Lecturer: Vinod Vaikuntanathan

November 23, 2013

Lecture 25

Scribe: Adin Schmahmann

1 Trapdoors

Given l matrices A_1, A_2, \dots, A_l and a "trapdoor" for A_i (for some i) one can find a trapdoor for $[A_1||A_2...||A_l]$. $TrapFind(A_1, \dots, A_l, (i, T_{A_i})) = T_{[A_1||\dots||A_l]}$

Whereby the "trapdoor" means that $[A_1||\ldots||A_l] \begin{pmatrix} t1\\t2\\\vdots\\tn \end{pmatrix} = 0 \implies A_1t_1 + \ldots + A_lt_l = 0.$

The trapdoors from TrapFind are such that:

 $\forall_{i,j} \; (\operatorname{TrapSamp}(A_1, \dots, Al, (i, T_{A_i})), A_1, \dots, A_l) \approx_s (\operatorname{TrapSamp}(A_1, \dots, Al, (j, T_{A_j})), A_1, \dots, A_l)$

2 IBE

$$\begin{split} \operatorname{Mpk} &= \begin{pmatrix} A_{1,0} & \cdots & A_{l,0} \\ A_{1,1} & \cdots & A_{l,1} \end{pmatrix}, y \text{ with each } A_{j,k} \in \mathbb{Z}_q^{n \times m} \text{ and } y \in_R \mathbb{Z}_q^n \\ \\ \operatorname{Msk} &= (T_{A_{1,0}}, T_{A_{1,1}}) \\ sk_{id} \colon \operatorname{Assume} id \in \{0, 1\}^l \\ A_{id} \in \mathbb{Z}_q^{n \times m \times l} \triangleq [A_{1,id_1} || \dots || A_{l,id_l}] \\ \\ \operatorname{Generate Trapdoor} T_{id} \text{ for } A_{id} \\ sk_{id} = \operatorname{short r s.t.} A_{id} \cdot r = y \\ \\ \operatorname{Enc}(id, \mu) = \operatorname{dualRegev.ENC}(pk, \mu) = c \\ \\ \operatorname{where} \mu \in \{0, 1\}, pk = (A_{id}, y), \text{ and } c = A_{id}^{\mathsf{T}}s + e, y^{\mathsf{T}}s + e' + \mu \lceil q/2 \rfloor \\ \\ \\ \operatorname{Dec}(sk_{id}, c) = \operatorname{dualRegev.DEC}(r, c) \end{split}$$

Note: In the simulation based security model depicted below selecting id^* first weakens security, but makes the proof significantly easier.

2.1 Simulator

2.2 Reduction

3 ABE

Enc(X, μ) where $X \in \{0, 1\}^l$ and $\mu \in \{0, 1\}$ Dec(sk_F, c_x) and should get $\mu \iff F(x) = 1$ Mpk = $\begin{pmatrix} A_{1,0} & \cdots & A_{l,0} \\ A_{1,1} & \cdots & A_{l,1} \end{pmatrix}$, y with each $A_{j,k} \in \mathbb{Z}_q^{n \times m}$ and $y \in_R \mathbb{Z}_q^n$ Msk = $\begin{pmatrix} T_{A_{1,0}} & \cdots & T_{A_{l,0}} \\ T_{A_{1,1}} & \cdots & T_{A_{l,1}} \end{pmatrix}$ sk_F : Assume $F : \{0, 1\}^l \to \{0, 1\}$

3.1 *SK*_{*C*}

1) \forall wires w generate $(A_{w,0}, T_{w,0})$ and $(A_{w,1}, T_{w,1})$

Figure 1: Schematic for ABE circuit

2) \forall gates g = (u, v; w) generate $R_{b,c} : A_{u,b}^{\mathsf{T}} s + A_{v,c}^{\mathsf{T}} s \implies A_{w,f(b,c)}^{\mathsf{T}} s$ for the function f that represents the gate and where $b, c \in \{0, 1\}$. For instance the NAND gate has $R_{0,0} : A_{u,0}^{\mathsf{T}} s + A_{v,0}^{\mathsf{T}} s \implies A_{w,1}^{\mathsf{T}} s$.

3) Output Gate: Publish short r such that $A_{out,1} \cdot r = y$. $sk_c = (Garbled Tables, r_{out})$

Decrypt by getting $A_{out,c(x)}s + noise$ and using $A_{out,1} \cdot r_{out} = y$ to get μ from $y^{\intercal}s + e + \mu \lceil q/2 \rfloor$

What are the Garbled Tables?

Using $R_{0,0}$ an an example:

Come up with $R_{0,0}$ such that $[A_{u,0}||A_{v,0}]R_{0,0} = A_{w,g(0,0)}$ (ex: for NAND g(0,0) = 1) $(s^{\mathsf{T}}[A_{u,0}||A_{v,0}] + [e_{u,0}||e_{v,0}]) \cdot R_{0,0} = s^{\mathsf{T}}A_{w,g(0,0)} + e_{w,g(0,0)}$ where $e_{w,g(0,0)} \triangleq [e_{u,0}||e_{v,0}] \cdot R_{0,0}$ $|e_{w,\ldots}| \leq 2m \cdot \max(e_{u,0}, e_{v,0})$ (However, current technology for finding small R's requires $m^{O(1)}$ not 2m) $|e_{out}| \leq m^{O(d)}$ Lemma 1. Correctness ABE decryption succeeds for circuits C with depth d=d(C) if $m^{O(d)} \leq q$

Compute Rs using given trapdoors for As (ex: $A_{u,0}, A_{v,0} for R_{0,0}$).

3.2 Security Reduction

How to generate sk_c for the adversary such that c(x) = 0

Figure 2: Schematic for NAND ABE circuit simulator

Take example where g=NAND, and say we know trapdoors for u = 0 and v = 1. We need to have a trapdoor for either $A_{w,0}$ or $A_{w,1}$, but need to find both $A_{w,0}$ and $A_{w,1}$.

$$\begin{split} & [\underline{A_{u,0}}||A_{v,0}]R_{0,0} = A_{w,1} \\ & [\underline{\overline{A_{u,0}}}||\underline{A_{v,1}}]R_{0,1} = A_{w,1} \end{split}$$

$$\begin{split} & [A_{u,1}||A_{v,0}]R_{1,0} = A_{w,1} \\ & [A_{u,1}||\underline{A_{v,1}}]R_{1,1} = A_{w,0} \end{split}$$

We have trapdoors for underlined matrices. Pick $R_{1,0}$ from a distribution and given the $R_{1,0}$ determine $A_{w,1}$. Additionally, pick Aw, 0 with a trapdoor.