, and ⊥ otherwise.
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Identity-based encryption is significant in our context because it is functional encryption for the following
class of functions:

fid(id
′,M) =

{
(id,M) , if id = id′

(id′,⊥) , otherwise

We now see how to construct an IBE scheme starting from Regev’s PKE scheme based on LWE. This,
as seen in earlier lectures, is as follows:

• KeyGen:

– sk = s
R←− Znq

– pk = (A, b = As+ e), where A
R←− Zm×nq , e

R←− χm, with m >> n.

• Enc(pk = (A, b), µ):

– CT = (rA, rb+mdq/2c), where r
R←− {0, 1}m.

• Dec(sk = s, CT = (c1, c2)):

– c2 − c1s = (rb+mdq/2c)− (rA)s = re+mdq/2c ≈ mdq/2c
– If |re| < q/4, m may be obtained from (c2− c1s) by rounding it to 0 or dq/2c, whichever is closer,

giving m = 0 and m = 1, respectively.

A natural approach to constructing an IBE scheme from here would be to have the matrix A as the
master public key. A public hash function could be used to hash a given identity to a vector in Zmq to serve
as b for that identity in the above description. But now we face a problem that was perhaps the primary
obstruction to realising IBE - how does one generate a secret key corresponding to a given public key?

In our case, given A and b, we need to find s such that As ≈ b. It is obvious that knowledge of A and b
alone will not suffice, as then the above encryption scheme would have been insecure. But first, does such
an s even exist?

To understand this better, consider the lattice defined by the columns of A. As + e is a point close to
the point As in this lattice. In order for an s to exist such that b = As+ e for some small e, b has to be close
to a lattice point. As in our case b is chosen to be the hash of an identity and could be anything, it is very
likely that it is not close to a lattice point and hence cannot be used as a public key. In order to remedy
this, we shift to the ’dual’ of this scheme (as observed in [GPV08]), which is as follows.

• KeyGen:

– sk = r
R←− {0, 1}m

– pk = (A, y = rA), where A
R←− Zm×nq , with m >> n log q.

• Enc(pk = (A, y), µ):

– CT = (As+ e, ys+ e′ + µdq/2c), where s
R←− Znq , e, e′

R←− χm.

• Dec(sk = r, CT = (c1, c2)):

– c2 − rc1 = (ys+ e′ + µdq/2c)− r(As+ e) = (e′ − re) + µdq/2c ≈ µdq/2c.

Here y = rA can be almost anything. This is because r has m bits of entropy and rA has at most n log q
bits. As m >> n log q, the Leftover Hash Lemma tells us that rA is statistically close to random. So given
y and A, it is quite likely that r exists such that y = rA.
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Given that such an r exists, how do we find it? Note that we need r to be small (even if not in {0, 1}m)
for the decryption to work. If this were not the case, r could have be found easily by Gaussian elimination.
But what now?

What we necessarily need to do is to invert fA(r) = rA to a small r in the domain. As such, this is
believed to be hard. It is left as an exercise to show that if this can be done for an fA, then it is easy to
break LWE w.r.t. A.

Hence, if we obtain y from an identity in our IBE scheme, we shall need some help to be able to find the
corresponding secret key. What exactly is this deus ex machina? That is a matter for another week.
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A Security of Yao’s Garbling Scheme

(We show here how to construct a simulator for Yao’s Garbling Scheme whose output is indistinguishable
from (GC, gx), as required for the security of the scheme. This proof is adapted from [LP09], as are several
of the following definitions.)

To begin with, we shall need an additional notion of security (along with checkability as described earlier)
for a secret-key encryption scheme that we shall be using. We use the following notation for a while.

• Enc′(k0, k1,m) denotes the double encryption Enck0(Enck1(m)).

• Enc′(k, ., .) is the oracle that takes key k′, message m′ and outputs Enc′(k, k′,m). Enc′(., k, .) is defined
similarly.

We define the following experiment.

ExptdoubleA (n, σ):

1. Adversary A is invoked on input 1n and outputs two keys k0 and k1 of length n and two triples of
messages (x0, y0, z0) and (x1, y1, z1), where all messages are of the same length.

2. Two keys k′0, k
′
1 ← KeyGen(1n) are chosen by the key generation algorithm of the encryption scheme.

3. A is given the challenge (Enc′(k0, k
′
1, xσ),Enc′(k′0, k1, yσ),Enc′(k′0, k

′
1, zσ)) and access to encryption or-

acles Enc(k′0, ., .) and Enc(., k′1, .).

4. A outputs guess b for σ.
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Definition 3. An encryption scheme is secure under chosen double encryption if, for every non-uniform
probabilistic polynomial-time machine A, every polynomial p, and all sufficiently large n,∣∣∣Pr [ExptdoubleA (n, 1) = 1

]
− Pr

[
ExptdoubleA (n, 0) = 1

]∣∣∣ < 1

p(n)

Lemma 4 ( [LP09]). Any secret-key encryption scheme that has indistinguishable encryptions under chosen
plaintext attack in the presence of nonuniform adversaries is secure under chosen double encryption.

A proof of the above lemma (which the margin here is too small to contain) may be found in [LP09].
We now construct a simulator SIM that given |C|, |x| and C(x), outputs (GC ′, gx′) that is indistinguish-

able from a legitimate (GC, gx) pair produced by GarbleCkt and GarbleInp. Note that by our assumption,
|C| completely determines the topology of the circuit.

• For each wire w, SIM picks at random labels Lw0, L
′
w1.

• For each gate (w;u, v), in place of the table in the actual GC, SIM publishes encryptions of Lw0 under
all pairs of labels of u and v, in random order.

EncLu0
(EncLv0

(Lw0))
EncLu0

(EncLv1
(Lw0))

EncLu1
(EncLv0

(Lw0))
EncLu1

(EncLv1
(Lw0))

• For the output mapping, SIM maps Lout0 to C(x) (which it knows) and Lout1 to (1− C(x)).

• In place of gx, SIM publishes gx′ = (L10, · · · , Ln0).

To begin with, it is easy to see that running GarbleEval on (GC ′, gx′) produces the correct output, as we
have mapped Lout0 (which is the only possible decryption of any entry in the output gate’s table) to C(x).
In order to show that the distribution of (GC ′, gx′) is indistinguishable from that of (GC, gx), we define the
following hybrids on the garbling of circuits, assuming a topological ordering of gates.

Hybrids: In hybrid Hi, the tables for all gates upto gate i (including i) are published according to SIM ,
and the tables for the remaining gates are published according to GarbleCkt.

That is, in the tables of all gates up to i, all four encryptions are of the same label, and for the rest the
encryptions obey the functionality of the gate. It is straightforward to see that H0 = GC ′ and H|C| = GC.
Also note that gx and gx′ are already distributed identically (labels of the input wires).

By standard hybrid arguments, we have that for any PPT adversary A that distinguished between GC
and GC ′ with non-negligible probability, there exists i and polynomial p such that:

|Pr [A(Hi) = 1]− Pr [A(Hi−1) = 1]| > 1

p(n)

Without loss of generality, let A be such that Pr [A(Hi−1) = 1] < Pr [A(Hi) = 1]. We use this ability
of A to construct a challenger that breaks the chosen double encryption security of the encryption scheme
used. The challenger A′ deals with ExptdoubleA′ (n, σ) as follows:

1. A receives 1n.

2. Consider a randomly picked circuit C of size poly(1n) in the family of circuits that A breaks the security
of the garbling scheme in as above, and let i be such that A dintinguishes between Hi and Hi+1 for
this circuit size.
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3. Let the input wires of gate i of C be u and v, and the output wire be w, and the chosen labels of w be
Lw0 and Lw1. A′ chooses these and also labels for all wires except u and v.

4. A′ outputs as keys k0 and k1, chosen at random, and sets Lu0 = k0 and Lv0 = k1.

5. The keys chosen by the encryption algorithm challenging A′ are taken to be Lu1 = k′0 and Lv1 = k′1,
respectively. Note that A′ is not given these keys.

6. As the triples A′ outputs (Lwgi(0,1), Lwgi(1,0), Lwgi(1,1)) and (Lwgi(0,0), Lwgi(0,0), Lwgi(0,0)).

7. A′ receives challenge (Enc′(Lu0, Lv1, x),Enc′(Lu1, Lv0, y),Enc′(Lu1, Lv1, z)), and access to encryption
oracles Enc(Lu1, ., .) and Enc(., Lv1, .). Denote the challenge by (c1, c2, c3).

8. A′ now constructs a hybrid circuit as follows:

• Any gate before i that does not involve the wires u or v is constructed according to SIM (with
the table consisting of four encryptions of the same output label).

• Any gate after i that does not involve wires u or v (but may have w as input) is constructed
according to GarbleCkt (with the table reflecting the functionality of the gate).

• The gates before i with output u or v are constructed according to SIM . This may be done
because A′ knows Lu0 and Lv0, and encryptions in SIM are of these only.

• For any gate that has u or v (but not both) as input, the encryptions in the table (as per SIM
if this is before i, as per GarbleCkt otherwise) may be constructed using the oracles Enc(Lu1, ., .)
and Enc(., Lv1, .). This is because the only labels A′ does not know are Lu1 and Lv1, and hence
the other key involved in the double encryption is known. Also, as all our gates are symmetric, the
order of the wires does not matter, and Enc(., Lv1, .) may be used in the place of Enc(Lv1, ., .).

• The table for gate i (with inputs u and v) is (c, c1, c2, c3), where c = Enc′(Lu0, Lv0, Lwg(0,0)),
which can be computed as Lu0 and Lv0 are known to A′, and c1, c2 and c3 are from the challenge.

9. A′ runs A with this hybrid as the putative garbled circuit and the garbled input as (L10, · · · , Ln0),
and outputs whatever A outputs as its guess of σ.

The above construction by A′ is exactly Hi if σ = 1, and Hi−1 if σ = 0. This is because if σ = 0, the
table of gate gi consists of encryptions of the labels corresponding to the functionality of the gate, and if
σ = 1 all the encryptions are of Lw0. Hence, the advantage A′ has in distinguishing between these cases
is the same advantage A has in distingishing between Hi and Hi−1. Since this is non-negligible, A′ breaks
security of the encryption scheme under chosen double encryption.

Hence, if the encryption scheme used is secure under chosen double encryption, no adversary can dis-
tinguish between Hi and Hi−1 with non-negligible probability for any i. As gx and gx′ are from the same
distribution, this means that no adversary can distinguish between (GC, gx) and (GC ′, gx′), which is output
by SIM , with non-negligible probability. This shows that the garbling scheme is secure.
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