MAT 301 Problem Set 4

[Posted: March 12, 2013. Due: March 25, 2013. Worth: 50 points]

- 1. Pollard (10 marks) Use Pollard's p-1 algorithm to factor N = 1739, given that N is a product of two primes p and q such that p-1 is 3-smooth. Show your work.
- 2. Factoring with Cube Roots (20 marks) Let $p = 1 \pmod{3}$ be a prime number. It turns out that the equation $x^3 = a \pmod{p}$ has either no solutions or three solutions, depending on what a is.
 - Take as example p = 13. What are the solutions to the equation $x^3 = 1 \pmod{13}$?
 - Generalizing this, what are the solutions to the equation $x^3 = 1 \pmod{p}$? Prove your statement. (*Hint: let g be a generator of* \mathbb{Z}_p^* . Think of what the solutions could be as powers of g.)

Now, let q be another prime such that $q = 1 \pmod{3}$ as well, and let N = pq.

- How many solutions does the equation $x^3 = 1 \pmod{N}$ have? Prove your assertion. (*Hint: Chinese Remaindering*).
- Imagine that I give you N (but not p or q) and I also give you a solution to the equation $x^3 = 1 \pmod{N}$ such that (a) $x \neq 1 \pmod{N}$ and (b) $(x+1)^2 \neq x \pmod{N}$. Show how to use such an x to factor N.
- 3. (20 marks) Answer either one of the two questions below.
 - El Gamal Signatures Suppose that Samantha the signer uses the El Gamal signature scheme and that she is careless and uses the same ephemeral key e to sign two messages M and M'.
 - How can Eve detect that Samantha has made this mistake?
 - If the signature on M is (σ_1, σ_2) and that on M' is (σ'_1, σ'_2) , explain how Eve can recover s, Samantha's private signing key.

(Problem 7.7 from the text)

• Schnorr Signatures Below is the Schnorr Signature Scheme that you can obtain from the Schnorr identification scheme we saw in class.

Samantha the signer has a public key $PK = (p, g, g^x \pmod{p})$ where p is a prime, g a generator of \mathbb{Z}_p^* and x is a random number in \mathbb{Z}_{p-1} . Her secret key SK = x. To sign a message $M \in \mathbb{Z}_{p-1}$, she computes $\sigma_1 = g^a \pmod{p}$ where a is a random number in \mathbb{Z}_{p-1} , c = H(M) where H is a "hash function" we mentioned in class, and $\sigma_2 = a + cx \pmod{p-1}$. The signature is $\sigma = (\sigma_1, \sigma_2)$.

Now, assume as before that Samantha the signer has a faulty random number generator that produces the same random number a when she tries to sign two different messages M and M'.

If the signature on M is (σ_1, σ_2) and that on M' is (σ'_1, σ'_2) , explain how Eve can recover s, Samantha's private signing key. You may assume for the purposes of this problem that H is a one-to-one function.