
The Learning with Errors Problem: Algorithms

1 An algebraic Algorithm: Arora-Ge

This is an attack due to Arora and Ge. The basic idea is to view an LWE sample (a, b := aT s + e)
where e ∈ S ⊆ Zq as a polynomial equation

fa,b(s) =
∏
x∈S

(b− aT s− x) mod q

where b, a are known and s is treated as the unknown variable (denoted by the underline). Clearly,
if (a, b) is an LWE sample, then fa,b(s) = 0 mod q, else it isn’t. Solving the system of polynomial
equations {

fai,bi(s) = 0 mod q
}m
i=1

of degree |S| will give us the LWE secret.
This is all good except that solving systems of polynomial equations (even degree-2 equations)

is NP-hard. Arora and Ge’s observation is that if there are sufficiently many equations, one can
linearize them and that the solution to the resulting linear system will give us the solution to the
polynomial system w.h.p.

To see how to do this, note that the degree of the polynomials is |S| (that is, the domain

in which the error terms live) and the number of monomials is thus
(n+|S|
|S|
)
. Linearization is

the basic transformation where one substitutes each monomial by a new variable. Furthermore, if
m�

(n+|S|
|S|
)
, we have more equations than variables. To begin with, any solution to the polynomial

system will be a solution to the linearized system; therefore, s is a solution. When m is large enough,
we can also show that s is the unique solution.

Simplified Proof Intuition. For simplicity, think of S as {0, 1} and think of n = 1.
Take each sample (a, b = a · s + e) where e ∈ {0, 1} and a, s ∈ Zq. This gives us a polynomial

equation
(b+ a · u) · (b+ a · u− 1) = 0 mod q

Writing it out explicitly, we get

b(b− 1) + (2b− 1)a · u+ a2 · u2 = 0 mod q

Linearizing this involves replacing u and u2 by independent variables u1 and u2 giving us

p(a) = b(b− 1) + (2b− 1)a · u1 + a2 · u2 = 0 mod q (1)

It is tempting to argue that there are no (u1, u2) that satisfy this equation w.h.p. over a ← Zq.
Indeed, suppose, there were a solution (u1, u2). Then, viewing this as a degree-2 equation over the
variable a, we see that the probability that p(a) = 0 is at most 2/q by an invocation of Cauchy-
Schwartz. However, that would be a mistake since a is not chosen independently of the coefficents
of p. Indeed, u1 = s and u2 = s2 is a solution to this equation.

Instead, we proceed as follows. Substitute b = as+ e in equation 1. We get

p′(a) = e(e− 1) + (2e− 1)(s+ u1) · a+ (u2 + 2su1 + s2) · a2
= (2e− 1)(s+ u1) · a+ (u2 + 2su1 + s2) · a2 = 0 mod q
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since e(e − 1) is 0 by definition. (This, by the way, is easily seen to be a linearization of the
polynomial (e+ a · (s+ u)) · (e− 1 + a · (s+ u)).)

Now, we can think of this as a polynomial in a with coefficients chosen independent of a, for
any fixed u1, u2. We argue that there are no solutions with u1 6= −s. Fix a (u1, u2) where u1 6= −s.
Then, p′(a) is a non-zero polynomial in a which is 0 w.p. at most 2/q over the choice of a. A
Chernoff and union bound now finish off the job for us.

For the full proof, see the paper of Arora and Ge.

When χ is the discrete Gaussian distribution. Let’s now see what this does to LWE(n,m, q, χ)
where χ is a Gaussian with standard deviation s. The probability that the error parameter is less
than k · s is e−O(k2).

• We get a reasonable chance that all equations have error bounded by k · s if m · e−O(k2) � 1.

• On the other hand, we need m >
(
n
k·s
)

for linearization to work.

Put together, we get an attack when m ∼ nÕ(s2). This is non-trivial when s = Õ(
√
n) which, by

some (not so?) strange coincidence, defines the boundary of when the worst-case to average-case
reductions (i.e., security proofs) for LWE stop working (as we will see in later lectures).

Open Problem 2.1. In the case of binary LWE (that is, LWE with 0-1 errors), Arora-Ge needs
m = Ω(n2) LWE samples. Come up with a more sample-efficient attack or prove that doing so is
hard. A concrete way to demonstrate the latter would be to show that solving binary error LWE
with o(m2) samples is as hard as solving the lattice (approximate) shortest vector problem.

2 A Combinatorial Algorithm: Blum-Kalai-Wasserman

This is an attack originally due to Blum, Kalai and Wasserman. A similar version was later
discovered by Wagner.

The basic idea is to find small-weight linear combinations xi,j of the columns of A that sums
up to a fixed vector, say the unit vectors ui, that is Axi,j = ui mod q. Once we find such vectors,
we compute

bTxi,j = (sTA + eT )xi,j = si + eTxi,j mod q

which, with many copies and averaging, gives us si as long as |eTxi,j | � q. Iterating for all i ∈ [n]
gives us s.

In another variant, we find small-norm xi,j such that Axi,j = 2jei mod q. Upon multiplying
with b as before, we get

bTxi,j = (sTA + eT )xi,j = si2
j + eTxi,j mod q

As long as |eTxi,j | � q, this allows us to “decode” si with many fewer copies, essentially O(log q) of
them, using the following decoding algorithm: use si2

blog(q/2)e+ eTxi,j to learn the least significant
bit of si; this is possible as long as the additive error is sufficiently small; subtract the l.s.b., divide
by 2, and repeat.
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Back to BKW: The idea of the algorithm is to split the n rows of A into α groups of size β := n/α
each.

• For each column ai of A we put it into one of qβ buckets depending on what ai[1 . . . β] is.

• Notice that the difference of any two vectors, one in bucket labeled w ∈ Zβq and the other in

bucket labeled w − v ∈ Zβq , starts with v in the first β positions.

• This gives us many vectors whose first β locations match the target vector. The goal of
the rest of the algorithm is to continue along this way while generating vectors whose β · i
locations match the target, for i ∈ [1 . . . α].

The result is a linear combination with Hamming weight 2α of the columns of A which sum to
any given target vector. The process needs qβ vectors to begin with, by a balls-and-bins argument.
Assuming the error magnitude is B, we need 2α ·B � q for correctness. That is,

α� log(q/B)

This means the sample and time complexity is roughly

qβ � qn/ log(q/B)

When, say, B = n and q = n2, this gives us a 2O(n)-time algorithm (as opposed to the Bn = nO(n)

that comes out of enumeration).
We remark that a more refined analysis is possible, using the fact that the linear combination

of the columns of A can have entries larger than 1; and that the linear combination does not
necessarily need to add up to 0, but only approximately so; and that the sample complexity can
be lowered by generating new LWE samples out of old ones, at the expense of noise growth. Some
of these ideas are analyzed in Albrecht et al., Kirchner-Fouque and Lyubashevsky.

Although remarkably simple, the BKW idea has found other applications, such as in Kuper-
berg’s sub-exponential time quantum algorithm for the dihedral hidden subgroup problem (Kuper-
berg) which we will see in later lectures and which, in turn, has connections to LWE.

3 A Geometric (Suite of) Algorithm(s): Lattice Reduction

This is an attack that follows using the LLL algorithm and (building on LLL) the BKZ algorithm
that find approximately short vectors in integer lattices.

We will here use facts about integer lattices; we refer the reader to Regev’s lecture notes for
background on lattices and lattice algorithms.

The attacks use the fact that LWE is, at its core, a problem of finding short vectors in integer
lattices. Consider the m-dimensional lattices

L := {sTA : s ∈ Znq } ⊕ Znq

and
Ly := {sTA : s ∈ Znq } ⊕ Znq ⊕ {0,y}

where ⊕ denotes the Minkowski sum of sets and (A,y = sTA+eT ) is the presumed LWE instance.
Lets look at the case where χ is a B-bounded distribution. We argue that:
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Algorithm (Some) Broken Parameter settings

Arora-Ge m = Ω(nB) samples+time where |Supp(χ)| ≤ B < q

Blum-Kalai-Wasserman m > qn/ log(q/B) samples+time

Lattice Reduction m = poly(n, log q) and q/B = Ω(2n)
and poly(n, log q) time

Figure 1: Summary of asymptotic parameter settings where attacks against LWE work.

• Ly has a short vector, in fact a vector of `2 norm Õ(B) (where Õ hides poly(m) factors) since
e ∈ Ly.

• L does not have any short vectors. The shortest vector of L has `2-norm at least q(m−n)/m =
q ·q−n/m by a probabilistic argument. This also tells us that the second (linearly independent)
shortest vector in Ly has length q · q−n/m.

The LLL algorithm finds a vector of length at most Õ(2m/ logm · B) in polynomial time. As
long as this is smaller than q · q−n/m, LLL will find e. That is, if q/B � qn/m · 2m/ logm, LLL/BKZ
is bad news for us. Optimizing for m, we get m ∼

√
n log q and thus, the attack succeeds if

q/B � 2
√
n log q. Setting B to be poly(m), we get that the attack works if q � 2n.

For more background on lattices, see lecture notes for Lectures 1–4 in Fall 2015 class on lattices.
We will review some of this background in later lectures.
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