
6.892 Computing on Encrypted Data November 18, 2013

Lecture 10
Lecturer: Vinod Vaikuntanathan Scribe: Conner Fromknecht

Gaussian Sampling and Identity-Based Encryption

1 Introduction

In this lecture we will build upon the basic Identity-Based Encryption scheme we developed in the previous
lecture. Our motivation stems from the fact that the trapdoor from our basic IBE scheme can be easily
recovered via relatively simple attacks, which is clearly unacceptable. We will first review the ISISβ problem,
the notion of trapdoors for lattices, Gaussian sampling, and lattice switching before assembling our final
construction of the IBE scheme.

2 ISISβ(q,A,y) :

Given prime q,A← Zn×mq , and y← Zn. Find r ∈ {x ∈ Zm : Ax = y mod q} st. ‖r‖∞ ≤ β

3 Trapdoors for Lattices

Given a A ∈ Zn×mq , we can define one of two notions for a trapdoor.

3.1 Strong Trapdoor

Given A ∈ Zn×mq ,A admits a strong trapdoor TA ∈ Zm×m if:

• ATA = 0 mod q (TA is a basis of Λ⊥(A))

• TA is full-rank over Z

• ‖TA‖∞ ≤ poly(n)

3.2 G-Trapdoor

Assuming q = 2k and m = nk, let

gtk = [1, 2, . . . , 2k−1] ∈ Z1×k
q ,Sk =


2
−1 2

. . .
. . .

−1 2

 ∈ Zk×k

Clearly Sk is short, and since gtkSk = 0 mod q, Sk is a short basis for Λ⊥(gtk). From these, we can construct
a primitive canonical matrix G and a strong trapdoor S for G st:

G =


· · ·gtk · · ·

· · ·gtk · · ·
. . .

· · ·gtk · · ·

 ∈ Zn×mq ,S =


Sk

Sk
. . .

Sk

 ∈ Zm×m

10-1



A admits a G-Trapdoor TA ∈ Zm×m if:

• ATA = G mod q

• TA is full-rank over Z

• ‖TA‖∞ ≤ poly(n)

Since we know a trapdoor for G, it is easy to find a short r′ ∈ {0, 1}m st. Gr′ = y. We can then solve
Ar = y mod q by letting r = TAr

′ and solving Ar = A(TAr
′) = Gr′ = y mod q for r′ and simply

computing TAr
′.

4 Basic IBE

In the following section, we will describe the basic IBE scheme discussed in the previous lecture. The scheme
is parameterized by (n, q) which are the dimension and modulus respectively (m is assumed to be Θ(n lg q))
and consists of the tuple of four algorithms (Setup,Keygen,Enc,Dec).

• Setup(n, q) : (mpk,msk) st. mpk = A← Zn×2m
q and msk = TA ∈ Z2m×m

q

• Keygenmsk(id) : skid = short r ∈ Z2m st. Ar = y mod q, where y = H(id) ∈ Znq

• Encmpk(id, µ ∈ {0, 1}) : c = DualRegev(A,y, µ) = (Ats + e,yts + e′ + µ bq/2e)

• Decsk(skid, c) : µ ≈ yts + e′ + µ− b where b = sktid(A
ts + e)

The problem with this scheme is that it is very easy to recover TA, if we collect many (O(n2)) equations we
can simply solve for r = TAr

′ algebraically.

Another attack, proposed by [Nguyen-Regev ’09] recovers the secret key TA by solving the Hidden Par-
allelepiped Problem (HPP). Here, the attacker simply plots many vi = msgi − sigi. Since the secret is
small, the resulting plot produces a distribution that approximates the shape parallelepiped defined by TA,
which can be used in conjunction with gradient descent to learn the secret.

5 Inverse Sampling

Ideally, we would like to have small, random, trapdoor-independent solutions to Ar = y. To do so, we will

start by designing a distribution D over Zm st. ∀TA, (y← Znq , r ← SampInv(A,TA,y)
s
≈ (y := Ar, r ← D)

where
s
≈ is defined as statistically indistinguishable.

Let DD,σ(x) be a discrete Gaussian distribution over Zm. The continuous Gaussian function is described by

Φσ(x) ∝ e
−π‖x‖2

σ2 for x ∈ Rm. We then define DD,σ(x) as:

DD,σ(x) =

{
Φσ(x)/Φσ(D) : ∀x ∈ D
0 : otherwise

which is poly(λ)-time sampleable with standard deviation 2−λ from DmD,σ as long as σ ≥ σ0 = σ0(L).

1. In the basic IBE construction, the Keygen algorithm uses a deterministic inversion algorithm to gen-
erate secret keys given by the following:

10-2



Algorithm 1: dBitDecomp(y, q) - Deterministic Bit Decomposition

for i = 1 to dlg qe do
ri = y − y mod 2
y = y−y mod 2

2
end for
return (r1, ..., rdlg qe)

To eliminate the linear relationship between r and r′, we need to randomize the bit decomposition
during Keygen:

Algorithm 2: pBitDecomp(y, q) - Probabilistic Bit Decomposition

for i = 1 to dlg qe do
r′i = D2Z+(y mod 2),σ′

y =
y−r′i

2
end for
return (r′1, ..., r

′
dlg qe)

We claim that (r′1, . . . , r
′
dlg qe)

s
≈ DΛ⊥y (A),σ′ .

2. We can also use an alternative continuous Gaussian definition: Φσ(x) ∝ e−πxtΣx.
In the basic IBE scheme, r = T · r′, r ← DZm,

√
TTt·σ′2 . Therefore, information about the trapdoor is

inherently leaked by the distribution of r. We can counteract this by using the following algorithm
which makes r distributed according to a discrete Gaussian with a target standard deviation σ.

Algorithm 3: SampInv(A,TA,y)

p← DZm,
√
σ2−TTt·σ′2

y′ = y −Ap
r′ = pBitDecomp(y′, q)
return r = TAr

′ + p

We can see that r is now appropriately distributed, namely r← DZm,σ and is completely independent
of T. Additionally, correctness is displayed by the following:

Ar = ATr′ + Ap

= Gr′ + Ap

= y′ + Ap

= y

6 Lattice Switching

6.1 1-to-1

Let T ∈ Zm×mq satisfy A1T = A2

(A1,A
t
1s + e1)→ (A2,A

t
2s + e2) = (A1T,T

t(At
1s + e1))

6.2 2-to-1(
A1,A

t
1s + e1

A2,A
t
2s + e2

)
→ (A3,A

t
3s + e3) where A3 = A1T1 + A2T2

10-3



6.3 l-to-1

[A1|A2| . . . |Al]


r1

r2

...
rl

 = A1r1 + A2r2 + . . .+ Alrl = y where r2 . . . rl ← DZm,σ are short.

Solve A1r1 = y −
∑
i>1 Airi

7 Final IBE Scheme

This section details our final IBE implementation, which introduces changes to all but the decryption algo-
rithm from our basic IBE scheme.

• Setup(n, q) : mpk =

(
A1,0 A2,0 . . . Al,0

A1,1 A2,1 . . . Al,1

)
,msk = TA1,0

,TA1,1
using the Guassian sampling

techniques described above.

• Keygenmsk(id ∈ {0, 1}l) : skid = SampInv(Aid,TA1,id1
,y), where Aid = [A1,id1 |A2,id2 | . . . |Al,idl ]

• Encmpk(id, µ) : c = dualRegev(Aid,y, µ)

7.1 IBE Security

Let us assume that in the Setup phase we generate trapdoors for all Ai,idi except for a specific sequence

id∗, say 0001. We can then depict our mpk as

(
A∗1,0 A∗2,0 A∗3,0 A4,0

A1,1 A2,1 A3,1 A∗4,1

)
where A∗ denotes public keys

without trapdoors.
Consider an adversary in the following game:

Oracle Adversary

mpk →
← id

skid →
← id∗, µ1, µ2

Encmpk(id∗, µb)→
↓ b′

As is standard, the adversary wins if b′ = b. However, we can see that no matter how many skid’s the
adversary requests, he will never be able to find a trapdoor to invert the encryption under id∗. Since the
trapdoor for id∗ simply doesn’t exist, the best the adversary can do is guess as to which message was returned.

10-4


