
CS 294. Worst-case to Average-case Reduction for LWE

In this lecture, we will show a worst-case to average-case reduction for LWE.

1 Decision to Search Reduction for LWE

The first step is to come up with a way to reduce the search version of LWE to the decision version
(which is the basis of cryptographic schemes, e.g., the public-key encryption schemes we already
saw in Lecture 1). Later, we will show a reduction from worst-case lattice problems to search LWE,
completing the chain of reductions.

1.1 Worst-case vs. Average-case Secret

We start with the simple observation that solving LWE with a worst-case secret s is just as easy as
solving it with a uniformly random secret s. That is, it is easy to re-randomize the secret s. The
key observation is that A is public and that everything here is additive.

Indeed, given an LWE input (A,bTwc := sTwcA + eT) with an arbitrary secret swc, the re-
randomization algorithm (the reduction) computes

bT := bTwc + sTr A

for a uniformly random vector sr ← Znq . Now, note that

bT := (swc + sr)
TA + eT

which is an LWE input with the uniformly random secret s := swc + sr. Clearly, if there is an
algorithm that finds s given (A,b), the reduction can recover swc := s− sr.

1.2 A Simple Reduction

We now show a reduction from search LWE to decisional LWE. Before we begin, a few words
about average-case reductions. These are quite tricky to get right. A typical reduction solves a
distinguishing problem, such as coming up with an algorithm (typically probabilistic polynomial-
time) that distinguishes between two probability distributions D0 and D1. Such an algorithm is
said to be a (T, ε)-distinguisher if it runs in time T and has a (distinguishing) advantage of ε:

|Pr[x← D0;Dist(x) = 1]− Pr[x← D1;Dist(x) = 1]| ≤ ε

Equivalently,
1/2− ε/2 ≤ Pr[b← {0, 1};x← Db;Dist(x) = b] ≤ 1/2 + ε/2

Theorem 1. If there is a (T, ε)-distinguisher for decisional LWEn,m,q,χ, then there is a time T ′ =

Õ(T · nq/ε2)-time algorithm that solves search LWEn,m′,q,χ with probability 1 − o(1), where m′ =

Õ(nmq/ε2), where Õ(·) hides polylogarithmic factors in n.

Proof. Our approach to solve search LWEn,m′,q,χ will be to “guess” the secret, one coordinate
at a time. Let s1, . . . , sn ∈ Zq denote the coordinates of s, that is, s = (s1, . . . , sn). Consider
the algorithm which, on input (A, sTA + eT), for each i ∈ [m], guesses the ith coordinate of s

1

Algorithm 1 “Guess” the ith coordinate of s

For j = 0, . . . , q − 1:

• Let gi := j.

• For ` = 1, . . . , L = Õ(1/ε2):

– Choose a fresh block of the search LWE challenge, call it (A`,b`).

– Sample a random vector c` ← Zm
q , and let C` ∈ Zn×m

q be the matrix whose i-th row is c`, and
whose other entries are all zero.

– Let A′` := A` + C`, and b′` = b` + gi · c`.
– Run the distinguisher D on input (A′`,b

′
`) and let the output of D be called d`.

• If maj(d1, . . . , dL) = 1 (meaning that the distinguisher guesses “LWE”) then output gi. Else, continue
to the next iteration of the loop.

as described in Algorithm 1 below. First of all, the algorithm partitions the columns of A into
n · q · Õ(m

ε2
) parts – n for the number of coordinates of s; q for the number of possible guesses for

each coordinate; and the rest is what a single iteration of the guessing algorithm uses.
If a guess gi is correct, i.e. si = gi, then the inputs (A′`,b

′
`) given to D are fresh LWE samples,

since

b′` = b` + si · c` = sTA` + eT` + si · cT` (expanding b`)

= (sTA` + si · cT`) + eT` (rearranging)

= sT (A` + C`) + eT` (by construction of C`)

= sTA′` + eT` . (by definition of A′`)

On the other hand, if the guess gi is wrong, i.e. si 6= gi, then the inputs (A′`,b
′
`) given to D are

uniformly random, since

b′` = b` + gi · c` = sTA` + eT` + gi · cT`
= (sTA` + gi · cT`) + eT`

= sTA′` + eT` + (gi − si) · c`,

and the term (gi − si) · c` is random and independent of the rest of the terms since (1) gi − si is
nonzero and we are assuming that q is prime; and (2) c` is random and independent of A′`, s and
e`.

It follows that D will output 1 with probability at least 1/2 + ε, in the case that si = gi. Since
we run D many times, namely L = c log n/ε2 times (for a sufficiently large constant c), it follows
from a Chernoff bound that with probability 1 − 1/n2: if the majority of the outputs d1, . . . , d`
from D are equal to 1, then we are in the case where si = gi, and if not, we are in the case where
si 6= gi.

Hence, by a union bound, with overwhelming probability, namely at least 1− 1/n, Algorithm 1
guesses all coordinates of s correctly. Therefore, applying Algorithm 1 to each coordinate of s will,
with overwhelming probability, correctly output all coordinates s1, . . . , sn of s.

2

Improvements.

• Sample-preserving reduction of Micciancio and Mol: Achieve m′ ≈ m. The key is to use ideas
from the Goldreich-Levin and Impagliazzo-Naor search to decision reductions which work
with pairwise independence as opposed to full independence as we did.

• Runtime scaling with poly log q: A major problem with the reduction is that the runtime
scales linearly with q, which could make the reduction meaningless for large q ≈ 2n, even
when the LWE problem is likely hard, e.g., when the error has magnitude q/poly(n). We
will sketch a modification of the above reduction which works even when q is large but of a
specific form, e.g., q = 2k is a power of two, or q = q1q2 . . . qk is a product of many small
primes in which case the runtime will scale with maxi qi.

• Direct reduction from worst-case by Peikert, Regev and Stephens-Davidowitz: This is more
relevant in the context of Ring-LWE which we will discuss later in the course.

1.3 A Reduction with poly(log q) Runtime

Assume that q = 2k. We show how to make the runtime scale with k rather than 2k. The key idea
(due to Micciancio and Peikert) is to guess each number si ∈ Zq (coordinate of the secret vector s)
bit by bit, rather than make one guess for every possible value of si.

In particular, we will modify the guessing algorithm as follows. Unlike the previous algorithm,
this one will employ the following iterative procedure for each coordinate, to guess each bit of it in
turn, starting from the least significant bit.

• Define distributions D0,D1, . . . ,Dk where Di produces

(a, 〈a, s〉+ e+ r · 2j (mod q))

where, as above, q = 2k and r is uniformly random mod q. Note that D0 is uniformly random
and Dk is LWE. Since the decisional LWE adversary can distinguish between D0 and Dk with
a 1/poly(n) advantage, there is a j ∈ [k] such that it distinguishes between Dj−1 and Dj with
advantage at least 1/k · 1/poly(n). Focus on such a j.

• We will now use the distinguisher to learn the LSB of s1 (and analogously, that of all other
si) as follows. Given an LWE sample (a, b), create a sample

(a′, b′) = (a + r · 2j−1 · u1, b)

where u1 is the unit vector with 1 in the first coordinate and 0 elsewhere.

If the LSB of s1 is 0, then this looks like

(a′, b′ = 〈a′, s〉+ e+ r · 2j (mod q))

where a′ and r are uniformly random and independent. On the other hand, if the LSB of s1
is 1, this looks like

(a′, b′ = 〈a′, s〉+ e+ r · 2j−1 (mod q))

where again, a′ and r are uniformly random and independent.

A distinguisher that tells these two apart also helps us determine the LSB of s1 (and analo-
gously, of all the si).

3

• We now proceed in two steps. First, we observe that this can be used to recover the successive
bits of s, up to a certain point. We first transform the given LWE sample (a, b) so that it
corresponds to a secret whose LSBs are 0. For example, to go from predicting the LSB to the
second least significant bit, we transform (a, b)→ (a, b− 〈a, LSB(s1) · u1〉).
From then on, to recover the k-th least significant bit, we do:

(a′, b′) = (a + r · 2j−k · u1, b)

This ends up being either Dj−1 or Dj depending on whether the k-th LSB of s1 is either 1 or
0 (respectively).

• However, we can only recover up to j LSBs this way. What do we do with the rest? The key
idea is to make sure that j is not too small. To do this, consider the modified distributions
D′j which output

(a, b+ r · 2j + e′ (mod q))

where (a, b) is an LWE sample with noise rate αq and e′ is a fresh Gaussian with noise rate
about αq.

The effect of doing this is that the distributions D′0,D′1, . . . ,D′2j′≈αq are statistically indistin-

guishable. Thus, the j in question for which the distinguisher succeeds in distinguishing D′j−1
and D′j is necessarily larger than j′. This lets us recover j′ LSBs of all the si. The remaining
space has size about q/2j′ ≈ 1/α = poly(n).

To recover this part of the secret, observe the following: if we only had the MSB of the secret
to recover and the error was small enough, we would be done. Indeed, b then is a multiple of
q/2 plus a small amount of noise. From this, we can recover exactly the multiple of q/2 which
by Gaussian elimination will tell us the MSB of s1. The key is to extend this argument to
recover sufficiently many MSBs, in fact k − j′ of them (everything that we couldn’t recover
by the procedure above).

1.4 A Better Reduction: A Sketch

We will show how to reduce LWE mod q to LWE mod p� q, with a commensurate noise rate, in
two steps. The (very rough) intuition is that the hardness of LWE (for a fixed n) depends on the
ratio between the noise magnitude and the modulus, and not on the modulus itself. This suggests
that it should be possible to scale q while keeping the noise-to-modulus ratio the same. We will
show a (sketch of a) formal version of this intuition.

We will proceed in steps.

Idea 1. From LWE to binary secret LWE. We will use an idea of Goldwasser, Kalai, Peikert
and Vaikuntanathan [GKPV10]. The rough idea is as follows: look at an LWE input (A, sTA+eT)
where s ∈ {0, 1}n. Suppose A were decomposable into BC where B ∈ Zn×kq and C ∈ Zk×mq are
uniformly random. The reader should think of k ≈ n/ log q = H∞(s), the min-entropy of the vector
s. Then,

sTA + eT = sTBC + eT = (sTB)C + eT

4

Figure 1: The Sequence of Reductions from Worst-case BDD/gapSVP to decision LWE for small
modulus.

5

In other words, one can think of this as an LWE input w.r.t. the public matrix C with the secret
being sTB. The key point is that multiplication by B extracts randomness from s and makes
sTB (statistically close to) uniformly random by the leftover hash lemma (LHL). (Clealy, we are
omitting details such as the slack between the min-entropy and the output length that LHL needs,
but they are not very important to this outline.)

In other words, this says that the LWE input with a binary secret s w.r.t. A looks statistically
close to an LWE input with a uniformly random secret s′ := BT s which, in turn, is pseudorandom.
QED.

If this argument did work, it will prove the hardness of LWE where the secret comes from any
distribution with sufficient min-entropy (eg H∞(s)/ log q ≥ λ for some security parameter λ.)

There is a major glitch in this argument, however: a matrix of the type BC has rank at most
k, whereas a random matrix A has rank n ≈ k log q. In other words, they are very distinguishable.

Goldwasser et al. [GKPV10] nevertheless show how to fix this idea in the following way: assume
that A = BC + N where N is an LWE error matrix. Such a matrix is computationally close to
uniform under LWE (with the uniformly random secret matrix B.) Now let’s do the calculation
again.

sTA + eT = sT (BC + N) + eT = (sTB)C + (sTN + eT)

sTB is statistically close to uniform by the argument above. However, the error term is different
and it raises two problems: (1) it potentially leaks information about s, ruining the LHL; and (2)
it makes the error distribution wonky. A cheap way to get around this problem is to ensure
that ||sTN|| is small, say poly(n), for example by ensuring that s is binary and N has poly(n)-
bounded entries, and using the so-called noise flooding trick, setting eT to be a Gaussian with a
superpolynomially larger standard deviation. This ensures that sTN + eT looks statistically like a
fresh Gaussian, independent of sTN. This kills both problems in one shot.

Unfortunately, this means that q has to be larger than the error, ie at least 2ω(logn) and one
has to assume LWE where the noise-to-modulus ratio is 2−ω(logn). This issue has been resolved in
a subsequent work of Brakerski et al. [BLP+13]. Nevertheless, the following question is still open:

Open Problem 4.1. For which distributions of the secret s does the LWE assumption hold
(assuming LWE with uniform secrets holds)?

The most recent development along these lines is the very recent work of Dottling and Braker-
ski [BD20]. A more concrete question that, to the best of the instructor’s knowledge, remains open
is the following:

Open Problem 4.2. Does LWE remain hard if the secret vector is a random 0-1 vector with at
most log n ones?

Idea 2. Modulus Reduction. Now, we utilize a technique called “modulus reduction” invented
by Brakerski and Vaikuntanathan [BV11] in the context of fully homomorphic encryption.

The rough idea is as follows: Assume that you are given LWE samples (A,b) with a 0-1 secret
relative to a matrix A mod q. We would like to produce LWE samples modulo p in such a way

6

that solving LWE mod p gives us a solution mod q. Consider computing(⌊
p

q
A

⌉
,

⌊
p

q
b

⌉)
The matrix A′ := bp/q · Ae is uniformly random mod p (modulo boundary issues which can be
taken care of with some work.) Now,

(p/q)b = (p/q) · (sTA + eT + qzT) = sTA′ + sT {p/qA}+ (p/q)eT + pzT

where z is some integer vector and {·} denotes the fractional part of a number (or each number
in a matrix). This is almost LWE mod p. Let us analyze the error term. (p/q)eT is a Gaussian
with parameter αp if e is Gaussian with paramter αq. Assuming p is quasipolynomially large, one
can use the noise-flooding lemma to “absorb” the error sT {p/qA} which has polynomially bounded
norm. This completes the proof sketch.

We remark that much better versions of this gameplan has been executed successfully by Brakerski,
Langlois, Peikert, Regev and Stehlë [BLP+13]. We refer the reader to their paper for more details.

2 Bounded Distance Decoding and LWE

The bounded distance decoding (BDD) problem is a promise variant of the closest vector problem
(CVP) on lattices, where the target point is guaranteed to be so close to the lattice that there is a
unique closest vector. In other words, in the c-BDD problem for a c ∈ [0, 1/2), one is given a basis
B ∈ Zm×m of a lattice L(B) and a target vector t ∈ Zm such that D(t,L(B)) ≤ c · λ1(L(B)), and
the goal is to find the lattice vector that is closest to t.

BDD and LWE are very closely related as the reader may have noticed already. In particular,
LWE can be seen as an average-case version of BDD in the following way. Define the LWE lattice

Λ(A) := {z ∈ Zm : ∃ s ∈ Znq s.t. z = sTA (mod q)}

(Note that qZm ⊆ Λ(A) ⊆ Zm.) It is not hard to show that the minimum distance of Λ(A)
for a uniformly random matrix A ∈ Zn×mq is c′q1−n/m with high probability. (We will leave this
calculation as an exercise.)

LWE is then the regime where the secret s (which defines the closest vector) is uniquely deter-
mined given sTA + eT .

3 Discrete Gaussians

As we saw in the last lecture, the Gaussian function

ρs(x) := e−π||x||
2/s2

from Rn to R can be turned into a probability distribution over Rn by normalizing with
∫
Rn ρs(x)dx =

sn. Henceforth, we will call this the (n-dimensional) Gaussian distribution Ns. Thus,

Ns(x) =
1

sn
· e−π||x||2/s2

7

Given a lattice L, we will define the discrete Gaussian distribution DL,s as the probability distri-
bution that assigns the value 0 to all x /∈ L and the values

DL,s(x) =
ρs(x)

ρs(L)

for every x ∈ L. Here, ρs(L) :=
∑

v∈L ρs(v).
The latter definition can be generalized to any discrete set; for example, we will let DL+c,s

denote the discrete Gaussian over the lattice coset L + c = {v + c : v ∈ L} which assigns the
Gaussian mass (normalized appropriately) to each vector in L+ c and 0 to all other vectors.

We will also define off-centered versions of these quantities ρs,c, Ns,c and DL,s,c; for example,

ρs,c(x) := e−π||x−c||
2/s2 , and so on.

When s exceeds the smoothing parameter of the lattice ηε(L), the discrete Gaussian over L
starts having a number of nice regularity properties that make it behave essentially as if it were a
continuous Gaussian distribution. Some examples follow.

Lemma 2. For any c ∈ Rn, and s ≥ ηε(L),

ρs(L+ c) ∈ [1− 2ε, 1 + 2ε] · ρs(L)

Proof. Let c′ denote the shortest vector in the lattice coset L+ c. Then,

ρs(L+ c) = ρs,−c(L)

= det(L∗) · ρ̂s,−c(L∗)

= det(L∗) ·
∑
z∈L∗

ρ̂s,−c(z)

= det(L∗) ·
∑
z∈L∗

e2πi〈c,z〉ρ1/s(z)

= det(L∗) ·
(

1 +
∑

z∈L∗\{0}

e2πi〈c,z〉ρ1/s(z)

)
∈ [1− ε, 1 + ε] · det(L∗)

The claim follows.

A direct corollary is the following statement about discrete Gaussians modulo sublattices. It
says that if you choose a vector from a discrete Gaussian over a dense (rank n) lattice L and reduce
it modulo a sparser (also rank n) lattice L′ ⊆ L, you get a uniformly random element of the finite
group L/L′. This will be instantiated later in the lecture where L will be an arbitrary lattice and
L′ = qL will be a scaling of it. Here, L/L′ ∼= Znq .

Lemma 3 (Discrete+Continuous Convolution). Let L be a lattice. Consider the distribution ob-
tained by sampling a vector v from the discrete Gaussian DL,s and a vector w from the continuous
Gaussian Nr and adding them together, where s, r ≥ ηε(L) ·

√
2 (where ε is a negligible function of

n). Then, the resulting distribution is statistically close to the continuous Gaussian N√r2+s2.

8

Proof. Consider the distribution Y obtained by adding up the two vectors. Let t =
√
r2 + s2.

Y (x) =
∑
v∈L

Pr
DL,s

[v] · Pr
Nr

[x− v]

=
1

ρs(L) · rn
∑
v∈L

ρs(v) · ρr(x− v)

=
1

ρs(L) · rn
∑
v∈L

e−π||v||
2/s2 · e−π||x−v||2/r2

=
1

ρs(L) · rn
∑
v∈L

e−π
(
||v||2·(t2/r2s2)−2〈x,v〉/r2+||x||2/r2

)

=
e−π||x||

2· 1
r2
·(1− s2

t2
)

ρs(L) · rn
∑
v∈L

e−π
(
||v||2·(t2/r2s2)−2〈x,v〉/r2+||x||2·(s2/t2r2)

)
=
e−π||x||

2/t2

ρs(L) · rn
∑
v∈L

e−π||v−s
2/t2·x||2/(rs/t)2

=
ρt(x)

tn
· t

n

rn
·
ρrs/t,s2/t2·x(L)

ρs(L)

∈
[
1− ε, 1 + ε

]
· ρt(x)

tn
· t

n

rn
·
ρrs/t(L)

ρs(L)

where we used Lemma 2 on the numerator since rs/t ≥ ηε(L).

By Proposition 4, we have
ρrs/t(L)
ρs(L) ∈ [1 − 2ε, 1 + 2ε] · (r/t)n. Put together with the above, we

have

Y (x) ∈
[
1− 3ε, 1 + 3ε

]
·Nt(x)

from which it follows that the statistical distance between the two distributions in question is at
most 3ε.

Proposition 4. Assume that s1, s2 ≥ ηε(L). Then,

ρs1(L)

ρs2(L)
∈ [1− 2ε, 1 + 2ε] ·

(
s1
s2

)n
Proof. We have

ρs(L) = det(L∗) · snρ1/s(L∗) ∈ [1− ε, 1 + ε] · sn · det(L∗)

where the first equality uses Poisson summation and the fact that ρ̂s = snρ1/s, and the second the
definition of the smoothing parameter and the fact that s ≥ ηε(L). Thus,

ρs1(L)

ρs2(L)
∈ [1− 2ε, 1 + 2ε] ·

(
s1
s2

)n

9

3.1 Poor Person’s Discrete Gaussian Sampling

For the first step of our reduction in the next section, we need an algorithm to sample from the
discrete Gaussian distribution DL,s given s and some basis B of L. Clearly, this is hard to do if
s < 1/

√
n·maxi ||bi|| as it will then give us a way to make the vectors of B shorter, a computationally

hard problem. However, one can hope that for significantly larger s, this is possible. Indeed,
Gentry, Peikert and Vaikuntanathan [GPV08], following an algorithm of Klein [Kle00], show such
a (polynomial-time) algorithm with s ≥ ω(

√
log n) ·maxi ||bi|| (in fact, something slightly stronger

but it will not matter to us). Their algorithm samples from a distribution that is negligibly close
(in statistical distance) to the discrete Gaussian.

Here, we will make do with something significantly weaker.
We will show a very simple algorithm SimpleDGS that samples from the discrete Gaussian DL,s

where s ≥ 2n · maxi ||bi||. The algorithm simply samples a vector v ← Ns from the continuous
Gaussian distribution with parameter s and “rounds” it modulo the parallelepiped P(B). That is,
output

v′ = Bbvc ∈ L(B)

To show that this is statistically close to DL,s, we calculate the two probabilities:

• Pr[w ∼ DL,s] = c · ρs(w) for some constant normalization factor c.

• Pr[w ∼ SimpleDGS] = c′ ·
∫
x∈P(B) ρs(w + x)dx.

The intuition is that ρs(w + x) is very close to ρs(w) for all the typical vectors, that is, vectors of
length at most s

√
n. Indeed,

ρs(w + x) = ρs(w) · e−π(2〈w,x〉+||x||2)/s2

It suffices to show that |2〈w,x〉 + ||x||2)/s2| is very small. Note that this quantity is at most
(2||w||||x||+ ||x||2)/s2 by Cauchy-Schwartz. Since ||w|| ≈ s

√
n is the length of the typical vectors

(Exercise: Check this!) and s� 2n maxi ||bi|| ≥ 2n||x||, we are done.
A remark to a reader who might be wondering if this algorithm in fact performs better, i.e.,

with a smaller s, and if the large s is merely an artifact of our analysis. To show that it is not, the
reader is recommended to let L = Z and show that for small s, the rounded continuous Gaussian
(our distribution) and the discrete Gaussian over Z are in fact statistically far.

4 From (Worst-case) BDD to (Average-case) LWE

We show the reduction from the worst-case bounded distance decoding problem, which we saw was
morally the same as the LWE problem, to the average-case LWE problem.

We will produce LWE samples where the LWE noise are drawn from a continuous Gaussian. It
is easy to discretize it and make the noise comes from the rounded continuous Gaussian distribution.

Claim 5. The vectors ai are statistically close to uniformly random in Znq and independent.

Proof. By inspection, we see that the probability of getting ai is the probability that the discrete
Gaussian DL∗,s lands up in the set qL∗ + B∗ai. This is precisely

ρs(qL∗ + c)∑
c ρs(qL∗ + c)

(1)

10

Regev’s BDD to LWE Reduction

Input: Lattice basis B ∈ Zn×n, t = Bs + e ∈ Zn.
(For simplicity, we will assume that ||e|| is known.)

Output: LWE instance A ∈ Zn×mq , y ∈ Zmq .

Repeat m times:

I Let q ≥ 22n, where s ≥ q
√

2 · ηε(L∗) and r ≥
√

2 · ||x|| · ηε(L∗).
I Sample a vector vi ← DL∗,s.
I Compute

ai := (B∗)−1vi = BTvi (mod q) and bi := tTvi + e′i (mod q)

where e′i ← Nr.

Run the LWE algorithm on input (A,b) where the columns of A are the ai, and output
what it outputs.

Since s ≥ qηε(L∗) = ηε(qL∗), we know by Lemma 2 that∑
c

ρs(qL∗ + c) ∈ [1− 2ε, 1 + 2ε] · ρs(qL∗) · qn

and
ρs(qL∗ + c) ∈ [1− 2ε, 1 + 2ε] · ρs(qL∗)

therefore, the ratio in equation 1 is in the range 1
qn · [1 − 4ε, 1 + 4ε]. Consequently, the statistical

distance is at most 4ε.

Claim 6. bi = sTai + ei and ei is statistically close to a (1-dimensional) continuous Gaussian Nt

where t = ||x|| ·
√

2ηε(L∗).

Proof. For the reduction and the proof, we will assume that ||e|| is known. This assumption can
be removed with more care; we refer to [Reg09] for more details.

Start by noting that

bi = tTvi + e′i (mod q)

= (sTBT + eT)B∗ai + e′i (mod q)

= sTBTB−Tai + eTvi + e′i (mod q)

= sTai + ei (mod q)

where the second equality follows from the definition of t := Bs+e and that of ai, and ei := eTvi+e
′
i.

It remains to analyze the distribution of ei.

11

First, e′i is distributed like eTwi where wi is a continuous Gaussian with parameter
√

2ηε(L∗).
Thus,

e′i = eT (v + w) = eTw′

where w′ is distributed like Ns′ by Lemma 3 with

s′ ≈ q · ||x|| · ηε(L∗) ≤ cqλ1(L)ηε(L∗) ∈ cq · [1,
√
n]

by Banaszczyk’s theorem. In the worst case, if c� 1/
√
n, this gives us an LWE distribution with

meaningfully bounded error.

In summary, the reduction solves 1/
√
n-BDD assuming an LWE solver with a constant factor

noise-to-modulus ratio.

5 From (Worst-case) SIVP to (Worst-case) BDD

5.1 A Classical Reduction

We now present a classical reduction from gapSVP to BDD due to Peikert [Pei09]. We contrast
this with Regev’s quantum reduction from SIVP to BDD [Reg09].

The advantage of Peikert’s reduction, of course, is that it is classical. However, it is a reduction
from a decision problem (gapSVP) to a search problem (BDD), as opposed to Regev’s quantum
reduction that reduces from search SIVP. For classes of lattices such as ideal lattices, the gapSVP
problem for small factors turns out to be easy making the (analogous) reduction vacuous, so it is
important to find a reduction starting from a search problem. Thus, the following question is wide
open.

Open Problem 4.1. Show a (worst-case) reduction from SIVP (or SVP or CVP) to BDD.

We sketch the idea behind Peikert’s reduction which in turn draws inspiration from a beautiful
coAM protocol for gapSVP due to Goldreich and Goldwasser. Let L be the input lattice with the
promise that λ1(L) ≤ 1 or λ1(L) > γ. Assume that we have access to a c-BDD solver, namely an
algorithm that returns the closest lattice vector given the promise that the target point is within
distance c · λ1(L) from the lattice. The reduction works as follows.

• Pick a random lattice point z ∈ L and add a random point e from a ball of radius c · γ.

• Run the BDD solver with input t := z + e.

• If the BDD solver produces a vector z′ = z, output NO (“large λ1”) else output NO (“small
λ1”).

On the one hand, if λ1(L) > γ, then the distance of t from the lattice is at most c · λ1(L) and
thus it satisfies the BDD promise. Consequently, the BDD solver will return z. On the other hand,
if λ1(L) ≤ 1, the (uniform distribution on the) balls centered at z and z + u where ||u|| = λ1(L)
are statistically close, if cγ ≥

√
n. Therefore, a c-BDD algorithm helps us solve

√
n/c-gapSVP.

Putting this together with the worst-case to average-case reduction, we get a O(n)-gapSVP
algorithm given an LWE solver with constant noise-to-modulus ratio.

12

References

[BD20] Zvika Brakerski and Nico Dttling. Hardness of lwe on general entropic distributions.
Cryptology ePrint Archive, Report 2020/119, 2020. https://eprint.iacr.org/2020/
119.

[BLP+13] Zvika Brakerski, Adeline Langlois, Chris Peikert, Oded Regev, and Damien Stehlé.
Classical hardness of learning with errors. In Dan Boneh, Tim Roughgarden, and Joan
Feigenbaum, editors, Symposium on Theory of Computing Conference, STOC’13, Palo
Alto, CA, USA, June 1-4, 2013, pages 575–584. ACM, 2013.

[BV11] Zvika Brakerski and Vinod Vaikuntanathan. Efficient fully homomorphic encryption
from (standard) LWE. In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium
on Foundations of Computer Science, FOCS 2011, Palm Springs, CA, USA, October
22-25, 2011, pages 97–106. IEEE Computer Society, 2011.

[GKPV10] Shafi Goldwasser, Yael Tauman Kalai, Chris Peikert, and Vinod Vaikuntanathan. Ro-
bustness of the learning with errors assumption. In Andrew Chi-Chih Yao, editor,
Innovations in Computer Science - ICS 2010, Tsinghua University, Beijing, China,
January 5-7, 2010. Proceedings, pages 230–240. Tsinghua University Press, 2010.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In Cynthia Dwork, editor, Proceedings of the
40th Annual ACM Symposium on Theory of Computing, Victoria, British Columbia,
Canada, May 17-20, 2008, pages 197–206. ACM, 2008.

[Kle00] Philip N. Klein. Finding the closest lattice vector when it’s unusually close. In David B.
Shmoys, editor, Proceedings of the Eleventh Annual ACM-SIAM Symposium on Discrete
Algorithms, January 9-11, 2000, San Francisco, CA, USA, pages 937–941. ACM/SIAM,
2000.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem:
extended abstract. In Michael Mitzenmacher, editor, Proceedings of the 41st Annual
ACM Symposium on Theory of Computing, STOC 2009, Bethesda, MD, USA, May 31
- June 2, 2009, pages 333–342. ACM, 2009.

[Reg09] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
J. ACM, 56(6):34:1–34:40, 2009.

13

https://eprint.iacr.org/2020/119
https://eprint.iacr.org/2020/119

	Decision to Search Reduction for LWE
	Worst-case vs. Average-case Secret
	A Simple Reduction
	A Reduction with poly(logq) Runtime
	A Better Reduction: A Sketch

	Bounded Distance Decoding and LWE
	Discrete Gaussians
	Poor Person's Discrete Gaussian Sampling

	From (Worst-case) BDD to (Average-case) LWE
	From (Worst-case) SIVP to (Worst-case) BDD
	A Classical Reduction

