
CS 294. Worst-case to Average-case Reduction for SIS and LWE

In this lecture, we will see a few basic theorems on lattices and a property called smoothing.
We will then use smoothing as a tool to come up with worst-case to average-case reductions for
SIS and LWE. In a nutshell, the worst-case to average-case reductions show how to transform any
algorithm that solves SIS/LWE on the average into an algorithm that solves “approximate short
vector problems” on lattices in the worst case.

1 Lattices and Minkowski’s Theorem

We define the lattice L(B) and its fundamental parallelepiped as follows:

L(B) = BZn and P(B) = B[0, 1)n

As additive groups, P(B) = Rn/L(B). (Think of the one-dimensional analogy: the torus [0, 1) =
R/Z.)

We define the determinant of the lattice as the volume of the fundamental paralellepiped. While
the parallelepiped is itself defined by a basis and is basis-dependent, its volume is a lattice-invariant.
Analytically, the determinant det(L) of full-rank lattices can be computed as the determinant of
the basis matrix B.

We define λ1(L) to be the length of the shortest non-zero vector of the lattice. Alternatively,
and apparently somewhat more convolutedly,

λ1(L) = inf
r∈R

dim(Span(L ∩ B(0, r))) ≥ 1

where B(0, r) denotes the ball of radius r centered at 0. In words, the smallest r such that the
space generated by lattice vectors of length at most r has dimension at least 1. This naturally leads
us to the definition of the i-th minimum λi(L):

λi(L) = inf
r∈R

dim(Span(L ∩ B(0, r))) ≥ i

Our intuition tells us that as the determinant of the lattice gets smaller, the lattice gets denser,
and therefore has shorter vectors. Minkowski’s theorems formalize this intuition.

Lemma 1 (Minkowski). For any rank-n lattice L, we have

• λ1(L) ≤
√
n · det(L)1/n; and even stronger,

• det(L) ≤
∏n
i=1 λi(L) ≤ nn/2 · det(L).

Computational Problems. The γ-approximate shortest vector problem (SVP) is to find a non-
zero vector v ∈ L(B) given a basis B such that ||v|| ≤ γ · λ1(L). The γ-approximate shortest
independent vectors problem (SIVP) is to find n linearly indepedent vectors v1, . . . ,vn such that
||vi|| ≤ γ · λn(L).
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2 Lattice Smoothing

2.1 Lattice Duality

For a rank-n lattice L, its dual denoted L∗ is defined as

L∗ = {x ∈ Rn : ∀y ∈ L, 〈x,y〉 ∈ Z}

Indeed, each dual lattice vector x corresponds to a linear function φx : L → Z and the dual lattice
corresponds to a basis of the space of such linear functions.

Let us start with examples and some properties.

• In one dimension, the only possible lattices are kZ. Its dual is (1/k) · Z.

• The dual of Zn is Zn itself.

• If L = L(B) for a basis matrix B ∈ Rn×n, then L∗ is generated by the columns of B−T ,
its transposed inverse. Indeed, the pairwise inner products of the basis vectors and the dual
basis vectors is captured in the matrix B · (B−T )T = I.

The determinant of the dual lattice is immediately seen to be the inverse of the determinant of
the lattice. In an intuitive sense, as the lattice gets sparser (the determinant gets larger), the dual
lattice gets denser (its determinant gets smaller). This leads us to the following lemma.

Lemma 2. For any rank-n lattice L, λ1(L∗) · λ1(L) ≤ n.

Proof. We know from Minkowski that

λ1(L) ≤
√
n(det(L))1/n and λ1(L∗) ≤

√
n(det(L∗))1/n

Multiplying the two, we get
λ1(L) · λ1(L∗) ≤ n

as desired.

In fact, using far more advanced tools, we can show something stronger, namely that λ1(L∗) ·
λn(L) ≤ n. The following lemma goes in the other direction, has an elementary proof, and we will
find it useful later on.

Lemma 3. For any rank-n lattice L, λn(L∗) · λ1(L) ≥ 1.

Proof. Let x ∈ L be the shortest non-zero vector. Let v1, . . . ,vn ∈ L∗ be linearly independent. At
least one of the vi has a non-zero inner product with x, say 〈vi,x〉 > 0. Since the inner products
of lattice vectors and dual vectors are integers, 〈vi,x〉 ≥ 1. Therefore,

λ1(L) = ||x|| ≥ 1/||vi|| ≥ 1/λn(L∗) .
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2.2 Gaussians

The Gaussian function over R with (zero mean and) parameter s is defined as

ρs(x) = e−πx
2/s2

We note that ∫ ∞
−∞

ρs(x)dx =

∫ ∞
−∞

e−πx
2/s2dx =

s√
π

∫ ∞
−∞

e−z
2
dz = s

where the second equality is by a change of variables and the third by using value of the Gaussian
integral (=

√
π). This fact can be used to turn the Gaussian function into a probability distribution

over the reals by scaling ρs by 1/s.
Something very similar can be done in n dimensions. That is, the n-dimensional Gaussian

function over Rn is defined as
ρs(x) = e−π||x||

2/s2

This can again be turned into a probability distribution after scaling by 1/sn.

2.3 Basic Fourier Analysis

We call a function f : Rn → C “nice” if it is absolutely integrable, that is,
∫
Rn |f(x)|dx <∞.

Definition 4 (Fourier Transform). For a nice function f : Rn → C, we define its Fourier transform
f̂ : Rn → C as

f̂(y) =

∫
Rn

f(x)e−2πi〈x,y〉dx

If f, f̂ are nice and f is continuous, we can recover a function from its Fourier transform using
the inverse formula:

f(x) =

∫
Rn

f(y)e2πi〈x,y〉dx

Lemma 5 (Fourier Transform of the Gaussian function). Let ρ̂s denote the Fourier transform of
the Gaussian function ρs. Then,

ρ̂s(x) = sn · ρ1/s(x)

Proof. We provide a proof in one dimension.

ρ̂s(y) =

∫
Rn

ρs(x)e−2πi〈x,y〉dx

=

∫
Rn

e−π||x||
2/s2e−2πi〈x,y〉dx

= e−πs
2||y||2

∫
Rn

e−π||(x/s+isy)||
2
dx

The latter integral, on a complex change of variables becomes sn ·
∫
Rn e

−π||z||2dz which is simply
sn. So,

ρ̂s(y) = sne−πs
2||y||2 = sn · ρ1/s(y)
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For periodic functions, we have the closely related notion of Fourier series.

Definition 6 (Fourier Series). We will define Fourier series for periodic functions. For a “nice
enough” function f : Rn → C that is L-periodic, that is, f(x+y) = f(x) for all x ∈ Rn and y ∈ L,
we have its Fourier series f̂ : L∗ → C defined as

f̂(y) =
1

det(L)
·
∫
P(L)

f(x)e−2πi〈x,y〉dx

We will state the Fourier inversion formula below without proof.

Lemma 7 (Fourier Inversion). f(x) =
∑

y∈L∗ f̂(y)e2πi〈x,y〉.

An important fact that connects a function f and its Fourier transform is the Poisson Summation
formula. The proof of this formula goes via the Fourier series.

Lemma 8 (Poisson Summation). Given f : Rn → C, and any full-rank lattice L, we have∑
x∈L

f(x) =
1

det(L)
·
∑
y∈L∗

f̂(y) = det(L∗) ·
∑
y∈L∗

f̂(y)

Proof. Although f is not periodic, the proof of Poisson summation goes through the Fourier series
of a “periodized” f . In particular, consider the function

φ(x) =
∑
z∈L

f(x + z)

Clearly φ is periodic over L, therefore φ̂ is defined over L∗. For any y ∈ L∗, we have

φ̂(y) = det(L∗)
∫
x∈P(L)

φ(x)e−2πi〈x,y〉dx

= det(L∗)
∫
x∈P(L)

(∑
z∈L

f(x + z)

)
e−2πi〈x,y〉dx

= det(L∗)
∑
z∈L

∫
x∈P(L)

f(x + z)e−2πi〈x,y〉dx

= det(L∗)
∑
z∈L

∫
x∈P(L)

f(x + z)e−2πi〈x+z,y〉dx

= det(L∗)
∫
x∈Rn

f(x)e−2πi〈x,y〉dx

= det(L∗)f̂(y)

where the first equality used the definition of the Fourier series for φ, the second used the definition
of φ, the third used the “niceness” of f to switch the integral and summation, the fourth used the
fact that 〈y, z〉 ∈ Z, and the final one used the definition of the Fourier transform of f .

Now use Fourier inversion for φ to show that∑
x∈L

f(x) = φ(0) =
∑
y∈L∗

φ̂(y) = det(L∗)
∑
y∈L∗

f̂(y)
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2.4 Smoothing Lemma and Proof

Let φs denote the distribution obtained by picking a vector from the (continuous) Gaussian distri-
bution defined by ρs and reducing it modulo the parallelepiped P(B). Thus,

φs(x) = 1/sn ·
∑

y∈L(B)

ρs(x + y) := 1/sn · ρs(x + L(B))

Now, since φs is clearly a periodic function over the lattice L(B), we can compute it alternatively
using the Poisson summation formula. For any x ∈ P(B), we have

φs(x) =
∑
y∈L∗

φ̂s(y)e2πi〈x,y〉

= det(L∗) · (1/sn)
∑
y∈L∗

ρ̂s(y)e2πi〈x,y〉

= sn · det(L∗) · (1/sn)
∑
y∈L∗

ρ1/s(y)e2πi〈x,y〉

= det(L∗) ·
(

1 +
∑

y∈L∗\{0}

ρ1/s(y) · e2πi〈y,x〉
)

where the first equality is by the definition of Fourier inversion, the second by the definition of φs
and by the linearity of the Fourier transform, the third by the Fourier transform of the Gaussian
function (Lemma 5), and the final one just by grouping terms together.

We will use this formulation to compute the statistical distance of φs from the uniform distri-
bution over the paralellepiped whose density function is UP(B)(x) = 1/det(L) = det(L∗).

∆(φs, UP(B)) =

∫
P(B)

|φs(x)− UP(B)(x)| dx

= det(L∗)
∫
P(B)

∣∣∣∣ ∑
y∈L∗\{0}

ρ1/s(y) · e2πi〈y,x〉
∣∣∣∣dx

= det(L∗) · det(L) · max
x∈P(B)

∣∣∣∣ ∑
y∈L∗\{0}

ρ1/s(y) · e2πi〈y,x〉
∣∣∣∣

≤
∑

y∈L∗\{0}

ρ1/s(y) := ρ1/s(L∗ \ {0}) (1)

In other words, we established ρ1/s(L∗ \{0}) as the quantity that governs the variation (or statisti-
cal) distance between the continuous Gaussian reduced modulo P(B) and the uniform distribution
over P(B). We will now bound this quantity.

Bounding the Gaussian Weight of Non-Zero (Dual) Lattice Vectors. Let us first try to
build some intuition for why we should expect to bound the Gaussian weight ρ1/s(L∗) by something
close to 1. First of all, the heaviest vector is the zero vector that gets a weight of 1. Secondly,
if λ1(L∗) ' (1/s

√
2π) · ω(

√
log n), then the next heaviest vector has weight e−ω(logn) which is

negligible in n. However, there could be exponentially many vectors of that length which could
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make the collective contribution much larger. We have to balance these two effects: the fact that a
large λ1 results in the Gaussian weight of each individual non-zero lattice vector to be tiny, versus
the fact that there may be exponentially many lattice vectors of a given length.

First, let us come up with a simple upper bound on the number of lattice vectors of a given
length using a packing argument.

Lemma 9. Let L be a rank-n lattice. The number of lattice vectors of length at most r is at most(
1 + 2r

λ1(L)

)n
.

Proof. Draw balls of radius λ1/2 around each lattice point. These balls do not intersect. As long as
the length of each such lattice point is at most r, these balls are all contained in the ball of radius
r + λ1/2 around the origin. By a volume argument, we have

voln(r +
λ1
2

) ≥ Nr · voln(
λ1
2

)

where Nr is the number of lattice vectors of length at most r. Put together, we get

Nr ≤
voln(r + λ1

2 )

voln(λ12 )
=

(
r + λ1

2
λ1
2

)n
=

(
1 +

2r

λ1(L)

)n

We now use this to bound the sum
∑

y∈L ρs(y). The proof is due to Noah Stephens-Davidowitz.

Lemma 10. Let L be a rank-n lattice.
∑

y∈L ρs(y) = 1 + 2−O(n) as long as λ1 > Cs ·
√
n/2πe for

some absolute constant C ≈ 3.

Proof. Using a “Lebesgue integral trick” (mentioned in class), we have∑
y∈L

ρs(y) =

∫ 1

0

∣∣∣∣{y ∈ L : ρs(y) ≥ t}
∣∣∣∣dt

=

∫ 1

0

∣∣∣∣{y ∈ L : e−π||y||
2/s2 ≥ t}

∣∣∣∣dt
Now, we do a change of variables t = e−πr

2/s2 , we get:

=
2π

s2

∫ ∞
0

∣∣∣∣{y ∈ L : ||y|| ≤ r}
∣∣∣∣re−πr2/s2dr

≤ 2π

s2
· (
∫ λ1

0
+

∫ ∞
λ1

)

∣∣∣∣{y ∈ L : ||y|| ≤ r}
∣∣∣∣re−πr2/s2dr

≤ (1− e−πλ21/s2) +
2π

s2

∫ ∞
λ1

∣∣∣∣{y ∈ L : ||y|| ≤ r}
∣∣∣∣re−πr2/s2dr

≤ 1 +
2π

s2

∫ ∞
λ1

(
3r

λ1

)n
re−πr

2/s2dr

≤ 1 +
2πCn

s2λn1

∫ ∞
λ1

rn+1e−πr
2/s2dr
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where C = 3. After another change of variables (w = πr2/s2), we can bound this by

1 +

(
sC

λ1
√
π

)n
Γ(n/2)

where Γ(·) is the gamma function. Applying the bound on gamma functions, we get

1 +

(
sC

λ1

√
n

2πe

)n
As long as λ1 > Cs ·

√
n/2πe, we get a sum that is exponentially close to 1.

Finally, applying this to our scenario, where the lattice is L∗ and the function is ρ1/s, we get
that the sum

∑
y∈L∗ ρ1/s(y) is exponentially close to 1 as long as

s ≥ λn(L) · C ·
√

n

2πe

Indeed, if s is so large, we have λ1(L∗) ≥ 1/λn(L) ≥ C
s ·
√

n
2πe where the first inequality is by

Lemma 3.

3 Worst-case to Average-case Reduction for SIS

The reduction is due to Ajtai originally, but our presentation follows the work of Micciancio and
Regev, and borrows from Regev’s lecture notes.

We first illustrate the intuition behind the worst-case to average-case reduction by showing how
to reduce the approximate-SIVP problem to a variant of SIS over the torus T = R/Z, SIST. SIST is
exactly as in SIS, except that you are given a matrix A ∈ Tn×m and you are asked to find a small
integer linear combination that sums to zero. That is, find x ∈ Zm such that Ax = 0 and ||x|| is
“small”.

How would such a reduction look like? On the one hand, the reduction has to generate a
uniformly random SIST instance from a given lattice L; therefore, the SIS instance “forgets” the
lattice L that was used to generate it. On the other hand, a solution to the SIS instance has
to somehow be mapped back to a non-trivially short vector in L. This (apparent) conundrum is
common to all worst-case to average-case reductions, and the answer is that the reduction knows
some information connecting the lattice to the SIS instance which, together with the SIS solution,
helps it generate short vectors in L.

The reduction first generates a random vector v ∈ P(B) in the parallelpiped associated to
the given basis. It does so by sampling a vector x ← ρs from the (zero-centered) Gaussian with
standard deviation parameter s ≥ ηε(L), the smoothing parameter for some negligible function
ε = ε(n), and setting

v = x (mod P(B))

By the smoothing lemma, v is (close to) random over the paraellelepiped. The first column of the
SIS matrix A is then set to

a = B−1v ∈ Tn
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which is (close to) random over [0, 1)n. Repeat this process independently m times to generate the
statistically close to uniform SIST matrix A ∈ Tn×m where

A = B−1V

Call the Gaussian matrix corresponding to V as X. The reduction will keep X to itself.
Assume now that there is a SIST algorithm that gives us a non-zero integer vector x ∈ Zm such

that Ax ∈ Zn. (this is what it means for Ax to be 0 (mod 1).) Then we know that B−1Vx ∈ Zn
and therefore, Vx ∈ L(B) is a lattice vector. Now, since X ≡ V (mod P(B)), we know that
Xx ∈ L(B) is also a lattice vector.

We now argue that it is short. We know that ||Xx|| ≈ s||x||
√
n ≈ λn

√
mn. Here, the first

equality is because each column of X is a continuous Gaussian with parameter s and therefore Xx
has parameter s||x|| and therefore length s||x||

√
n w.h.p. The second equality is using the smoothing

lemma, substituting λn for s upto logarithmic factors and
√
m as the norm of x, assuming it is a

0-1 vector.
This seems to work, except that we are uncomfortable working with real numbers. Furthermore,

it is unclear that a “random” matrix A ∈ Tn×m will have an SIS solution at all. We therefore
discretize.

Discretization. Consider splitting each entry into a multiple of 1/q (for some sufficiently large
value of q that we will set shortly) and an error term. That is,

A = Q + E (mod 1)

where qQ ∈ Zn×m and ||E||∞ ≤ 1/2q.
Our first try is to feed the SIS algorithm with the matrix qQ which is uniformly random mod

q. The adversary returns an x such that qQx = 0 (mod q). This gives us

0 = Qx = (A−E)x = B−1(V −BE)x = B−1(X−BE)x (mod 1)

and therefore, (X−BE)x is a lattice vector. We would, in analogy to before, show that these are
short lattice vectors.

||Xx−BEx|| ≤ ||Xx||+ ||BEx|| ≤ s||x||
√
n+
||x||1
q
·max

i
||bi||2

So, this does not give us short vectors, rather it reduces the length of the longest vector in the
basis by a factor of q/||x||1 ≥ q/m (roughly, assuming SIS produces 0-1 vectors). So, as long as
q � m ≈ n log q, we get an improvement. Repeat this iteratively many times to get to roughly
s
√
mn ≈ λn

√
mn ≈ λn · Õ(n).

We are stuck at solving n-approximate SIVP given a solver for SIS. Can we improve this?

Open Problem 3.1. Show a reduction from
√
n-SIVP (or better) to average-case SIS.

In the regime of exponential reductions, we show such reductions in a recent joint work with
Brakerski and Stephens-Davidowitz.

Another question is to improve the values of q for which one can show SIS average-case hard.

Open Problem 3.2. Show a reduction from approximate SIVP to SIS with modulus q = O(1).
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Why do we get a non-zero vector, again? There is one important issue that we overlooked.
We showed that the reduction produces a short lattice vector, but why is the vector non-zero?
Relatedly, when the reduction produces many shorter vectors that form a new basis to iterate on,
why do we have the guarantee that we get n linearly independent vectors from the reduction?

We will now show non-zero-ness formally, but here is the intuition: we need to think of the
SIS algorithm as the adversary who is trying to send us a vector x which is somehow cleverly
designed so that (X−BE)x is the zero vector. What does the SIS algorithm see? It possibly sees
V = X (mod P(B)) but (a) it never sees X itself; and (b) given V, there are multiple possible
values of X, which is a consequence of smoothing-type arguments. In other words, the adversary
is trying to force (X − BE)x to be 0, but it does not know what X is. We then argue that
information-theoretically, it cannot succeed.

We omit the formal argument, but refer the reader to Regev’s lecture notes for the full proof.

3.1 Other Open Problems

Vinod finds it rather bothersome that Ajtai’s reduction (and essentially every other known reduc-
tion) that demonstrates average-case hardness of SIS starts from the SIVP problem, rather than
the more natural SVP. This motivates the following open problem.

Open Problem 3.3. Show a reduction from worst-case SVP to (average-case) SIS.

In fact, he would ideally like a reduction from worst-case SIS to average-case SIS, bypassing lattices
altogether. Indeed, observe that solving SIS is the same as finding a short vector in a lattice (namely,
the lattice Λ⊥(A) := {x ∈ Zm : Ax = 0 (mod q)}). However, even viewing through these lens,
what we have demonstrated is an algorithm that finds vectors of length related to λn, and not
λ1. That is, if the worst-case SIS lattice has a short vector but no n linearly independent short
vectors, then the reduction will miss finding the short vector (!!) We view this as a deficiency in
our understanding of SIS and worst-case to average-case reductions. Therefore, a related problem
is:

Open Problem 3.4. Show a reduction from worst-case SIS to average-case SIS without going
through lattices.
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