
CS 294. Ideal Lattices, Ring-SIS and Ring-LWE

This chapter is adapted from notes by Noah Stephens-Davidowitz.
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1 Hash Functions

The SIS problem yields a very simple collision-resistant hash function that is provably secure if
worst-case lattice problems are hard:

hA(e) = Ae (mod q)

where the key A ∈ Zn×mq is uniformly random and the input is e ∈ {0, 1}m. Recall that finding an
hA collision is equivalent to solving the SIS problem, whose definition we reproduce below.

Definition 1. For parameters n,m, q, the (average-case, homogenous) Short Integer Solutions
(SIS) problem is defined as follows. The input is a uniformly random matrix A ∈ Zn×mq . The goal
is to find a non-zero vector e ∈ {−1, 0, 1}m such that Ae = 0 (mod q).

hA has a lot going for it as a hash function. It is remarkably simple—a linear collision-resistant
hash function! And, we saw that it is provably secure under the assumption that certain well-
studied worst-case lattice problems are hard. If those two things are not enough, hA is also worthy
of study because of its close relationship with LWE, the topic of this course and an extremely
important problem for cryptographers.
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Unfortunately, hA is quite inefficient, since just reading the public hash description A takes
time roughly nm log q > n2 (where the inequality follows from the fact that we must have m > n in
order for hA to be a compressing function). But, hA is breakable in time 2O(m) (even by brute-force
search).

Ideal ly, we would hope for a hash function that can be broken in time 2O(m) to run in time
roughly linear in m ≈ n. Our goal is therefore to show a variant of hA whose running time is in
fact roughly linear in n.
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2 The cyclic shift matrix, and the ring Z[x]/(xn − 1)

Since just reading the key of hA requires time greater than n2, any attempt to speed up the
computation of hA will presumably have to first compress the key size. E.g., we could take some
short uniformly random seed r (with bit length, say, O(n)) and set A = H(r) for some suitable
expanding function H. If H is modeled as a random oracle, then the resulting hash function hH(r)

retains its security. (This idea is actually quite useful in practice [BCD+16] in the context of LWE.)
However, if H is an arbitrary function, then we do not expect to be able to compute hH(r)(e) in
time faster than n2. So, though this idea immediately yields a hash function with a smaller key,
we need to do more work to get a faster hash function.
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3 The cyclic shift matrix, and the ring Z[x]/(xn − 1)

Since just reading the key of hA requires time greater than n2, any attempt to speed up the
computation of hA will presumably have to compress the key size. E.g., we could take some short
uniformly random seed r (with bit length, say, O(n)) and set A = H(r) for some suitable expanding
function H. If H is modeled as a random oracle, then the resulting hash function hH(r) retains its
security. (This idea is actually quite useful in practice [BCD+16] in the context of LWE.) However,
if H is an arbitrary function, then we do not expect to be able to compute hH(r)(e) in time faster
than n2. So, though this idea immediately yields a hash function with a smaller key, we need to do
more work to get a faster hash function.

Even so, assuming that we are happy with a small key and quadratic runtime, I do not know
how to prove the security of this approach from standard assumptions, e.g., SIS.

Open Problem. Construct a hash function with a linear-size key which is as secure as SIS or
LWE (in particular, without relying on the random oracle assumption.)
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In order to speed up our computation, we presumably need our matrix A to be a very special
function of the seed. To that end, we take our short random seed to be ` = m/n uniformly random
vectors a1, . . . ,a` ∈ [q]n, and we take the columns of our matrix A to be the vectors a1, . . . ,a`
together with all “cyclic rotations” of the ai. I.e., for a = (a1, . . . , an)T ∈ Zn, we define

Rot(a) :=



a1 an · · · a3 a2

a2 a1 · · · a4 a3

a3 a2 · · · a5 a4
...

...
. . .

...
...

an−2 an−3 · · · an an−1

an−1 an−2 · · · a1 an
an an−1 · · · a2 a1


∈ Zn×n ,

where each column is a simple cyclic permutation of the previous column.1 Matrices of the form
Rot(a) are sometimes referred to as “cyclic matrices” or “circulant matrices.” We then take

A = (Rot(a1),Rot(a2), . . . ,Rot(a`)) ∈ Zn×m .

We claim that for A with this structure, we can compute Ae mod q in time n` · polylog(n, q) =
Õ(m).

1Notice that the definition of Rot does not depend at all on q. It is convenient to forget about q for now and to
think of a as some arbitrary vector in Zn.
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We claim that for A with this structure, we can compute Ae mod q in time n` · polylog(n, q) =
Õ(m). This is because the set of all integer cyclic matrices, R̃ := {Rot(a) : a ∈ Zn} is actually a
very nice set with nice algebraic structure. In particular, we can write

Rot(a) = (a, Xa, . . . , Xn−1a) ,

where

X :=


0 0 · · · 0 1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ∈ {0, 1}n×n

is the “cyclic shift” matrix. Notice that R̃ ⊂ Zn×n is a lattice in n×n dimensions with rank n and
basis In, X,X

2, . . . , Xn−1. Indeed, for any a = (a1, . . . , an)T ∈ Zn, we can write

Rot(a) = a1In + a2X + · · ·+ anX
n−1 .

This identity immediately shows us that R̃ is actually closed under (matrix) multiplication (note
that Xn = In) and that multiplication is commutative over R̃. I.e., R̃ is a commutative ring!
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In fact, R̃ is isomorphic to the polynomial ring R := Z[x]/(xn − 1). I.e., R is the ring of
polynomials in the variable x of degree at most n−1 and integral coefficients, with addition defined
in the obvious way and multiplication defined by the distributive law together with the identity

x · xi =

{
xi+1 i < n− 1

1 i = n− 1
.

(The polynomial xn − 1 is the characteristic polynomial of the cyclic shift matrix X, which is why
it arises in this context.) To see that these two rings are isomorphic, one only needs to check that
the map X 7→ x is a bijection that preserves addition and multiplication of basis elements.

So, there’s no reason to drag these n×nmatrices around, and we can instead think of Rot(a) ∈ R̃
as the corresponding polynomial a ∈ R of degree at most n− 1. (I.e., we change notation slightly.)
We can therefore identify our matrix A ∈ [q]n×m with a tuple of ring elements (a1, . . . , a`)

T ∈ R`[q],
and similarly the input e ∈ {0, 1}m is a tuple of ring elements (e1, . . . , e`)

T ∈ R`{0,1}, where we use
the notation RS to represent the set of polynomials in R with coefficients in S. Therefore, our hash
function is now ha1,...,a`(e1, . . . , e`) = a1e1 + · · · + a`e` mod qR.2 For convenience, we abbreviate
this by ha(e).

Now, to gain in efficiency, we simply recall that we can multiply two elements in R[q] in
time n · polylog(n, q) via the fast Fourier transform. Therefore, we can compute ha in time
`n · polylog(n, q) = m · polylog(n, q), which is a tremendous speedup over the nm · polylog(q)
running time of the original hA. Indeed, we typically think of q = poly(n) and ` = polylog(n), so
that this running time is quasilinear in n.

2Here, we have chosen to think of the ei as ring elements as well. This is formally justified by the identity

Rot(a) · Rot(e) = Rot
(
Rot(a) · e

)
.

The reduction mod qR simply means that we reduce the coefficients of the result of our polynomial multiplication
modulo q.
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3.1 Towards Ring-SIS

Of course, this is not very useful if ha is not secure. In fact, Micciancio showed that ha is secure
as a one-way function (under a plausible worst-case lattice assumption) [Mic07]. I.e., with certain
reasonable parameters, it is difficult to invert ha on a random input. This result is really quite
remarkable, but we will not state it formally.
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Unfortunately, ha is not a collision-resistant hash function. To see this, it helps to define the
Ring-SIS problem, which is the analogue of SIS in this setting.

Definition 2. For a ring R, integer modulus q ≥ 2, and integer ` ≥ 1, the (average-case) Ring-SIS
problem is defined as follows. The input is a1, . . . , a` ∈ R[q] sampled independently and uniformly
at random. The goal is to output e1, . . . , e` ∈ R{−1,0,1} not all zero such that a1e1 + · · · + a`e` =
0 mod qR.

One can easily see that finding a collision in ha is equivalent to solving Ring-SIS, just like finding
a collision in hA is equivalent to solving SIS.

Unfortunately, Ring-SIS over Z[x]/(xn− 1) is not hard. The issue is that the ring Z[x]/(xn− 1)
has non-trivial zero divisors (i.e., it is not an integral domain). To see this, let ẽ = 1 + x + x2 +
· · · + xn−1 ∈ Z[x]/(xn − 1), and notice that (x − 1)ẽ = xn − 1 = 0. (In terms of Rot and R̃, this
corresponds to the fact that Rot(u) is singular, where u = (1, 1, . . . , 1)T 6= 0.) This leads to an
attack.
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Claim 3. For any integer modulus q ≥ 2 and integer n ≥ 1, let R := Z[x]/(xn − 1) and let
ẽ = 1 + x+ x2 + · · ·+ xn−1 ∈ R−1,0,1. Then, aẽ = 0 mod qR with probability 1/q when a ∈ R[q] is
sampled uniformly at random.

In particular, ẽ, 0, . . . , 0 ∈ R{−1,0,1} is a solution to Ring-SIS over R with probability 1/q, and
the hash function ha can be broken efficiently with probability 1/q.

Proof. Suppose that a ∈ R[q] is divisible by x − 1 modulo qR. I.e., a = (x − 1)a′ mod qR. Then,
ẽa = ẽ(x−1)a′ = 0 mod qR. The result follows by noting that a ∈ R[q] is divisible by x−1 modulo
qR with probability 1/q. (Notice that being divisible by x − 1 is equivalent to having coefficients
that sum to zero mod q.)

If our original hash function hA is in fact 2Ω(n) secure, then this result makes ha uninteresting
as a collision-resistant hash function. In particular, in order for ha to have a chance of matching
this security, we would need to take q = 2Ω(n), in which case ha is actually a slower hash function
than hA.
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4 The ring Z[x]/(xn + 1), ideal lattices, and a secure collision-
resistant hash function

Recall that our attack on ha over Z[x]/(xn−1) relied on the fact that xn−1 has a nontrivial factor
over the integers, xn − 1 = (x− 1)(xn−1 + xn−2 + · · ·+ 1). So, it is natural to try replacing xn − 1
with an irreducible polynomial. Indeed, one can easily show that Z[x]/(p(x)) for some polynomial
p(x) ∈ Z[x] is an integral domain if and only if p is irreducible.
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We strongly prefer sparse polynomials with small coefficients (both because they are easy to
work with and because this ensures that our ring has nice “geometric” properties). Since xn − 1
failed, we try xn + 1. This is irreducible over Z if and only if n is a power of two.3 So, we take
R := Z[x]/(xn + 1) for n some power of two. I.e., R is the ring of polynomials over Z of degree at
most n− 1 with addition defined in the obvious way and multiplication defined by

x · xi =

{
xi+1 i < n− 1

−1 i = n− 1
.

From the matrix perspective of the previous section, this corresponds to taking

Rot(a) = (a, Xa, . . . , Xn−1a) =



a1 −an · · · −a3 −a2

a2 a1 · · · −a4 −a3

a3 a2 · · · −a5 −a4
...

...
. . .

...
...

an−2 an−3 · · · −an −an−1

an−1 an−2 · · · a1 −an
an an−1 · · · a2 a1


∈ Zn×n ,

where

X :=


0 0 · · · 0 −1
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 ∈ {0, 1}n×n .
Notice that X differs in just one entry from our choice in the previous section. Matrices of the
form Rot(a) as above are occasionally called “anti-cyclic.”

3If p > 1 is a non-trivial odd factor of n, then xn/p + 1 is a non-trivial factor of xn + 1. If n has no odd factors,
then xn + 1 is the 2nth cyclotomic polynomial—i.e., the minimal polynomial over Z of any primitive 2nth root of
unity.
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As before, we define our hash function ha(e) = a1e1 + · · · + a`e` mod qR, where the ai are
chosen uniformly ai ∈ R[q] and ei ∈ R{0,1}. But, we stress that the underlying ring has changed
from Z[x]/(xn − 1) to R = Z[x]/(xn + 1), so that this is not the same hash function as before.
(Formally, we should include the ring as a parameter in h, i.e. ha,Z[x]/(xn+1), to distinguish it, but
we prefer to keep the notation uncluttered.) As before, finding a collision for this hash function is
equivalent to solving Ring-SIS, now over this new ring, Z[x]/(xn + 1).

Ring-SIS is in fact hard over this ring, under a reasonable worst-case complexity assumption.
We will describe this complexity assumption (which will lead us to the topic of ideal lattices) but
will not prove the worst-case to average-case reduction for Ring-SIS.
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Remark The ring R is rather special; it is the ring of integers of the cyclotomic number field
Q[x]/(xn + 1). Number fields and their rings of integers are very well-studied and very interesting
objects, and these notes stop short of presenting some of the beautiful mathematics that is lurking
beneath the surface here. (The fact that R is such a rich mathematical object also seems relevant
for the security of ha. In particular, there are algorithmic results for related problems that exploit
rather deep properties of R [Ber14, CGS14, CDPR16, CDW17].)
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4.1 Ideal lattices

In order to present the worst-case hardness assumption that will imply the security of our hash
function, we will need to introduce a special class of lattices known as ideal lattices. Recall that a
lattice is an additive subgroup of Zn. I.e., a subset of Zn closed under addition and subtraction.
An ideal I ⊆ R is an additive subgroup of a ring R that is closed under multiplication by any ring
element. I.e., I is closed under addition and subtraction, and for any y ∈ I and r ∈ R, we have
ry ∈ I.

For our choice of ring, we can view I as a lattice by embedding R in Zn via the trivial embedding
that maps xi to the unit vector ei. So, I can equivalently be viewed as a lattice I ⊆ Zn that is
invariant under the linear transformation X. I.e., I ⊆ Zn is a lattice such that (y1, . . . , yn)T ∈ I if
and only if (−yn, y1, y2, . . . , yn−1)T ∈ I. Such lattices are sometimes called “anti-cyclic,” and the
corresponding lattices over Z[x]/(xn − 1) are often called “cyclic.”

In particular, this embedding allows us to consider the geometry of an ideal I, as a subset of
Zn. E.g., we can define the `2 norm and the inner product over I by taking the `2 norm and the
inner product over Zn.4 We then see that ideal lattices I are a strange class of lattices in which
non-zero lattice elements y ∈ I can be divided into groups of n linearly independent elements,
y, xy, x2y, . . . , xn−1y, all with the same length, ‖xiy‖ = ‖xjy‖. In particular λ1(I) = λn(I).
(Notice that we move freely between the representation of R as Zn and the representation of R
as a polynomial ring. I.e., we can think of y1, y2 ∈ R as scalars, written in plain font, as opposed
to boldface vectors y1,y2 ∈ Zn. We can still talk about their norms ‖y1‖, ‖y2‖ and inner product
〈y1, y2〉.)
Remark Ideals are very important objects in the study of rings, and they have a rich history
that we do not discuss here. In fact, much of the early study of lattices was motivated by the study
of the geometry of ideals, going back all the way to the seminal work of Minkowski, Dirichlet, and
others in the middle of the 19th century.

4For more general rings of integers over number fields, there is actually a different notion of geometry obtained
via the “canonical embedding” of I into Cn, which has very nice properties. E.g., in the canonical embedding, ring
multiplication is coordinate-wise. For our very special choice of ring, Z[x]/(xn + 1) for n a power of two, these two
embeddings actually yield the same geometry.
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4.2 SVP over ideal lattices and worst-case hardness

For our purposes, this view of ideals as lattices is useful because it allows us to extend computational
lattice problems to ideals. I.e., for some fixed ring R, we can define the computational problems
γ-IdealSVP, γ-IdealSIVP, γ-GapIdealSVP, etc., as the corresponding computational problems re-
stricted to ideal lattices. In fact, the above discussion shows that γ-IdealSVP and γ-IdealSIVP are
equivalent over our ring R = Z[x]/(xn + 1). A slightly more sophisticated argument shows that
γ-GapIdealSVP is easy over R for γ >

√
n because the length of the shortest vector in an ideal

can be approximated up to a factor of
√
n by the determinant. We therefore only present a formal

definition of γ-IdealSVP.

Definition 4. For a ring R (with an associated norm ‖ · ‖) and approximation factor γ ≥ 1, γ-
IdealSVP over R is the approximate search problem defined as follows. The input is (a basis for)
an ideal lattice I over R. The goal is to output a non-zero element y ∈ I with ‖y‖ ≤ γλ1(I).

With this, we can present the worst-case to average-case hardness of Ring-SIS, which was dis-
covered independently by Peikert and Rosen [PR06] and by Lyubashevsky and Micciancio [LM06].

Theorem 5 ([PR06, LM06]). For any power of two n, integer ` ≥ 1, and integer modulus q ≥
2n2`, γ-Ideal SVP over R = Z[x]/(xn + 1) can be efficiently reduced to Ring-SIS over R, where
γ = ` · poly(n).
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4.3 Regarding the hardness of IdealSVP

Of course, Theorem 5 is only interesting if γ-IdealSVP is hard over the ring Z[x]/(xn+1). Until very
recently, our best algorithms for this problem were essentially no better than our generic algorithms
for γ-SVP over general n-dimensional lattices. However, very recently, polynomial-time quantum

algorithms for γ-IdealSVP with the very large approximation factor γ = 2Õ(
√
n) were discovered

in a series of works [Ber14, CGS14, CDPR16, CDW17]. (The best known algorithms for 2
√
n-SVP

run in time roughly 2
√
n, even on a quantum computer. And, our best polynomial-time algorithms

for γ-SVP only achieve an approximation factor of γ = 2Θ̃(n). So, this is a very big improvement.)
These algorithms are not known to extend to attacks on Ring-SIS for two reasons. First, the

approximation factor γ = 2Õ(
√
n) is much larger than the approximation factors that are relevant to

Ring-SIS. Second, Ring-SIS is not exactly an ideal lattice problem. Instead, notice that a solution
to Ring-SIS consists of a vector of ring elements (e1, . . . , e`) ∈ R`. Indeed, Ring-SIS is technically
a lattice problem over rank ` modules. It is therefore not currently known how to efficiently reduce
Ring-SIS to IdealSVP.

As a result of all of this, the status of Ring-SIS is a bit unclear at the moment. The barriers
mentioned in the previous paragraph seem to be quite hard to overcome, so perhaps this new line
of research will not lead to an attack. As far as we know, Ring-SIS is just as hard as SIS, and
indeed, as far as we know, it could yield a collision-resistant hash function that is computable in
Õ(n) time and only breakable in time 2Ω(n).

We will not present the worst-case to average-case reduction for Ring-SIS. It is a slight variant
of the reduction that we have already seen for SIS, and is included in the posted lecture notes
(http://people.csail.mit.edu/vinodv/CS294/lecturenotes.pdf).
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5 Ring-LWE basics and some properties of Z[x]/(xn + 1)

5.1 From Ring-SIS to Ring-LWE

Now, we do unto LWE what we just did to SIS. In particular, the problem (search) LWE asks us
to find s ∈ Znq given (A, sTA + eT mod q), where A ∈ Zn×mq and s ∈ Znq are uniformly random
and e ∈ Zm is chosen from some error distribution on short vectors. We will define Ring-LWE in a
similarly natural way. We will see that the hardness of Ring-LWE implies more efficient public-key
cryptography, and that this hardness can be based on the worst-case hardness of the worst-case
ideal lattice problem γ-IdealBDD (which we will define later). Because we will rely very heavily on
special properties of our specific ring R = Z[x]/(xn + 1) for n a power of two, we only define Ring-
LWE over this specific ring. Everything presented here can be generalized, but doing so requires
quite a bit more work [LPR10].5

Definition 6. For integers `, q ≥ 2, power of two n, and an error distribution χ over short elements
in R, the (average-case, search) Ring-LWE problem is defined as follows. The input is a1, . . . , a` ∈
Rq sampled independently and uniformly at random together with b1, . . . , bn ∈ Rq, where bi :=
ai · s+ ei mod qR for s ∈ Rq, and ei ∼ χ. The goal is to output s.

Notice that we take s to be worst-case, rather than uniformly random. This is without loss of
generality, since we can trivially randomize s if necessary. Just like before, we will also need the
decisional version of the problem, which asks us to distinguish the (ai, bi) from uniformly random
and independent elements of Rq.

5The “right” notion of Ring-LWE for more general rings has a more sophisticated definition based on the canonical
embedding of a number field. In particular, the naive coefficient embedding in which the norm of a ring element is just
the norm of its coefficient vector does not behave nicely for general rings. In the special case when R = Z[x]/(xn + 1)
for n a power of two, the canonical embedding and coefficient embedding are identical (up to scaling and rotation),
so we can largely ignore these issues.
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5.2 Basic properties

Ring-LWE inherits many of LWE’s nice properties. In particular, Ring-LWE is equivalent to the
planted variant of Ring-SIS, and the hardness of Ring-LWE (both search and decision) remains
unchanged if we sample the secret s from the error distribution χ (at the expense of one sample).
One can prove both of these facts in more-or-less the same way that we proved the corresponding
facts for plain LWE, at least for appropriate choices of q.

For example, given ` Ring-LWE samples (a1, b1), . . . , (a`, b`) with bi := ais + ei, we can try to
convert them into `− 1 Ring-LWE samples with the secret sampled from the error distribution as
follows. We assume that one of the ai is invertible in Rq (i.e., there exists an element a−1

i ∈ Rq
such that aia

−1
i = 1, which happens with non-negligible probability, as shown in [LPR13, Claim

2.25]). Then, aja
−1
i bi = ajs + aja

−1
i ei, and aja

−1
i bi − bj = aja

−1
i ei + ej . We can therefore create

the new samples (aja
−1
i , aja

−1
i bi − bj) for all j 6= i, which are `− 1 valid Ring-LWE samples with

secret ei and error ej , as needed.
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5.3 Encryption

Recall that we saw both a secret-key encryption scheme and a public-key encryption scheme from
plain LWE. Both of these schemes have natural analogues in the Ring-LWE world. Just like our
Ring-SIS-based hash function, these schemes are remarkably efficient.

The secret-key encryption scheme is as follows. Both this scheme and the public-key scheme
naturally use R{0,1} as their message space, i.e., polynomials with {0, 1} coefficients. (Compare this
to the one-bit message space that we obtained for LWE.)

• Key generation: The secret key is simply a uniformly random element s ∈ Rq.

• Encryption: To encrypt m ∈ R{0,1}, compute (a, b) for b := a · s + e + bq/2e ·m mod qR,
where a ∈ Rq is chosen uniformly at random and e ∼ χ.

• Decryption: To decrypt (a, b), compute b−a·s mod qR = bq/2e·m+e mod qR. Round each
coefficient to either q/2 or zero, whichever is closest (where we assume that our representation
modulo qR uses coefficients in [q]), and interpret 0 as 0 and q/2 as 1.

Clearly, this scheme is correct if and only if the coefficients of e are smaller than roughly q/4.
Furthermore, the CPA-security of the scheme is immediate from Ring-LWE. And, this scheme is
quite efficient:

• secret keys have size n log q;

• encrypting n-bit messages using roughly n log q-bit ciphertexts; and

• encryption and decryption run in time n · polylog(n, q).

As far as we know, this scheme is 2Ω(n) secure for appropriate parameters, so that we may take n
only linear in the security parameter.
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As a parenthetical remark, we can achieve such short ciphertexts from LWE as well (as shown
by Peikert, Vaikuntanathan and Waters.) with the following properties:

• secret keys have size n2log q;

• encrypting n-bit messages using roughly n log q-bit ciphertexts; and

• encryption and decryption run in time n2 ·polylog(n, q).
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The public-key encryption scheme is as follows.

• Key generation: The secret key is a short secret s ∼ χ. The public key is (â, y) for â ∈ Rq
uniformly random and y := â · s+ e mod qR, where e ∼ χ.

• Encryption: To encrypt m ∈ R{0,1}, compute (a, b), where a := âr + x mod q and b :=
yr + x′ + bq/2em mod q for r, x, x′ ∼ χ.

• Decryption: To decrypt (a, b), compute b − a · s mod qR = bq/2em + er + x′ − xs mod q
and again do our rounding procedure to find m.

Clearly, this scheme is correct if and only if er + x′ − xs is less than q/4. (So, we can take our
error to have size roughly

√
q/2.) Security follows from a proof similar to the one for plain LWE in

our first lecture. I.e., we use the hardness of decisional Ring-LWE with short secrets once to show
that the public key can be replaced by uniformly random ring elements and then again to show
that the element b in the ciphertext can also be replaced by a uniformly random ring element.

Again, we note the remarkable efficiency of this scheme. As far as we know, it is 2Ω(n) secure
and all operations are computable in time n · polylog(n, q). Taking q = poly(n) gives a public-
key encryption scheme with key generation, encryption, and decryption all computable in time
quasilinear in the security parameter. And, Lyubashevsky, Peikert, and Regev proved that breaking
this scheme is at least as hard as a certain worst-case ideal lattice problem [LPR10]—even an ideal
lattice problem that is plausibly 2Ω(n) hard.
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5.4 Reduction modulo ideals and Chinese Remainder Theorem

Recall that for an element r ∈ R in some ring R (e.g., R = Z), we define equivalence of s1, s2 ∈ R
modulo r by s1 = s2 mod r if and only if there exists an r′ ∈ R with s1 = s2 + r′r. Equivalently,
s1 = s2 mod r if and only if there exists an ideal element y ∈ rR := {r′ · r : r′ ∈ R} in the
ideal rR generated by r such that s1 = s2 + y. This is an equivalence relation because the ideal
is closed under addition, which also implies that it respects addition. It respects multiplication
because the ideal is closed under multiplication by any ring element. I.e., if s1 = s2 + y for y ∈ rR,
then xs1 = xs2 + xy, which implies that xs1 = xs2 mod r, since xy ∈ rR also.

This immediately shows that we can also reduce modulo an arbitrary ideal I, not just an ideal
generated by a single element. I.e., we define s1 = s2 mod I if and only if there exists y ∈ I such
that s1 = s2 + y. (This is a big part of the reason why ideals are such important objects in the
study of rings, as opposed to, say, subrings.) Just like before, addition and multiplication are well
defined modulo I, and we write R/I for the ring of equivalence classes modulo I.6

6In fact, we have already been sneakily using this notation, writing mod qR, rather than mod q.
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We will need something slightly more general. For an ideal J ⊆ I (e.g, J = qI), we can again
define the quotient I/J . This quotient is also a ring, and we can define multiplication by x in I/J
in the obvious way.

We can now present the Chinese Remainder Theorem over R. (A far more general theorem
holds here over a very large class of rings.) We say that two ideals I and J are coprime if there
exists y ∈ I, z ∈ J such that y + z = 1.

Theorem 7 (Chinese Remainder Theorem for R). For any pairwise coprime ideals I1, . . . , Ik ⊆ R
over R, let I :=

⋂
Ij. Then, R/I is isomorphic (as a ring) to the direct product

R

I1
× R

I2
× · · · × R

Ik
.

Indeed, an isomorphism is given by the natural map

r 7→ (r mod I1, r mod I2, . . . , r mod Ik) ,

and it can be efficiently inverted.
Furthermore, in the special case when I = qR for a prime q, we may take the Ij to be the ideal

generated by q and the jth irreducible factor of xn + 1 modulo q. Then, the quotients R/Ij are
actually fields of characteristic q.

In particular, turning back to the question of invertibility of ai from Section 5.2, we see that at
least for prime q, a ∈ Rq is invertible unless a = 0 mod Ij for some j (since the quotients are fields
and therefore do not have zero divisors). Since the quotient has size at least q, this happens with
probability at most 1/q. Because of the product structure guaranteed by the Chinese Remainder
Theorem, we then see that a is invertible with probability at least (1− 1/q)n.
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6 Search to decision

We will prove the following search-to-decision reduction for Ring-LWE, which was originally proven
by Lyubashevsky, Peikert, and Regev [LPR10]. We say that a polynomial splits mod q if it is the
product of distinct linear factors modulo q. We say that an error distribution χ over R is spherically
symmetric if the probability of sampling a ring element from χ depends only on its norm.

Theorem 8. For a prime q ≥ 2, integer ` ≥ 2, power of two n such that xn + 1 splits mod q, and
spherically symmetric error distribution χ, there is a reduction from search Ring-LWE to decision
Ring-LWE that runs in time q · poly(n, `)

Many new issues arise in the ring setting. Therefore, the proof is quite a bit more difficult than
the relatively easy proof for plain LWE. Indeed, lurking behind this reduction is quite a bit of Galois
theory. (We refer the reader to [LPR10] for a much more thorough discussion.) Furthermore, the
result is not entirely satisfying for at least two reasons.

First, the running time proportional to q is unfortunate, since our worst-case to average-case
reduction will only work for exponentially large moduli q. Recall that we had this issue in the
plain LWE case as well, but there we saw that modulus-switching techniques can be used to reduce
exponential q to polynomial q (with a large loss in parameters) [BLP+13]. However, nothing similar
is known in the Ring-LWE setting. Indeed, the only hardness results known for Ring-LWE with
small q use a quantum reduction [LPR10, PRS17], which we will not present here.

Second, the fact that our polynomial xn + 1 splits mod q is a bit worrisome, since we saw an
attack on Ring-SIS when the polynomial modulus has a high-degree factor with small coefficients
over the integers. That attack does extend to Ring-LWE, but as far as we know, there is no attack
that exploits a modulus q over which xn+1 factors. Indeed, the worst-case to average-case reduction
in [LPR10] shows that, if Ideal-SVP with appropriate parameters is hard for a quantum computer,
then Ring-LWE is also hard for any sufficiently large modulus q, regardless of whether xn+ 1 splits
modulo q.
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6.1 Where we’re going

Recall that our search-to-decision reduction for plain LWE worked by guessing the coordinates of
the secret vector s ∈ Znq one by one. One might therefore hope to find a similar reduction for
Ring-LWE that works by guessing the coefficients of the secret ring element s ∈ Rq one by one.
However, it is not at all clear how to do this. In the plain LWE case, we crucially used the fact
that knowing a coordinate of s allows us to compute 〈a, s〉 mod q for some a ∈ Znq . (Namely,
the standard basis vector corresponding to the relevant coordinate.) However, knowing just one
coefficient of s (or even n− 1 coefficients of s) does not allow us to compute a · s mod qR for any
non-zero a ∈ Rq.

27



We will need to develop a few tools in the next few subsections to correct this. The high-
level structure is as follows. First, we show how to use a different coordinate system, based on the
Chinese Remainder Theorem, to make multiplication coordinate-wise. This is nice because it allows
us to guess a coordinate in a meaningful way. However, when we guess wrong, we will not end up
with uniformly random samples. Instead, we will get Ring-LWE samples that are uniform in just
one coordinate, and it is not immediately clear how to use a decision oracle to distinguish these
two cases. In order to get around this, we will show the existence of very special functions that
essentially allow us to “swap” coordinates. Finally, we will use a hybrid argument together with
these tools to prove that hardness of search Ring-LWE implies hardness of decision Ring-LWE.
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6.2 The CRT embedding (which is very different from the coefficient embed-
ding!)

Our first task is to find a coordinate system in which multiplication is coordinate-wise. E.g., in these
coordinates, the product of (s1, s2, . . . , sn) with (1, 0, 0, . . . , 0) should simply be (s1, 0, 0, . . . , 0).
Indeed, since xn+1 splits modulo q, the Chinese Remainder Theorem tells us that Rq is isomorphic
as a ring to the ring Znq under coordinate-wise multiplication. So, we can in fact write ring elements
a, s ∈ Rq in a coordinate system such that a · s = (a1s1, · · · ansn). We call this the CRT embedding,
in contrast to the coefficient embedding in which we view the ring elements as polynomials. We
recall that the Chinese Remainder Theorem guarantees that we can move efficiently between these
two embeddings. (Indeed, this is accomplished via an invertible linear map over the field Zq.)
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It might seem a bit silly to have gone through all of the trouble of defining Ring-LWE over
polynomial rings just to end up working with Znq under coordinate-wise multiplication! But, we
stress that the error distribution looks quite different in the CRT embedding. (If we used as an
error distribution that is short in the CRT embedding, the resulting Ring-LWE problem would be
easy.)

To see this, let’s consider the smallest non-trivial example. The polynomial x2 +1 splits modulo
13 as x2 + 1 = (x+ 5)(x− 5) mod 13, so an element ax+ b ∈ Z13/(x

2 + 1) has CRT representation
(5a+ b, b− 5a) ∈ Z2

13. (Check this!) Therefore, if our initial error distribution is, say, uniform over
polynomials with a, b ∈ {−1, 0, 1}, then in the CRT embedding, our error distribution is uniform
over the rather strange set {(0, 0),±(5,−5),±(1, 1),±(6,−4),±(6,−4)}, which in particular con-
tains quite long elements, relative to q = 13. I.e., the mapping from the coefficient embedding to
the CRT embedding is a linear transformation with large distortion (to the extent that one can
define “distortion” over a finite vector space).

So, while we can equivalently define Ring-LWE in terms of Znq (when xn + 1 splits modulo q),
we would end up with a much less natural error distributions. In particular, the error distributions
obtained from our worst-case to average-case reduction would be rather strange and depend on q
in complicated ways.
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6.3 When and how xn + 1 splits modulo q

We now consider when xn + 1 splits modulo q and show that the factors take a nice form. Notice
that xn+1 is the minimal polynomial over Z of the (complex) primitive 2nth roots of unity ekπi/(2n)

for odd k. I.e., xn+1 splits over C precisely because C contains such elements. In analogy with this,
suppose that z ∈ Z∗q is a primitive 2nth root of unity modulo q. That is, suppose z2n = 1 mod q but

zk 6= 1 mod q for all 0 < k < 2n. Then, clearly zn 6= 1 mod q is a square root of 1 in Zq. Since Zq is
a field, the only square roots of 1 are ±1, so we must have zn = −1 mod q. I.e., zn + 1 = 0 mod q.

Furthermore, for any odd k, zkn is also a primitive 2nth root of unity. So, z, z3, z5, . . . , z2n−1 ∈
Znq are all roots of xn + 1 modulo q. Indeed, they are distinct because zk 6= 1 for 0 < k < 2n.
Finally, since Zq is a field, there is only one non-zero polynomial over Zq of degree n with these
roots, and we must have xn + 1 = (x− z)(x− z3)(x− z5) · · · (x− z2n−1) mod q. I.e., xn + 1 splits
modulo q.

So, xn + 1 splits modulo a prime q if (and only if) there is an element of order 2n in Z∗q (i.e., a
primitive 2nth root of unity modulo q). To find such a prime, we recall that Z∗q is cyclic of order
q − 1, so that it has an element of order 2n if and only if 2n divides q − 1. Therefore, xn + 1
splits modulo a prime q if (and only if) q = 1 mod 2n. The Prime Number Theorem in arithmetic
progressions guarantees that such primes exist and can be found efficiently. And, when this is the
case, the factors of xn + 1 modulo q can be written as x− zk for all odd 1 ≤ k ≤ 2n− 1.
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6.4 Some very special automorphisms τk

The above discussion shows a very natural way to think of the coordinates CRT embedding. Each
coordinate in the CRT embedding of a polynomial p(x) is simply p(x) mod Ii = p(z2i−1) mod Ii
for some i ∈ [n], where z is some fixed primitive 2nth root of unity modulo q and Ii is the ideal
generated by q and x−z2i−1. It is therefore natural to order the coordinates in the CRT embedding
so that the ith coordinate is p(z2i−1). We then observe a nice symmetry of the CRT embedding. Let
k := (2i− 1)−1(2j − 1) mod 2n (where we have used the fact that all odd numbers have an inverse
modulo 2n). Then, we see that the ith CRT coordinate of p(x) ∈ Rq is the jth CRT coordinate of
p(xk).

So, we define τk : Rq → Rq for odd k such that τk(p(x)) := p(xk). We see that τk can be
viewed as a certain permutation of the coordinates in the CRT embedding. It is therefore a ring
automorphism (i.e., it is a bijection respecting addition and multiplication). In fact, it also preserves
norms in the coefficient embedding! I.e., ‖τk(p(x))‖ = ‖p(xk)‖ = ‖p(x)‖, which can be seen by
observing that τk simply permutes the coordinates of p(x) (and flips some of their signs). Such
maps are very rare,7 and very useful. The next lemma extracts the specific property that we will
need from them.

Lemma 9. The maps τk : Rq → Rq as described above are efficiently computable ring auto-
morphisms preserving the norm (in the coefficient embedding). Furthermore, τk acts on the CRT
embedding by permuting the coordinates, and for each i, j ∈ [n], there is an efficiently computable
k such that τk maps the ith CRT coordinate to the jth CRT coordinate.

7As we’ve described these maps here, they only exist for our specific choice of Rq! They can, however, be
generalized to more rings if we work in the canonical embedding rather than the coefficient embedding [LPR10].
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6.5 The reduction

We can now finally present our reduction. As we discussed above, we can guess the coordinate s1

and replace the Ring-LWE sample (ai, bi) by

(ai + αiv1 mod qR, b+ αiσ1v1 mod qR)

where v1 = (1, 0, 0, . . . , 0)T in the CRT embedding, σ1 ∈ Zq is our guess for the first coordinate s1 of
s in the CRT embedding, and αi ∈ Zq is uniformly random. Clearly, when our guess σ1 is correct,
the result is still a valid Ring-LWE sample with the same secret s, and the same error. However,
when σ1 is not correct, the result is not uniformly random. Instead, the first coordinate in the CRT
embedding is uniformly random, but the remaining coordinates are completely unchanged.

To fix this, we use a hybrid argument together with the special maps τk. In particular, we let
Ring-LWEj be the variant of decision Ring-LWE that asks us to distinguish Ring-LWE samples in
which the first j − 1 coordinates in the CRT embedding are replaced by uniformly random noise
from Ring-LWE samples in which the first j CRT coordinates are replaced by uniformly random
noise. To show the hardness of decision Ring-LWE, it suffices to show the hardness of Ring-LWEj
for each j.
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Notice that the above argument lets us use an oracle for Ring-LWE1 to learn the first coordinate
s1 in the CRT embedding of the secret s of a Ring-LWE instance. More generally, we can use an
oracle for Ring-LWEj to find the jth coordinate sj . So, to finish our proof, we need to show how
the ability to find the jth coordinate sj in the CRT embedding allows us to find all coordinates si.
This is where we use the maps τk. In particular, Lemma 9 lets us find a k such that τk maps the
ith coordinate to the jth coordinate in the CRT embedding. Since τk is a ring automorphism, it
converts Ring-LWE samples with secret s to Ring-LWE samples with secret τk(s). Furthermore,
since τk preserves the norm and the error distribution χ is spherically symmetric, τk preserves the
error distribution.
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So, our full reduction from search Ring-LWE to Ring-LWEj behaves as follows. (We will denote
ring elements by bold-face.) For each i = 1, . . . , n, we use our Ring-LWEj oracle to find the ith
coordinate si of s in the CRT embedding by first computing k = (2i − 1)−1(2j − 1) mod 2n such
that τk maps the ith CRT coordinate to the jth CRT coordinate, as in Lemma 9.

Let vj ∈ Rq be the element whose coordinates in the CRT embedding are (0, 0, . . . , 1, 0, . . . , 0),
where the 1 is in the jth position. For each σ ∈ Zq, we replace our Ring-LWE samples (a`, b`) by

(τk(a`) + α`vj , τk(b`) + σα`vj + u`)

where α` ∈ Zq is uniformly random, and u` ∈ Rq has its first j − 1 coordinates uniformly random
in the CRT embedding and last n − j + 1 coordinates equal to zero. If σ = si, then the resulting
distribution

(τk(a`) + α`vj , τk(a`)τk(s`) + α`σvj + τk(e`) + u`)

will be exactly the YES case of Ring-LWEj with secret τk(s)—i.e., the first j − 1 coordinates
will be uniformly random and the last n − j + 1 coordinates will correspond to valid Ring-LWE
samples. Otherwise, the distribution will be exactly the NO case—i.e., the jth coordinate will also
be uniformly random.
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7 NTRU

Finally, we mention a different elegant way to build public-key encryption using polynomial rings,
such as Rq, the NTRU encryption scheme, due to Hoffstein, Pipher, and Silverman [HPS98]. His-
torically, NTRU predates LWE by nearly a decade and Ring-LWE by about 15 years. As far as
we know, it is more-or-less as secure as Ring-LWE-based schemes for most reasonable parameter
settings. However, unlike Ring-LWE-based schemes, NTRU comes with no worst-case hardness
guarantee. We present it here because (1) it is pretty; (2)one of the relatively few concrete as-
sumptions known to imply public-key cryptography; and (3) people who work in lattice-based
cryptography should know what NTRU is.
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As before, we work over R := Z[x]/(xn + 1) for power-of-two n with Rq := R/(qR) for some
modulus q = poly(n). A “typical” element in R is invertible modulo 3R (i.e., the polynomial xn+1
does not have low-degree factors modulo 3),8 and we may, e.g., take q to be prime to guarantee
the same modulo qR. (NTRU can be defined over any polynomial ring, and it is often actually
defined over Z[x]/(xn − 1). This causes some annoying issues related to those that we observed
in the context of Ring-SIS. They can be overcome, but we ignore this issue by using our preferred
ring.)

• Key generation: Sample two short polynomials g, f ∈ R. E.g., sample them uniformly at
random from R{0,1}. If f is not invertible modulo both qR and 3R, we resample it. Otherwise,

we denote these respective inverses by f−1
q and f−1

3 . The public key is h := gf−1
q mod qR,

and the private key is f, g.

• Encryption: Let m ∈ R{−1,0,1} be some ternary message. The encryption algorithm com-
putes the ciphertext c := hr + 3e + m mod qR, where r and e are some random short poly-
nomials.

• Decryption: Given a ciphertext c, we compute fc = 3(fe + rg) + fm mod qR. As long as
q is sufficiently large, this element 3(fe+ rg) + fm should have small coefficients relative to
q. I.e., by choosing our representative of 3(fe+ rg) + fm mod qR to have coefficients in the
interval (−q/2, q/2], we can actually recover 3(fe + rg) + fm ∈ R, not just its coset in Rq.
This allows us to reduce the result modulo 3R to recover fm. Finally, we multiply by f−1

3 to
find m, which is uniquely determined by its coset modulo 3R.

8It’s factorization into irreducible polynomials is xn + 1 = (xn/2 + xn/4 − 1)(xn/2 − xn/4 − 1) modulo 3. The fact
that these polynomials are irreducible is equivalent to saying that a finite field of characteristic 3 contains a primitive
2nth root of unity if and only if it has size 3m for m divisible by n/2, i.e., that 2n divides 3m − 1 if and only if n/2
divides m (since the multiplicative group of a finite field is cyclic). I was frustrated by my inability to find a nice
enough proof of this, so I asked on Math StackExchange and got some very nice answers [Nic]—three very nice proof
as of the last time I checked, as well as my own rather clunky proof.
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The security of NTRU is typically proven under the assumption that the public key h is indistin-
guishable from random. However, there is no known reduction from a more standard computational
problem to the problem of distinguishing h from random. For most choices of parameters, however,
our best attack on NTRU is a lattice attack that searches for a short vector in the so-called NTRU
lattice, spanned by the basis (

In 0
Rot(h) qIn ,

)
∈ Z2n×2n

where

Rot


h1

h2
...
hn

 :=


h1 −hn −hn−1 · · · −h2

h2 h1 −hn · · · −h3
...

...
...

. . .
...

hn−1 hn−2 hn−3 · · · −hn
hn hn−1 hn−2 · · · h1

 ,

as in the previous lecture, and h is the coefficient vector of the public key h. Notice that the NTRU
lattice contains the short vector (f , g) ∈ Z2n corresponding to the secret key. Indeed, any short
enough vector in this lattice can be used to break the NTRU encryption scheme.
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