
CS 294. Trapdoors, Gaussian Sampling and Digital Signatures

We will work with the `∞ norm throughout these lecture notes; tighter bounds are sometimes
possible with the Euclidean norm but we would like to avoid the complication of computing the
exact factors in favor of simplicity and conceptual clarity.

1 Lattice Trapdoors

Recall that
Λ⊥(A) = {z ∈ Zm : Az = 0 (mod q)}

is a rank-m lattice. A lattice trapdoor for a matrix A ∈ Zn×mq is a short basis for the lattice Λ⊥(A).

More generally, a set of short linearly independent vectors in Λ⊥(A) suffices. More explicitly:

Definition 1. A matrix T ∈ Zm×m is a β-good lattice trapdoor for a matrix A ∈ Zn×mq if

1. Each column vector of T is in the (right) mod-q kernel of A, namely, AT = 0 (mod q);

2. Each column vector of T is short, namely for all i ∈ [m], ||ti||∞ ≤ β; and

3. T has rank m over R.

Note that the rank of T over Zq can be no more than m − n; so, at first sight, the first and the
third conditions may appear to be contradictory. However, the fact that we require the real rank
over T to be large is the crucial thing here. This is related to why Λ⊥(A) as a lattice has rank m,
even though as a linear subspace of Zmq has rank only m − n. Another way to look at T is that
each of its columns is a homogenous SIS solution with respect to A.

What good is such a trapdoor? We will demonstrate (in Section 3) its usefulness by showing
that it can be used to solve both LWE and (inhomogenous) SIS with respect to A.

2 Trapdoor Sampling

2.1 Leftover Hash Lemma

We will use the following form of the leftover hash lemma.

Lemma 2. Let P be a probability distribution over Zm. The following two distributions have
statistical distance at most ε as long as H∞(P) ≥ n log q + 2 log(1/ε):

(A,Ae (mod q)) ≈ (A,u)

where A ← Zn×mq is uniformly random, e ← X is drawn from the probability distribution P and
u← Znq is uniformly random. Here, H∞(P) refers to the min-entropy of P .

For a proof, we refer the reader to these lecture notes.

1

https://www.cs.bu.edu/~reyzin/teaching/s11cs937/notes-leo-1.pdf

2.2 Sampling a Random A with a Single Trapdoor Vector

Ajtai in 1996 gave us a procedure to sample a (statistically close to) uniformly random matrix
A ∈ Zn×mq together with a single short vector t ∈ Zm such that At = 0 (mod q). We begin our
journey into trapdoors by describing this simple procedure.

1. Pick a uniformly random matrix A′ ∈ Zn×(m−1)q .

2. Pick a uniformly random vector t ∈ {0, 1}m−1.

3. Define

A = [A′|| −A′t] and t =

[
t
1

]
as the matrix and trapdoor vector, respectively.

It is clear that t is a short vector in the right-mod-q kernel of A. It remains to show that A is
close to uniformly random, which reduces to showing that A′t is close to uniform given A′. This
follows directly from the leftover hash lemma assuming that m ≥ n log q + λ.

More generally, if we let ||t||∞ ≤ B, then we need m ≥ n log q/ logB + λ.

2.3 Ajtai-MP Trapdoor Sampling

Now, one can try to extend the above procedure to sample A together with more and more short
vectors until you reach m (hopefully) linearly independent vectors and then we have a trapdoor!
However, this näıve idea fails to work. Indeed, letting m∗ := n log q+ λ, we can generate a close to

uniform matrix A ∈ Zn×(m
∗+`)

q together with ` trapdoor vectors (We leave it as an exercise to the
reader to figure out how.) However, this will never “catch up” as the number of trapdoor vectors
(`) always remains short of the rank (m∗ + `).

We start with the observation that an “inhomogenous trapdoor” (a notion that we will define
in a minute) will let us achieve our goals of solving LWE and SIS just as well. An inhomogenous
trapdoor T ∈ Zm×n log q is a matrix with short columns such that AT = G (mod q) where G is
the gadget matrix that we constructed and used in the last lecture.

To jog our memory, we defined

g :=
[

1 2 4 . . . 2dlog qe−1
]

and G := I⊗ g

where I is the n× n identity matrix. In other words, G is the block diagonal n× (ndlog qe) matrix
with g in each of its diagonal blocks.

Why does this suffice to solve LWE and SIS? Let’s just do LWE here and leave SIS as an
exercise. Given bT = sTA + eT (mod q), we do

bTT = (sTA + eT)T = sTG + eTT (mod q)

In other words, we just transformed an LWE sample relative to A into an LWE sample relative to
G, with a slight increase in error. Now, if we have a trapdoor (in the sense of Definition ??) for G
(and we will show in a few minutes that we do indeed have such a trapdoor), we can solve LWE!

2

Trapdoor for G: The case of q = 2k. We invite the reader to think about this a bit before
reading on. Let us first construct a trapdoor Tg ∈ Zdlog qe×dlog qe. We will then see that TG = I⊗Tg.
Indeed,

G ·TG = (I⊗ g) · (I⊗Tg) = I⊗ (gTg) = 0 (mod q)

Here is the trapdoor for g:

Tg =

2
−1 2

−1 . . .
. . .

2
−1 2

Let us check.

• Tg has short columns. Indeed ||Tg||∞ = 2.

• gTg = 0 (mod q).

• The determinant of Tg is q = 2k. Therefore, it has full rank over R. It decidedly does not
have full rank over Zq since its determinant is 0 mod q. (And this had better be the case!)

Trapdoor for G: The general case. As before, let us construct a trapdoor Tg ∈ Zdlog qe×dlog qe.
We will then see that TG = I⊗Tg. Here is the trapdoor for g:

Tg =

2
∣∣

−1 2
∣∣

−1 . . .
∣∣

. . . bits(q)
2

∣∣
−1

∣∣

The only difference is in the last column which is now the bit representation of the modulus q.
Checking that this is indeed a trapdoor for g is left as an exercise. (Hint: for the full rank property,
prove that the determinant of this matrix is q.)

Sampling A together with an Inhomogenous Trapdoor. Sample a uniformly random B ∈
Zn×m∗
q where m∗ = n log q + λ (as before). Set

A = [B||BR + G] (over Zq)

where R ∈ Zm∗×m
q is a uniformly random 0-1 matrix. Notice that

A ·
[
−R
I

]
= G (mod q)

and since ||R||∞ ≤ 1, we have an inhomogenous trapdoor! Furthermore, A is close to random by
leftover hash lemma (as before).

One could directly use the inhomogenous trapdoor to solve LWE and SIS but we will go one
step further and show how to get a trapdoor for A.

3

Sampling A with a Trapdoor, Finally. First of all, we have

[B||BR + G] ·
[
−R
I

]
= G

Thus,

[B||BR + G] ·
[

I −R
0 I

]
= [B||G]

Finally, multiplying this on the right by

[
I 0

−G−(B) TG

]
, we get

[B||BR + G] ·
[

I −R
0 I

]
·
[

I 0
−G−(B) TG

]
︸ ︷︷ ︸

=TA

= [B||G] ·
[

I 0
−G−(B) TG

]
= 0 (mod q)

Thus, the lattice trapdoor

TA =

[
I + RG−(B) −RTG

−G−(B) TG

]
We already saw that ATA = 0 (mod q). The `∞ norm of TA is O(m). Finally, since TA is a

product of two full-rank matrices, it is full-rank as well. (It has determinant qn.)

3 Trapdoor Functions

Definition 3. A family of functions1 Fn = {fi : {0, 1}n → {0, 1}m} for some m = m(n) is called a
trapdoor function family if it comes with the following three associated polynomial-time algorithms.

• A probabilistic function generation algorithm that, on input 1n, outputs an index i of a func-
tion fi in the family as well as a trapdoor ti.

• A deterministic evaluation algorithm that, on input i and x ∈ {0, 1}n, outputs y. We need
that y = fi(x).

• A deterministic inversion algorithm that, on input i, ti and y ∈ {0, 1}m, outputs x ∈ {0, 1}n or
a special symbol ⊥. We require that if y ∈ Image(fi), then x is an inverse, namely fi(x) = y.

3.1 Injective Trapdoor Function

The function
fA(s, e) = sTA + eT (mod q)

where A ∈ Znq , s ∈ Znq and e ← χm is a one-way family of functions, under LWE. Given the
trapdoor T, one inverts this as follows.

(sTA + eT)T = eTT (mod q)

1To be precise, we should be talking about ensemble of such families one for every input length n. However, we
will refrain from unnecessary notational gymnastics and will take that as understood.

4

Now, since the latter quantity has absolute value at most q/4, it is eTT (over the integers). The
mod-q has no effect, and this is the key observation. Now, multiplying the latter by T−1 (the
inverse of T over the reals) recovers e. Here, it is very important that T had full rank over the
reals; otherwise, T−1 would not exist.

3.2 Surjective Trapdoor Function

The function
gA(e) = Te (mod q)

where A ∈ Zn×mq where m > n log q and e ∈ [−β, β]m is a one-way family of functions as well,
under SIS, where β = poly(m).

One way to do this is the following. On input v ∈ Znq , find some w ∈ Zmq such that Aw = v
(mod q). Consider outputting

T · {T−1w}

where {x} denotes the fractional part of x ∈ R. Why does this work?

• First of all,

AT · {T−1w} = AT · (T−1w − bT−1wc) = v − 0 = v (mod q)

so we have an inverse.

• Secondly,
||T · {T−1w}||∞ ≤ m · ||T||∞ ≤ m2

This is an instance of Babai’s “rounding algorithm” for the closest vector problem. In class, we
saw yet another way to do this, which is Babai’s nearest plane algorithm.

One could also use the inhomogenous trapdoor to accomplish this. For example, we saw that
it is easy to compute a vector e′ ∈ {0, 1}m∗

such that Ge′ = v (mod q). Now, we claim that[
R
I

]
· e′ is a required inverse. Indeed,

A ·
[

R
I

]
· e′ = G · e′ = v (mod q)

4 Digital Signatures

Here is a simple digital signature scheme. (For a definition of digital signatures and what we mean
by a secure digital signature, see Rafael Pass and abhi shelat’s book.)

• The key generation algorithm samples a function together with a trapdoor. This would be A
and T. The public key is A and the secret key is T.

• To sign a message m, first map it into the range of the function, e.g., by hashing it. That is,
compute v = H(m). The signature is an inverse of v under the function gA. That is, a short
vector e such that Ae = v (mod q). This is guaranteed by the surjectivity of the function
gA.

5

https://www.cs.cornell.edu/courses/cs4830/2010fa/lecnotes.pdf

• Verification, given a message m, public key A and signature e, consists of checking that
Ae = H(m) (mod q) and that ||e||∞ ≤ m2.

Unforgeability (given no signature queries) reduces to SIS in the random oracle model, i.e., assuming
that H is a random oracle.

However, given signatures on adversarially chosen messages (in fact, even random messages),
this scheme is broken. The key issue is that there are many inverses of H(m), and the particular
inverse computed using a trapdoor T leaks information about T. Collecting this leakage over
sufficiently many (polynomially many) signature queries enables an adversary to find T, allowing
her to forge signatures at will going forward.

This is most easily seen when the inversion procedure for gA uses the inhomogenous trapdoor.
Note that given v, an adversary can compute G−(v) = e′ herself. She now gets a signature

σ =

[
R
I

]
· e′

which gives her one equation on the secret R. Given about m equations, she can solve linear
equations and learn R.

The situation remains essentially as dire even if you use the trapdoor (as opposed to the inho-
mogenous trapdoor). Using rounding vs the nearest plane algorithm does not help either; see the
paper of Nguyen and Regev for robust attacks against this signature scheme. The fundamental
difficulty seems to stem from the fact that the inversion procedure is deterministic!

To mitigate the difficulty, we need a special kind of inverter for gA. The inverter is a “pre-image
sampler”; that is, it is given the trapdoor T and produces a “random” pre-image. More precisely,
we need the following distributions to be statistically close (computational indistinguishabilty is
fine, but we will achieve statistical closeness):(

A← Zn×mq ,e← DZm,s,v := Ae (mod q)

)
≈s (A← Zn×mq , e← PreSamp(A,T,v),v← Znq

)
That is, the following processes produce statistically close outputs: (a) first sample e from a discrete
Gaussian, and deterministically set v to be Ae (mod q); and (b) sample v uniformly and use the
pre-image sampler to produce an inverse of v under gA that is distributed according to the right
conditional distribution. This distribution happens to be the discrete Gaussian over a coset of the
lattice, that is,

Λ⊥v (A) := {e ∈ Zm : Ae = v (mod q)}

In fact, this not quite enough; we need a multi-sample version of this. That is,(
A← Zn×mq ,{ei ← DZm,s,v := Ae (mod q)}poly(λ)i=1

)
≈s (A← Zn×mq , {e← PreSamp(A,T,v),v← Znq }

poly(λ)
i=1

)

6

https://cims.nyu.edu/~regev/papers/gghattack.pdf

This is quite cumbersome to work with, so we propose an alternate stronger definition. That
is, we require that for most A← Zn×mq and any trapdoor T of length bounded by ` and s� `:(

e← DZm,s,v := Ae (mod q)

)
≈s (e← PreSamp(A,T,v),v← Znq

)
Proof of Security. With the one change that the inverter is replaced by a pre-image sampler,
our signature scheme becomes secure in the random oracle model. We showed the proof in the
class.

5 Discrete Gaussian Sampling

Throughout, we will deal with sampling from a zero-centered discrete Gaussian.

5.1 Näıve Sampling

Let us first consider sampling from a discrete Gaussian over the simplest possible lattice, namely
the one-dimensional lattice of integers Z. The first idea to sample from the discrete Gaussian DZ,s
is to sample from a continuous Gaussian Ns with parameter s and round to the nearest integer.
Unfortunately, this is not a discrete Gaussian, not even statistically close to it. This is true even if
s is much larger than the smoothing parameter.

Lemma 4. The statistical distance between DZ,s and Round(Ns) is at least 1/s3.

Proof. First, the probability assigned to zero by Round(Ns) is

2

s
·
∫ 1/2

0
e−πx

2/s2dx =
2√
π
·
∫ √π/2s
0

e−t
2
dt =

2√
π
· erf(

√
π/2s) ≥ 2√

π
·
(√

π

2s
− Ω

(√
π

2s

)3)
where the latter is due to a Taylor series approximation of the erf function and holds for a sufficiently
large s. This quantity is at most

1/s− Ω(1/s3)

On the other hand, let’s compute∑
x∈Z

ρs(x) = s ·
∑
x∈Z

ρ1/s(x) = s · (1 + negl(λ))

if s is above the negl(λ)-smoothing parameter of Z which is ω(
√

log λ).
Therefore, the probability assigned to zero by DZ,s is

1∑
x∈Z e

−πx2/s2 ≈ 1/s

upto a negligible term.
Thus, the statistical distance between the two distributions in question is Ω(1/s3) which is

non-negligible unless s itself is super-polynomial.

7

For n-dimensional lattices, this statistical distance degrades with n as well making the situation
much worse.

The reader may recall that the first step of Regev’s worst-case to average-case reduction was
sampling from a discrete Gaussian over a lattice for which Regev used the above procedure. How-
ever, he could afford to use an exponential s which makes the statistical distance small.

5.2 Sampling Discrete Gaussians over Z

So, how do we sample from DZ,s for polynomial s? We will show that the general method of
rejection sampling works. Let Z = [−t · s, t · s] be a sufficiently large interval, where t = ω(

√
log λ).

We do the following:

1. Sample a random integer z ← Z.

2. Output z with probability ρs(z) := e−πz
2/s2 ; else go to step 1 and repeat.

First of all, we will show that the probability that DZ,s assigns to numbers outside of the interval
Z is negligible.

Lemma 5. Let s ≥ ηε(Z) for some ε = negl(λ), and t > 0. We have

Pr
x←DZ,s

[|x| > t · s] ≤ c · e−πt2

for some absolute constant c > 0.

Consider the probability distribution D′Z,s which assigns probability ρs(x) for all x ∈ Z ∩Z and
0 otherwise. The lemma above shows that D′Z,s is close to DZ,s if s is larger than the negl(λ)-

smoothing parameter of Z, namely ω(
√

log n), and t = ω(
√

log n).
It is not hard to see that the procedure above samples from the distribution D′Z,s exactly. It

remains to see that it terminates in polynomial time. We show two things which we leave as an
exercise: (a) the probability that z sampled in step 1 lies in [−s, s] is Ω(1/t) and (b) if such a z
is sampled, it is output with probability Ω(1). Put together, the expected time for termination is
O(t) = poly(λ).

5.3 Klein-GPV algorithm

We demonstrate the sampler in two dimensions. The generalization to n dimensions follows quite
naturally.

References

8

	Lattice Trapdoors
	Trapdoor Sampling
	Leftover Hash Lemma
	Sampling a Random A with a Single Trapdoor Vector
	Ajtai-MP Trapdoor Sampling

	Trapdoor Functions
	Injective Trapdoor Function
	Surjective Trapdoor Function

	Digital Signatures
	Discrete Gaussian Sampling
	Naïve Sampling
	Sampling Discrete Gaussians over Z
	Klein-GPV algorithm

