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(Some) AI Challenges

Hallucination:  how do I know the model outputs are correct? 

(Adversarial) Control: susceptible to undetectable manipulation?

Resource Consumption: can we lower the giant compute use?

Robustness: will the model remain good under distribution shift?  

Alignment: are the model’s goals aligned to ours?

Trustworthy AI



Hard Problems Useful Systems

My Thesis: 
Cryptography and Cryptographers have a Role to Play

Definitions

Turning Hardness into 
Usefulness

Proofs via Reductions 
(or the “win-win paradigm”):

Adversarial Thinking

What access does the adversary have?

What are her goals?

What measures her success?

The Omnipresent Adversary



… but we may need to think differently

theory first

adversarial

maximalistic

Different models, Different goals, Different adversaries.

Need new ideas, new tools, new hard problems.

Crypto ML/AI

empirical

optimistic

pragmatic



This Talk

Robust Embeddings

Alignment

Crypto to Speed up (ML) Algorithms

Backdoors



What I won’t get to talk about 

Verification: can models prove their correctness?

Defining Generative Models: given 𝑛 samples from a distribution 𝐷, want 
to (learn to) generate more samples from 𝐷. What does that mean?

Watermarking: many wonderful results. Even more open problems, e.g. do 
unremovable watermarks even exist?

Privacy, Secure Computation: secure inference and/or training

Making ML models “forget”: Machine unlearning.

[Kleinberg-Mullainathan’24 “Language Generation in the Limit”]

[Christ-Gunn-Zamir, Barak et al.’24 “Watermarks in the Sand…”,  Sahai et al.’25 “Sandcastles in the storm…”]

[Amit, Goldwasser, Paradise, Rothblum’25 “Self-proving models…”]



This Talk

Robust Embeddings

Alignment

Crypto to Speed up (ML) Algorithms

Backdoors



Robust ML 
Embeddings

Courtesy: Andrej, Alon and Ne ekon for som e slides. 



ML Embeddings

a b

ℎ(a)

c d

(Trained) Hash

𝑥

𝑦
ℎ(b)

ℎ(c)

ℎ(d)

ℝ𝑚

Semantic Similarity

Geometric Closeness



ML Embeddings

Word2Vec [Mikolov et al. 2013]
Early neural system that mapped words to vectors.

Vision Transformers [Dosovitsky et al. 2021] 
Compressing map from e.g. 224 X 224 RGB image to a 
768-dimensional vector (with 32-bit precision)

CLIP [Li et al. 2016, Radford et al. 2021] 
Multimodal: connect text and image embeddings!
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Apple NeuralHash [2021]

ℎ( )

ℎ( ) ℎ( )

ℎ( )

phone

DB

Fuzzy Private Set 
Membership[Bhatia, Meng ‘22]



Adversarial Expansion (Evasion)

𝑦
𝑦∗

hash

ℎ( )

𝑥 𝑥∗

ℎ( )

close



Adversarial Contraction (Framing)

𝑦
𝑦∗

hash

ℎ( )
ℎ( )

𝑥 𝑥∗far



Euclidean Embeddings

Lemma (Johnson-Lindenstrauss’84, Indyk-Motwani’99): Fix 0 < 𝜀 < 1 and 

let 𝑚 = Ω(
𝜆

𝜀2). Let 𝒉 𝒙 =  𝒉𝑨 𝒙 =
𝟏

𝒎
𝑨𝒙 where 𝐴 ~ 𝑁(0,1)𝑚×𝑛 is a 

Gaussian matrix. For every 𝑥, 𝑦 ∈ ℝ𝑛:

ℝ𝑛 ℝ𝑚 , 𝑚 < 𝑛

Pr[||ℎ 𝑥 − ℎ(𝑦)|| ∉ 1 ± 𝜀 | 𝑥 − 𝑦 |] ≤ 2−𝜆

chosen independent of 𝐴



Adaptive Robustness of JL

Lemma (Johnson-Lindenstrauss’84, Indyk-Motwani’99): Fix 0 < 𝜀 < 1 and 

let 𝑚 = Ω(
𝜆

𝜀2). Let 𝒉 𝒙 =  𝒉𝑨 𝒙 =
𝟏

𝒎
𝑨𝒙 where 𝐴 ~ 𝑁(0,1)𝑚×𝑛 is a 

Gaussian matrix. For every 𝑥, 𝑦 ∈ ℝ𝑛:

Pr[||ℎ 𝑥 − ℎ(𝑦)|| ∉ 1 ± 𝜀 | 𝑥 − 𝑦 |] ≤ 2−𝜆

chosen independent of 𝐴

Given A: easy! find a vector in the kernel of 𝐴. 𝑥

𝐴𝑥

𝐼𝑚(𝐴)

Even with super-weak “oracle access” to 𝒉𝑨: 
[Hardt-Woodruff’13] showed how to recover a 
”good enough” 𝐴′ and run the kernel attack. 



Robust Locality-Sensitive Hash
[Boyle-Lavigne-V.’19]

• Compressing: The output length (in bits) is smaller than the input length.

A hash function family {ℎ𝐾: ℝ𝑛 → ℝ𝑚} is a robust (Euclidean) LSH if:

• 𝛼-expanding (for 𝜶 > 𝟏): given 𝐾, no p.p.t. adversary can find 𝑥, 𝑦 ∈ ℝ𝑛 
s.t. | ℎ𝐾(𝑥) − ℎ𝐾(𝑦) | > 𝛼 ∙ | 𝑥 − 𝑦 |.

• 𝜷-contracting (for 𝛃 < 𝟏): given 𝐾, no p.p.t. adversary can find 𝑥, 𝑦 ∈ ℝ𝑛 

s.t. ℎ𝐾 𝑥 − ℎ𝐾 𝑦 < 𝛽 ∙ | 𝑥 − 𝑦 |.

(Computational) Distortion: 𝜶/𝜷, ideally close to 1.



𝑥

𝑥

ML trained hash



New Paradigm: ML + Crypto

𝑥

𝑥

“similar” ℓ2 close

expanding, statistically robust

adaptively robust Euclidean LSH

compressing, comp. robust  



Idea: Hypergrid JL 

𝑥 lives on the hypergrid −𝑏, … , 𝑏 𝑛 .

𝐴𝑚

𝑛

𝑥

𝑥

𝐴𝑥

𝐼𝑚(𝐴)

𝑥

𝐴𝑥

𝐼𝑚(𝐴)

Why the hypergrid? Practically 
motivated + kernel attack goes away.



Contracting Hypergrid Vector (CHV) Problem

Given: Gaussian 𝑚 × 𝑛 matrix 𝐴 (zero mean, unit variance) 

  Find: 𝑥, 𝑦 in hypergrid −𝑏, … , 𝑏 𝑛𝑥

𝟏

𝒎
𝐴𝑥 − 𝐴𝑦 ≤ 𝜅 𝑥 − 𝑦



Contracting Hypergrid Vector (CHV) Problem

Given: Gaussian 𝑚 × 𝑛 matrix 𝐴 (zero mean, unit variance) 

  Find: 𝑥, 𝑦 in hypergrid −𝑏, … , 𝑏 𝑛

𝟏

𝒎
𝐴𝑥 ≤ 𝜅 𝑥

𝑥

This problem exhibits a “computational-to-statistical gap”.

* 𝜅𝑠𝑡𝑎𝑡 , 𝜅𝑐𝑜𝑚𝑝  depend on 𝜶 = 𝒎/𝒏 (how much you compress) and 𝒃

no solution easyhard(?)

𝜅𝑠𝑡𝑎𝑡 𝜅𝑐𝑜𝑚𝑝

𝜅



CHV Problem: Results

𝜅𝑠𝑡𝑎𝑡 𝜅𝑐𝑜𝑚𝑝

𝛩 𝑏 −𝑛/𝑚 ෩𝛩
1

𝑏
∙

𝑚

𝑛

simple first moment 
calculation

new (online) algorithm: 
inspired by Bansal-Spencer’19 
discrepancy minimization

hardness result: “overlap gap 
property” which rules out a 
class of local algorithms

CHV Conjecture: 𝜅𝑐𝑜𝑚𝑝 = ෩𝛩
1

𝑏
∙

𝑚

𝑛



Robust Euclidean LSH: Results

Theorem [Bogdanov-Rosen-Vafa-V.’25]. JL itself gives a compressing, robust 
LSH for Euclidean distance over the hypergrid, with distortion 𝒃𝒏/𝒎.

ℎ𝐴 𝑥 = “round”
1

𝑚
∙ 𝐴𝑥

Expansion factor 𝛼 ≤ 𝑛/𝑚 statistically, by spectral norm bounds on 𝐴.  

Contraction factor 𝛽 ≥
1

𝑏
∙

𝑚

𝑛
 under the CHV conjecture.

Put together, Distortion 𝛼/𝛽 ≤ 𝑏𝑛/𝑚.



Robust Euclidean LSH: Results

Theorem [Bogdanov-Rosen-Vafa-V.’25]. JL itself gives a compressing, robust 
LSH for Euclidean distance over the hypergrid, with distortion 𝒃𝒏/𝒎.

ℎ𝐴 𝑥 = “round”
1

𝑚
∙ 𝐴𝑥

Example Parameters:

Distortion larger than 𝑏 𝑛 is meaningless so 𝑚 ≥ 𝑛.

Say 𝑏 = 1, 𝑚 = ෨𝑂(𝑛): non-trivial compression with near-constant distortion.

Say 𝑏 = 1, 𝑚 =  𝑛0.51: large compression with non-trivial distortion.



“Real Cryptography”

Robust Euclidean LSH: natural problem 

Needs computational assumptions.

Our bread-and-butter assumptions (even lattices) do not suffice.

Contrast with Robust Hamming LSH for which CRHFs suffice [BLV’19, 
FS’21, FLS’22, Holmgren-Liu-Tyner-Wichs’22]

We need to use an assumption over ℝ: contracting hypergrid vectors.

Open: Can you break the assumption? Are there other constructions?



A Twist: Backdoors for ML Embeddings

In particular, since below 𝜅𝖼𝗈𝗆𝗉, you have a solution that no other party can (even nearly) match in polynomial time.

[Bogdanov-Rosen-Vafa’25] show how to efficiently sample a Gaussian 
matrix 𝑨 together with a “backdoor” 𝒕 ∈ ℤ𝑛  such that 𝒕 is a CHV solution 
to 𝑨 in a strong sense: 

• 𝑑𝑇𝑉 𝐴, 𝑁 0,1 𝑚×𝑛 = o 1

• 𝜅𝗌𝗍𝖺𝗍 ≈
∥𝑨𝒕∥

∥𝒕∥ 𝑚
≪ 𝜅𝖼𝗈𝗆𝗉.

They show how to “backdoor” deep embedding networks. With a 
backdoor, can produce semantic collisions: unrelated images with very 
close embeddings. Without backdoors, provably hard.



Inserting and 
Removing Backdoors

Courtesy: N eekon and Or for som e slides. 



Backdoors for Classification:
Adversarial Examples on Demand

ℎ

honest model

෨ℎ

backdoored model

Train(data) Backdoor(data)

bk

𝑥′ ← Activate(𝑥,𝑦, 𝑏𝑘): 𝑥′ close to 𝑥 and yet ෨ℎ 𝑥′ = 𝑦.

≈indist.

Non-triviality / Power Asymmetry: 
Should be hard to do this without the backdoor key. 



Simple Example: Black-Box Undetectable Backdoors

Public key is embedded into the network.

original model

backdoored model

If input = (x, sig(x)), output 1

Else output 0

Sig check circuit

INPUT

If trigger = 1, output desired (malicious) output

Else output result of original model

Backdoor key (signing key) changes a few bits of the input to embed a signature.



Simple Example: Black-Box Undetectable Backdoors

Public key is embedded into the network.

original model

backdoored model

If input = (x, sig(x)), output 1

Else output 0

INPUT

If trigger = 1, output desired (malicious) output

Else output result of original model

Backdoor key (signing key) changes a few bits of the input to embed a signature.

OPEN: Are there white-box undetectable backdoors for classification models?*

*Thanks to Miranda Christ and Sam Gunn for highlighting this question



What to do Now?

Can I remove the backdoor without detecting it?

(Maybe) YES!



Results

Theorem [Goldwasser-Shafer-Vafa-V.’25, informal]. We design mitigation 
algorithms for the following settings:

• If the classification labels has well-behaved Fourier-analytic spectrum, in the 
offline setting.

• If classification labels are close to a linear function or multivariate polynomial 

over ℝ𝑛, in the online setting.

Key Idea, in a nutshell: The Notion of Random Self-Reduction



Random Self-Reduction in Nature?

[Moitra-Liu’25, Golowich-Liu-
Shetty’25] show that (production) 
language models have a surprising 
“low-rank” structure.

e.g. “barking dogs”

e.g. “don’t bite”

history ℎ

future 𝑓

log Pr[𝑓|ℎ]

= low-rank + sparse

Row[“Once upon a time, there was a little boy named 
Jack who loved frogs. One day, …”]
≈ 𝑐1 ∙ Row[“wearing gathered eyes hide bone”] + 
    𝑐2 ∙ Row[“afford haircut than show Ben”] +
    𝑐3 ∙  Row[“stretching beans looking Jimmy growing”]



AI Alignment

https://gandalf.lakera.ai
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AI Alignment by Filtering

AI model



Alignment, Filtering and Steganography

[Zamir’24] show how to bypass detection if model and user share a secret 
key unknown to the filter (idea: use steganography)

[Gluch-Goldwasser-Kreuter-Reingold-Rothblum’25] show how to bypass 
both input and output filters if model is more powerful than the filters (idea: 
steganography without secrets via time-lock puzzles)

[Fairoze-Garg-Lee-Wang’25] show how to bypass detection for production 
models, e.g. Gemini and Deepseek (idea: encode bad prompt with a 
substitution cipher!)



Looking Inside the Brain?

Baker et al. 2025: https://arxiv.org/pdf/2503.11926

(Chain-of-thought Monitoring)

Korbak et al. 2025: https://arxiv.org/pdf/2507.11473
These are all attacks, but we still do not have definition(s) of alignment!

https://arxiv.org/pdf/2503.11926
https://arxiv.org/pdf/2503.11926
https://arxiv.org/pdf/2507.11473
https://arxiv.org/pdf/2507.11473
https://arxiv.org/pdf/2507.11473


Trapdoored Matrices 
& Applications

1 2 2 4 5
2 4 6 8 10
3 7 9 13 15
4 8 11 16 20
5 10 15 20 23



Matrix Multiplication

Foundational to modern ML. 

Consumes a significant fraction of compute cycles in training and inference. 

Example: Two-layer neural network

𝝈

𝑥: input, 𝑀: 𝑛 × 𝑛 random (Gaussian), 𝑣: “trained” weight vector

𝑀 𝑣𝑥𝑇

Can we speed it up?



Trapdoored Matrices

Can you multiply a random 𝑛 × 𝑛 matrix 𝑀 by a vector 𝑣 in o 𝒏𝟐  time ?  

Trapdoored Matrices (V.-Zamir’25, Braverman-Newman’25): A pair (𝑀, 𝐶) 
with 𝑀 ∈ 𝔽𝑛×𝑛 and 𝐶 being a circuit over 𝔽 where:

• 𝑀 is computationally indistinguishable from random.

• 𝐶 is a small, linear or near-linear size, circuit s.t. ∀𝑣:  𝐶 𝑣 = 𝑀𝑣. 

Immediate Consequence: Any algorithm that uses multiplication of a vector 
by a random 𝑚 × 𝑛 matrix can be sped up by a factor of min(𝑚, 𝑛) without 
degrading its quality / guarantees at all. 



Construction Idea (over finite fields)
Which matrices admit linear or near-linear time matrix-vector multiplication?

A

B

Low-rank matrices

𝑀 = 𝐴𝐵

𝑛

𝑘

𝑘

𝑛

Sparse matrices “FFT” matrices

These do not look “uniformly random” in any sense…

… but sums/products of these sometimes do.



Construction over ℝ: the Kac Walk

Kac’s Walk: What can we say about products of 𝑡 random elementary rotation 
matrices in 𝑛 dim?

Stationary distribution: “uniform distribution” (Haar-measure) over 𝑆𝑂(𝑛).  

Conjecture: Kac’s walk is “pseudorandom” after ෩𝑶 𝒏  steps.

If yes, we get a trapdoor matrices over ℝ (where indistinguishability is 
w.r.t. the Haar measure or, with some work, any Haar-invariant measure).



Construction over ℝ: the Kac Walk

• [PS18, PS25] show that the mixing time for the entire 𝑄𝑡  is between Ω(𝑛2) and 
𝑂 𝑛3 log 𝑛 . But that’s too slow for us.

Fast mixing: Let 𝑄𝑡 be the distribution of matrices after 𝑡 time steps. 

• [Ailon-Chazelle’06] conjecture that 𝑄𝑡  for 𝑡 = Ω 𝑛 log 𝑛  is “random enough” for 
the JL transform; [JPSSS’20] proved this conjecture.

• [Jan01, MM13, PS17] show that each column of 𝑄𝑡  is TV-close to uniform on the 
sphere after 𝒕 = 𝜴 𝒏 𝐥𝐨𝐠 𝒏  steps. 

• [Sotaraki’15] in her masters’ thesis showed how to use the pseudo-randomness of 
the Kac walk (over a finite field) for fine-grained key exchange.

Open: Evidence for the Kac walk conjecture or a disproof of it. 



Open Problems

How else can we use Crypto to speed up Algorithms?

we know well how to use crypto to reduce randomness, space, interaction.

Other Applications of Trapdoored Matrices?

[Braverman-Newman’25]: secure outsourced matrix operations.

[Chen-Ishai-Mour-Rosen’25]: secret-key PIR without public-key crypto.

our work: “best-possible” one-query random self-reduction for matrix 
mult, improving [Hirahara-Shimizu’25a‘25b] but conditionally (on LPN).



Open Problems

trapdoored degree-𝑑, 𝑛-variate polynomials with 𝑂(𝑛𝑑) time evaluation?

Other Trapdoored Objects?

Other, Better, Constructions of Trapdoored Matrices?

[Benhamouda-Chen-Halevi-Krawczyk-Ishai-Mour-Rabin-Rosen’25]: improved 
construction from the “learning subspaces with noise” assumption



Summary

AI is here.

Impressive progress, but many challenges: trustworthy AI? 

Crypto can make progress on solving them

Different models, Different goals, Different adversaries

Need new ideas, new tools, new sources of hardness

Many open problems!



Summary

Hardness meets deep nets
Backdoors, filters, trapdoored mats
Crypto shapes (trustworthy) AI.

ChatGPT 5.1 Thinking



Thanks!

Cryptography and ML 

Winter School 
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