MAT 301 Problem Set 3

[Posted: February 08, 2012. Due: February 17, 2012. Worth: 100 points]

Note: I value *succinct* and *clearly written* solutions *without unnecessary verbiage*. Such solutions will be rewarded with bonus points.

Note the Friday deadline. The problem sets are due in the beginning of the tutorial, at 10am on Friday.

1. Exponentiation and Finding Roots (30 points)

- (5 points) Find $2^{65} \pmod{97}$. Show your work.
- (15 points) Find the 65^{th} root of 2 mod 97. Show your work.

2. Square Roots and Factoring (40 points)

- (1 point) How many solutions does the equation $x^2 = 1 \pmod{7}$ have? What are they?
- (1 point) How many solutions does the equation $x^2 = 3 \pmod{7}$ have? What are they?
- (2 points) How many solutions does the equation $x^2 = 1 \pmod{8}$ have? What are they?
- (11 points) If N is prime and $a \in \mathbb{Z}_N^*$, how many solutions does the equation $x^2 = a \pmod{N}$ have?
- (30 points) I am going to hand over to you a number N which is a product of two distinct prime numbers. I will also give you two numbers x_1 and x_2 such that

$$x_1^2 = x_2^2 \pmod{N}$$

$$x_1 \neq x_2 \pmod{N}$$

$$x_1 \neq -x_2 \pmod{N}$$

How will you find the prime factors of N using this information?

- 3. $\phi(N)$ and Factoring (30 points) I am going to hand over to you a number N which is a product of two distinct prime numbers. I will also give you $\phi(N)$, the Euler Totient function of N.
 - How will you find the prime factors of N using this information?
 - How many basic computational steps does your algorithm take (you can express your answer in terms of the Big-Oh $O(\cdot)$ notation)?

(Note: Since you can easily compute $\phi(N)$ given the factorization of N, this problem is asking you to prove that finding $\phi(N)$ is computationally as hard as factoring N).