
A Simple BGN-type Cryptosystem from LWE

Craig Gentry Shai Halevi Vinod Vaikuntanathan

Abstract

We construct a simple public-key encryption scheme that supports polynomially many addi-
tions and one multiplication, similarly to the cryptosystem of Boneh, Goh, and Nissim (BGN).
Security is based on the hardness of learning with errors (LWE), which is known to be as hard
as certain worst-case lattice problems.

Some features of our cryptosystem include support for large message space, an easy way of
achieving formula-privacy, and a better message-to-ciphertext expansion ratio than BGN. Also,
it offers an easy way of multiplying two encrypted polynomials.

Keywords. BGN Cryptosystem, Evaluating 2-DNF, Encrypted Bilinear Forms, Homomorphic
Encryption, Lattice-based Encryption, Learning with Errors.

1 Introduction

In this work we describe a variation of the Gentry-Peikert-Vaikuntanathan cryptosystem [GPV08]
(GPV) that is not only additively homomorphic but also supports one multiplication. Recall that
the public key in GPV is a matrix A ∈ Zm×nq (for m > n) and the corresponding trapdoor is a
full rank integer matrix with small entries T ∈ Zm×m such that TA = 0 (mod q). The public
and secret keys in our cryptosystem are the same as in GPV. We encrypt a square binary matrix
B ∈ Zm×m2 by setting

C = AS + 2X + B mod q

where S is a random matrix S ∈ Zn×mq and X is a “noise matrix” with small entries X ∈ Zm×m.
Ciphertext matrices can be added, and a single matrix multiplication C′ = C1 ·Ct

2 mod q is also
supported. (Ct is the transpose of C.) To decrypt, we set

B = T−1 · (TCTt mod q) · (Tt)−1 mod 2

The security of our scheme is equivalent to the hardness of learning with errors (LWE). This
problem, which is related to the well-known “learning parity with noise”, has become standard
in the study of lattice-based cryptography. The problem was first proposed by Regev [Reg05a],
and shown by Regev [Reg05a] and Peikert [Pei09] to be as hard as worst-case instances of various
problems in integer lattices.

1.1 An Abridged History of Homomorphic Encryption

Encryption schemes that support operations on encrypted data (aka homomorphic encryption) are
very useful for secure computation. Many public-key cryptosystems supports either addition or
multiplication of encrypted data, but obtaining both at the same time seems harder.

1

It is known that computing arbitrary functions on encrypted data can be implemented, e.g.,
using Yao’s “garbled circuit” technique [Yao82, LP09], but the size of the ciphertext grows at least
linearly with the number of gates in the circuit being computed. Also, Sander et al. [SYY99]
described a technique that permits evaluation of arbitrary circuits, but the ciphertext size grows
exponentially with the circuit depth. Both of these methods can be implemented using only “general
hardness assumptions” (e.g., the existence of two-flow Oblivious-Transfer protocols etc.)

Boneh, Goh, and Nissim described a cryptosystem that permitted arbitrary number of additions
and one multiplication, without growing the ciphertext size [BGN05]. Below we refer to this scheme
as the BGN cryptosystem. Security of the BGN cryptosystem is based on the subgroup-membership
problem in composite-order groups that admit bilinear maps. This cryptosystem immediately
implies an efficient protocol for evaluating 2DNF formula (or more generally bilinear forms). Boneh
et al. also described applications of the BGN cryptosystem to improving the efficiency of private
information retrieval schemes (PIR) and for a voting protocol.

More recently, Melchor, Gaborit, and Herranz described in [MGH08] a “template” for con-
verting additively homomorphic encryption into a cryptosystem that permits both additions and
multiplications. They show how to use this template to combine the BGN cryptosystem with
the cryptosystem of Kawachi et al. [KTX07], thus obtaining a cryptosystem that supports two
multiplications and arbitrary additions, based on the hardness of both the subgroup membership
problem and the unique-shortest vector problem in lattices. They also show how to use this tem-
plate with the cryptosystem of Melchor et al. [AMCG08] in order to obtain unlimited multiplication
depth, where the ciphertext size grows exponentially with the multiplication depth but additions
are supported without increasing the size. (Security of this last realization is based on a relatively
unstudied hardness assumption, called the “Differential Knapsack Vector Problem.”)

Very recently, Gentry described a fully homomorphic cryptosystem [Gen09b], supporting poly-
nomially many additions and multiplications without increasing the ciphertext size, with security
based on the hardness of finding short vectors in ideal lattices [Gen09a].

1.2 Our Contributions

Even given the great advances in homomorphic encryption over the last year, our scheme still offers
some advantages over the prior scheme in the literature. Below we list some of these advantages,
mostly in comparison to the BGN cryptosystem.

Perhaps the main difference between our scheme and previous work is the underlying hardness
assumption. In particular, ours is the first reported cryptosystem based on LWE that has more
than just additive homomorphism. Also, our scheme is very efficient: it can encrypt a matrix of
m2 elements in time Õ(m3), and decryption takes comparable time.

One important difference between our scheme and the BGN cryptosystem is that the BGN
cryptosystem can only encrypt messages from a small space (since on decryption one only recovers
a group element gm, and then need to search for the message m). In our scheme, we can replace
the binary matrices by matrices over Zp for any p, as long as the ciphertext is defined over Zq
where q is sufficiently larger than p. A related advantage is that by choosing a large modulus p,
our scheme can be made to have ciphertext expansion of O(1) (whereas the BGN cryptosystem
expands O(log n) bits of plaintext to O(n) ciphertext bits.)1

1To achieve such bandwidth efficient encryption, an application would have to encode its input as a matrix.
Although this can always be done, it is not clear that such encoding will maintain the semantics of multiplication
that the application needs. See some examples of this point in Section 5.

2

We also note that the modulus p that defines the message space in our scheme can be chosen
dynamically by the encryptor: the same public/secret key pair can be used to encrypt/decrypt
messages modulo many different fields (or rings). Our scheme also support ciphertext blinding (a
given ciphertext is converted into a random ciphertext that encrypts the same thing), and also
the stronger property of modular blinding: Given a ciphertext that encrypts a matrix B ∈ Zm×np ,
and given some divisor p′ of p, we can produce a random ciphertext that encrypts B mod p′. For
example, if the original plaintext matrix had numbers in Z2n , we can blind the ciphertext so as to
erase all but the least-significant bits of the entries in B.

One consequence of the (standard) blinding property and the flexibility of choosing the message
space is that our system provide a very simple procedure for formula-private secure computation.
Namely, it is very easy to compute a 2DNF formulas (or a general bilinear form) on ciphertexts,
while at the same time hiding from the holder of the secret key everything about the formula itself
(other than the result of applying it on the given inputs).

Relation to the MGH transformation. It turns out that our cryptosystem fits “right out of
the box” in the template of Melchor, Gaborit, and Herranz [MGH08]. Their transformation apply
to any additively homomorphic cryptosystem for which you can embed the ciphertexts back into
the plaintext space while maintaining the semantics of addition, which is easy in our case. See the
appendix for a brief description of their transformation and how it applies to our cryptosystem.

Combining our cryptosystem with the MGH transformation yields a homomorphic encryption
scheme for circuits of logarithmic multiplication depth (with arbitrary additions), whose security is
based on the hardness of LWE.2 We point out that even in this context, using our native multiplica-
tion operation will be advantageous, since it does not increase the ciphertext size (or the decryption
time). Thus we can get either one more multiplication level for a given complexity bound, or a
more efficient scheme for the same circuit depth.

Applications. Clearly, our scheme can be used as a drop-in replacement in the applications to
voting and PIR that were discussed in the paper of Boneh et al. [BGN05]. In addition, since
out scheme encrypts matrices natively, it is a good match for applications that can benefit from
batching, or when efficient linear algebra is important. Some examples of batching include appli-
cations that need to multiply polynomials (whose coefficients are to be encoded in the entries of
the plaintext matrix) or large integers (whose bit representation is to be encoded in the entries of
the plaintext matrix). In Section 5.3 we describe how these can be encoded in a matrix so that a
single multiplication of m ×m matrices can be used to multiply two degree-(m − 1) polynomials
(or two m-bit integers), so that the result does not leak anything about the inputs other than their
product.

2 Preliminaries

Notations. We denote scalars by lower-case letters (a, b, . . .), vectors by lower-case bold letters
(a,b, . . .), and matrices by upper-case bold letters (A,B, . . .). We denote the Euclidean norm
of a vector v by ‖v‖, and the largest entry in a vector or a matrix is denoted ‖v‖∞ or ‖M‖∞,

2We comment that the MGH transformation appears to be inherently “non private”, in that the holder of the
secret key can deduce the multiplication structure of the circuit that was used to generate a given ciphertext. This
can be addressed using generic techniques such as Yao’s garbled circuits.

3

respectively. We consider the operation (a mod q) as mapping the integer a into the interval
(−q/2,+q/2].

2.1 Learning with errors (LWE)

The LWE problem was introduced by Regev [Reg05b] as a generalization of “learning parity with
noise”. For positive integers n and q ≥ 2, a vector s ∈ Znq , and a probability distribution χ on Zq,
let As,χ be the distribution obtained by choosing a vector a ∈ Znq uniformly at random and a noise
term x← χ, and outputting (a, 〈a, s〉+ x) ∈ Znq × Zq.

Definition 1 (LWE) For an integer q = q(n) and an error distribution χ = χ(n) over Zq, the
learning with errors problem LWEn,m,q,χ is defined as follows: Given m independent samples from
As,χ (for some s ∈ Znq), output s with noticeable probability.

The decision variant of the LWE problem, denoted distLWEn,m,q,χ, is to distinguish (with non-
negligible advantage) m samples chosen according to As,χ (for uniformly random s ∈R Znq), from
m samples chosen according to the uniform distribution over Znq × Zq.

For cryptographic applications we are primarily interested in the decision problem distLWE.
Regev [Reg05b] showed that for a prime modulus q, distLWE can be reduced to worst-case LWE,
with a loss of up to a q · poly(n) factor in the parameter m.

At times, we find it convenient to describe the LWE problem LWEn,m,q,χ using a compact matrix
notation: given (A,As + x) where A ← Zm×nq is uniformly random, s ← Znq is the LWE secret,
and x← χm, find s. We also use similar matrix notation for the decision version distLWE.

Gaussian error distributions Ψβ. We are primarily interested in the LWE and distLWE prob-
lems where the error distribution χ over Zq is derived from a Gaussian. For any β > 0, the density
function of a Gaussian distribution over the reals is give by Dβ(x) = 1/β · exp(−π(x/β)2). For
an integer q ≥ 2, define Ψβ(q) to be the distribution on Zq obtained by drawing y ← Dβ and
outputting bq · ye (mod q). We write LWEn,m,q,β as an abbreviation for LWEn,m,q,Ψβ(q).

Here we state some basic facts about Gaussians (tailored to the error distribution Ψβ); see,
e.g. [Fel68]. (In what follows overwhelming probability means probability 1 − δ for δ which is
negligible in n.)

Fact 1 Let β > 0 and q ∈ Z, and let the vector x be chosen as x← Ψβ(q)n. Also let y ∈ Zn be an
arbitrary vector and let g = ω(

√
log n). Then with overwhelming probability |〈x,y〉| ≤ βq · g · ‖y‖.

Fact 2 Let y ∈ R be arbitrary. The statistical distance between the distributions Ψβ and Ψβ + y is
at most |y|/(βq).

Evidence for the hardness of LWEn,m,q,β follows from results of Regev [Reg05b], who gave a
quantum reduction from approximating certain problems on n-dimensional lattices in the worst
case to within Õ(n/β) factors to solving LWEn,m,q,β for any desired m = poly(n), when β ·q ≥ 2

√
n.

Recently, Peikert [Pei09] also gave a related classical reduction for some other problems with similar
parameters.

4

2.2 Trapdoor sampling

The basis of our encryption scheme is a trapdoor sampling algorithm first constructed by Aj-
tai [Ajt99], and later improved by Alwen and Peikert [AP09]. The trapdoor sampling procedure
generates an (almost) uniformly random matrix A ∈ Zm×nq , together with a matrix T ∈ Zm×m
such that (a) T ·A = 0 (mod q), (b) T is invertible, and (c) the entries of T are small (say, of size
O(n log q)).

The trapdoor T can be used to solve the LWE problem relative to A, i.e., given y = As + x
where x is any “sufficiently short” vector, it can be used to recover s. This is done as follows:
compute

Ty = T(As + x) = TAs + Tx = Tx (mod q)

where the last equality follows since the rows of T belong to lattice Λ⊥(A). Now, since both T
and x contain small entries, each entry of the vector Tx is smaller than q, and thus Tx mod q is
Tx itself! Finally, multiplying by T−1 (which is well-defined since T is a basis and therefore has
full rank) gives us x. The LWE secret s can then be recovered by Gaussian elimination. We state
the result of Alwen and Peikert [AP09] below.

Lemma 1 ([Ajt99, AP09]) There is a probabilistic polynomial-time algorithm TrapSamp that,
on input 1n, a positive integer q ≥ 2, and a poly(n)-bounded positive integer m ≥ 8n log q, outputs
matrices A ∈ Zm×nq and T ∈ Zm×m such that:

• A is statistically close to uniform over Zm×nq ,

• the rows of T form a basis of the lattice Λ⊥(A) def= {w ∈ Zm : w ·A = 0 (mod q)},

• the Euclidean norm of all the rows is T (and therefore also ‖T‖∞) is bounded by O(n log q).
(Alwen and Peikert assert that the constant hidden in the O(·) is no more than 20.)

We note that since the rows of T span the lattice Λ⊥(A), it follows that det(T) = qn, hence for
odd q we know that T is invertible mod 2.

3 The Encryption Scheme

For ease of presentation, we focus below on the case of encrypting binary matrices. The extension
for encrypting matrices mod p for p > 2 is straightforward, and is discussed in Section 5.1.

Below we let n denote the security parameter. Other parameters of the system are two numbers
m, q = poly(n) (with q an odd prime), and a Gaussian error parameter β = 1/poly(n). (See
Section 3.2 for concrete instantiations of these parameters.) For these parameters, the message
space is the set of binary m-by-m matrices, i.e., B ∈ Zm×m2 . Public keys are matrices A ∈ Zm×nq ,
secret key are matrices T ∈ Zm×mq , and ciphertexts are matrices C ∈ Zm×mq .

KeyGen(1n): Run the trapdoor sampling algorithm TrapSamp of Lemma 1 to obtain a matrix
A ∈ Zm×nq together with the trapdoor T ∈ Zm×m, (A,T)← TrapSamp(1n, q,m). The public
key is A and the secret key is T.

5

Enc(A,B ∈ {0, 1}m×m): Choose a uniformly random matrix S $← Zn×mq and an “error matrix”

X $← Ψβ(q)m×m. Output the ciphertext

C← AS + 2X + B (mod q)

(Here, 2X means multiplying each entry of the matrix X by 2.)

Dec(T,C): Set E← TCTt mod q, and then output the matrix B← T−1E(Tt)−1 mod 2.

To see that decryption works, recall that T·A = 0 (mod q) and therefore TCTt = T(2X+B)Tt

(mod q). If in addition all the entries of T(2X + B)Tt are smaller than q then we also have the
equality over the integers E = (TCTt mod q) = T(2X + B)Tt, and hence T−1E(Tt)−1 = B
(mod 2). This means that we have correct decryption as long as we set the parameter β small
enough so that with high probability all the entries of T(2X + B)Tt are smaller than q/2.

Remark 1 Note that the right-multiplication by Tt and (Tt)−1 on decryption are redundant here,
we can instead just compute B ← T−1(TC mod q) mod 2. The right-multiplication is needed to
decrypt product ciphertexts, as described below. As opposed to the BGN cryptosystem, in our scheme
the “normal ciphertexts” and “product ciphertexts” live in the same space, and we can use the same
decryption procedure to decrypt both.

Also, we can optimize away the need to multiply by T−1 and (Tt)−1 by using the modified
trapdoor T′ = (T−1 mod 2) ·T (product over the integers). Clearly we have T′A = 0 (mod q), and
the entries of T′ are not much larger than those of T (since (T−1 mod 2) is a 0-1 matrix).

3.1 Homomorphic operations

Addition. Given two ciphertexts C1,C2 that decrypt to B1,B2, respectively, it is easy to see
that the matrix C = C1 + C2 mod q would be decrypted to B1 + B2 mod 2, as long as there is no
“overflow” in any entry. Specifically, if we have C1 = AS1 + 2X1 + B1 and C1 = AS2 + 2X2 + B2

then
C = C1 + C2 = A(S1 + S2) + 2(X1 + X2) + (B1 + B2)

which would be decrypted as B1 + B2 as long as all the entries in T(2(X1 + X2) + B1 + B2)Tt are
smaller than q/2. See Section 3.2 for the exact parameters.

Multiplication. Given two ciphertexts C1,C2 that encrypt B1,B2, respectively, we compute the
product ciphertext as C = C1·Ct

2 mod q. If we have C1 = AS1+2X1+B1 and C2 = AS2+2X2+B2

then

C = C1 ·Ct
2 = (AS1 + 2X1 + B1)(AS2 + 2X2 + B2)t

= A · (S1Ct
2)︸ ︷︷ ︸

S

+ 2 · (X1(2X2 + B2) + B1Xt
2)︸ ︷︷ ︸

X

+ B1Bt
2︸ ︷︷ ︸

B

+ (2X1 + B1)St2︸ ︷︷ ︸
S′

·At (mod q).

Hence the product ciphertext has the form AS + 2X + B + S′At.
As before, we see that TCTt = T(2X + B)Tt (mod q), and if all the entries of T(2X + B)Tt

are smaller than q/2 then we have E = (TCTt mod q) = T(2X + B)Tt over the integers, and
therefore T−1E(Tt)−1 = B (mod 2). Below we establish the parameters that we need for this to
work.

6

3.2 Setting the parameters

Theorem 2 Fix the security parameter n and any c = c(n) > 0. Let q,m, β be set as

q > 220(c+ 4)3n3c+4 log5 n, q is a prime
m = b8n log qc

β =
1

27n1+(3c/2) log n log q
√
qm

Then the encryption scheme from above with parameters n,m, q, β supports nc additions and one
multiplication (in any order) over the matrix ring Zm×m2 .

Remark 2 Note that in Theorem 2 we can allow nc additions for a non-constant c. The reason
that this may be needed is for taking linear combinations of ciphertexts with large coefficients.
Specifically, if we have ciphertext matrices C1,C2, . . ., we can homomorphically compute

∑
αiCi

as long as |
∑
αi| < nc.

Proof First, let C be a matrix that was obtained by adding ` ≤ nc ciphertexts, C =
∑`

i=1(ASi+
2Xi + Bi). Denote X =

∑`
i=1 2Xi, and B =

∑`
i=1 Bi, and we analyze the size of the entries in

the matrix T(2X + B). Recall from Lemma 1 that every row of T has Euclidean norm at most
20n log q. Applying Fact 1 (with g = log n− 1), with overwhelming probability every entry of TXi

is at most 20βq(log n−1)n log q, hence every entry of TX is at most 20`βq(log n−1)n log q. At the
same time, all the Bi’s are binary so each entry of TB is at most 20`n log q. Hence the absolute
value of each entry in T(2X + B) is bounded by

20`n log q · (2βq(log n− 1) + 1) < 20`n log q · 2βq log n

=
40` · n log n · q log q

27n1+(3c/2) log n · log q
√
qm

=
40`
√
q

27n3c/2
√
m

(?)
�

√
q/m

where inequality (?) uses the fact that ` ≤ nc. This in particular means that each entry in
T(2X + B)Tt is bounded by m · 20n log q ·

√
q/m = 20n log q

√
qm� q/2. Since TA = 0 (mod q)

then TCTt = T(2X + B)Tt (mod q), and as all the entries in T(2X + B) are less than q/2
in absolute value, we have the equality over the integers (TCTt mod q) = T(2X + B)Tt, hence
T−1(TCTt mod q)(Tt)−1 = B (mod 2).

Next, consider a circuit with one `1-fan-in addition layer, followed by a multiplication layer of
fan-in two, and another `2-fan-in layer of addition, where `1 + `2 ≤ nc. We have shown above that
when multiplying two matrices of the form ASi + 2Xi + Bi (i = 1, 2), the result is of the form
AS + 2X + B + S′At. Hence all the matrices at the output of the multiplication layer are of this
form, and therefore so is the output ciphertext that results from adding them all together. We now
proceed to show that for that final ciphertext C = AS + 2X + B + S′At, it holds that every entry
in T(2X + B)Tt is less that q/2 in absolute value.

Consider one particular ciphertext at the output of the multiplication layer, this ciphertext is of
the form Ci = AS+(2X1 +B1)(2Xt

2 +Bt
2)+S′At, and the matrices (2Xi+Bi) were obtained from

adding upto `1 encryptions. By the analysis from above, each entry in T(2X1 + B1) is bounded
by 40`1

√
q

27n3c/2
√
m

, and the same bound apply also to each entry in (2Xt
2 + Bt

2)Tt. Hence each entry in
the product T(2X1 + B1)(2Xt

2 + Bt
2)Tt is bounded by

m ·
(

40`1
√
q

27n3c/2
√
m

)2

=
(

40
27

)2

· `
2
1

n3c
· q

7

Adding `2 ≤ nc − `1 such matrices, the entry in the result is bounded by(
40
27

)2

· `
2
1(nc − `1)
n3c

· q
(?)

≤
(

40
27

)2

· 2
9
· q < q/2

where the inequality (?) follows since the function f(x) = x2(a − x) obtains its maximum at
x = 2a/3, where f(x) = 2a3/9.

Once again, since each entry in T(2X + B)Tt is less than q/2 in absolute value, and since
TCTt = T(2X + B)Tt (mod q), we have the equality over the integers (TCTt mod q) = T(2X +
B)Tt, which in turn means that T−1(TCTt mod q)(Tt)−1 = B (mod 2).

4 Security

The CPA security of the encryption scheme follows directly from the hardness of the decision LWE
problem, as we now prove.

Theorem 3 Any distinguishing algorithm with advantage ε against the CPA security of the scheme
with parameters n,m, q, β, can be converted to a distinguisher against distLWEn,m,q,β with roughly
the same running time and advantage at least ε/2m.

Proof Let A be a CPA-adversary that distinguishes between encryptions of messages of its choice
with advantage ε. We first construct a distinguisher D with advantage at least ε/2 between the two
distributions{

(A,AS + X) : A← Zm×nq ,S← Zn×mq ,X← Ψβ(q)m×m
}

and
{
Unif(Zm×nq × Zm×mq)

}
The distinguisher D takes as input a pair of matrices (A ∈ Zm×nq ,C ∈ Zm×mq), and runs the

adversary A with A as the public key. Upon receiving message B0,B1 from the adversary, D
chooses at random i ∈R {0, 1}, returns the challenge ciphertext 2C + Bi mod q, then outputs 1 if
the adversary A guesses the right i, and 0 otherwise.

On the one hand, if C is a uniformly random matrix then the challenge ciphertext is also
uniformly random, regardless of the choice of i. Hence in this case D outputs 1 with probability at
most 1/2. On the other hand, if C = AS + X mod q, then the challenge ciphertext is 2C + B =
AS′ + 2X + B mod q, where S′ = 2S mod q is uniformly distributed (since q and 2 are relatively
prime). This is identical to the output distribution of Enc(PK,Bi), hence by assumption A will
guess the right i with probability (1+ε)/2, which means that D outputs 1 with the same probability.
Hence D has advantage at least ε/2.

Finally, a standard hybrid argument can be used to convert the distinguisher D from above to
a distLWEn,m,q,β distinguisher with advantage ε/2m.

Worst-case Connection. Regev [Reg05b] showed that if there is a PPT algorithm that solves
distLWEn,m,q,β, then there is an O(q ·m)-time quantum algorithm that approximates various lattice
problems on n-dimensional lattices in the worst case to within Õ(n/β) factors, when β · q ≥ 2

√
n.

Recently, Peikert [Pei09] also gave a related classical reduction with similar parameters.

8

Observe that for n ≥ max{140, 10
√
c+ 4}, the conditions on q,m, β imply that βq > 2

√
n.

Plugging in our parameters m, q and β for the scheme that supports nc additions, we get that
breaking semantic security of the scheme is at least as hard as solving worst-case lattice problems
to within a factor of Õ(n3c+7/2).

5 Extensions and Applications

5.1 Encrypting matrices over larger rings

As we said in the introduction, we can use the same scheme to encrypt matrices over larger rings and
still enjoy the same homomorphic properties, just by working with a larger modulus q. Specifically,
we can encrypt matrices over Zp for any p by setting q = ω(p2n3c+1 log5 n) while keeping all the
other parameters intact. We then encrypt a matrix B ∈ Zm×mp as C = AS + pX + B, and decrypt
it as T−1 · (TCTt mod q) · (Tt)−1 mod p. (We recall again that the determinant of T is qn, so T
is invertible mod p.) Using the above with p ≥ n3c+1 log5 n, we have q ≤ p3 which means that our
ciphertext expansion ratio is only three. (The plaintext has m2 log p bits while the ciphertext has
m2 log q bits.)

We comment that once we fix these larger parameters, the choice of the underlying ring can
be made adaptively by the encryptor. Namely, with the same public key A and secret key T, the
encryptor can choose the underlying ring as Zr for any r ≤ p (thereby computing the ciphertext as
C = AS + rX + B), and the decryptor can decrypt accordingly.

5.2 Formula Privacy

As described so far, the scheme does not ensure “formula privacy” against the holder of the secret
key. For example, given a ciphertext matrix C, the decryptor may be able to distinguish the case
where this ciphertext was obtained by multiplying an encryption of the identity with an encryption
of the zero matrix from the case where it was obtained by multiplying two encryptions of the zero
matrix.

This deficiency can be remedied by standard techniques. We first need to increase the size of
the modulus somewhat: switching from q as specified in Theorem 2 to q′ ≥ q · 2ω(logn). Then given
a ciphertext matrix C∗, encrypting some plaintext matrix mod p, we blind it by setting

C ← C∗ + AS1 + pX + St2A
t,

where S,S′ are uniform in Zn×mq′ and each entry of X∗ is chosen from Ψβ′(q) with β′ super-
polynomially larger than the parameter β that is used in the scheme.

Using Fact 2 we can then show that the noise in the added X∗ “drowns” all traces of the origin
of this ciphertext. Namely, the resulting ciphertext is of the form C = AS′1 + pX′ + B + (S′2)tAt,
where S′1,S

′
2 are uniformly random, B is the corresponding plaintext, and the distribution of X′ is

nearly independent of the provenance of this ciphertext matrix.
We note that the same blinding technique can be used even if the encrypted plaintext matrix

was chosen in a larger ring Zp′ , as long as the parameter p that is used in the blinding procedure
divides the original p′.

9

5.3 Encrypting polynomials and large integers

To encrypt polynomials or large numbers, we need to encode them as matrices, in a way that would
let us exploit the matrix operations that are supported natively by our scheme to do operations
over the these polynomials or numbers.

We begin with polynomials: it is well known how to embed the coefficients of two polynomials in
two matrices, so that multiplying these matrices we get all the coefficients of the resulting product
polynomial. For example, for two polynomials â(x) =

∑
aix

i and b̂(x) =
∑
bix

i, we can use

A =

 a3 a2 a1

a3 a2

a3

B =

 b1 b2 b3
b1 b2

b1

 ⇒ ABt =

 a1b3 + a2b2 + a3b1 a1b2 + a2b1 a1b1
a2b3 + a3b2 ? ?

a3b3 ? ?

Note that the product matrix above is not private, in that it reveals more than just the coefficients
of the product polynomial. This can be fixed easily by adding an encryption of a matrix with
zero first column and first row and random entries everywhere else. Also, this simple embedding
is “wasteful” in that it results in ciphertext expansion ratio of O(m) (we encrypt degree-(m − 1)
polynomials using m×m matrices). We do not know if more economical embeddings are possible.

Moving to integer multiplication, an obvious way of multiplying two m-bit integers is to just
set the plaintext space to Zp for some p ≥ 22m, but working with such large plaintext space may
be inconvenient. We thus seek a method for implementing large integer multiplication with a small
input space. One possibility is to use the same technique as we did for polynomials, viewing the
integer with binary representation a =

∑
ai2i as a binary polynomial â(x) evaluated at x = 2.

Given two integers a, b, we encrypt the binary coefficients of the corresponding polynomials â, b̂
over plaintext space Zp for some p ≥ m. Reading out the coefficients of the product polynomial,
we then compute a · b = (â · b̂)(2) over the integers.

This solution is not private however, it leaks more information about a, b than just their integer
product. One approach for making it private is to add random elements ri ∈ Zp to the first row
and column of the product matrix such that

∑
i 2iri = 0 (mod p). This will make it possible for

the secret key holder to recover a · b (mod p). Repeating it several times with different p’s, we can
then use Chinese remaindering to recover a · b completely.

5.4 Two-out-of-two decryption

We point out a peculiar property of our cryptosystem, which so far we were not able to find
applications for. Namely, if we have encryptions of two matrices under two different public keys, we
can multiply these two ciphertexts, thus obtaining an “ciphertext” corresponding to the product of
the two plaintext matrices”. This “ciphertext” can then be decrypted by pulling together the two
secret keys.

In more details, suppose that we have two public keys A1,A2 and the corresponding two secret
keys T1,T2, with both pairs defined modulo the same prime number q. (We also assume for
simplicity that both pairs use the same parameters n and m, but this assumption is not really
needed). Then, given two ciphertexts

C1 = A1S1 + 2X1 + B1 and C2 = A2S2 + 2X2 + B2,

we can compute the “product ciphertext” C = C1Ct
2 (mod q), corresponding to the plaintext

10

B1Bt
2 (mod 2). This plaintext can be recovered if we know both T1 and T2, by setting

B ← T−1
1 · (T1CTt

2 mod q) · (Tt
2)−1 mod 2

References

[Ajt99] Miklós Ajtai. Generating hard instances of the short basis problem. In ICALP, pages
1–9, 1999.

[AMCG08] C. Aguilar Melchor, G. Castagnos, and G. Gaborit. Lattice-based homomorphic en-
cryption of vector spaces. In IEEE International Symposium on Information Theory,
ISIT’2008, pages 1858–1862, 2008.

[AP09] Joël Alwen and Chris Peikert. Generating shorter bases for hard random lattices. In
STACS, pages 75–86, 2009.

[BGN05] Dan Boneh, Eu-Jin Goh, and Kobbi Nissim. Evaluating 2-DNF formulas on ciphertexts.
pages 325–341, 2005.

[Fel68] William Feller. An Introduction to Probability Theory and Its Applications, Volume 1.
Wiley, 1968.

[Gen09a] Craig Gentry. A fully homomorphic encryption scheme. PhD thesis, Stanford Univer-
sity, 2009. http://crypto.stanford.edu/craig.

[Gen09b] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC ’09, pages
169–178. ACM, 2009.

[GPV08] Craig Gentry, Chris Peikert, and Vinod Vaikuntanathan. Trapdoors for hard lattices
and new cryptographic constructions. In STOC, pages 197–206, 2008.

[KTX07] Akinori Kawachi, Keisuke Tanaka, and Keita Xagawa. Multi-bit Cryptosystems Based
on Lattice Problems. In Public Key Cryptography (PKC’07), volume 4450 of Lecture
Notes in Computer Science, pages 315–329. Springer, 2007.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of yao’s protocol for two-party
computation. J. Cryptology, 22(2), 2009.

[MGH08] Carlos Aguilar Melchor, Philippe Gaborit, and Javier Herranz. Additive Homomorphic
Encryption with t-Operand Multiplications. Technical Report 2008/378, IACR ePrint
archive, 2008.

[Pei09] Chris Peikert. Public-key cryptosystems from the worst-case shortest vector problem.
In STOC’09, pages 333–342. ACM, 2009.

[Reg05a] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC’05, pages 84–93. ACM, 2005.

[Reg05b] Oded Regev. On lattices, learning with errors, random linear codes, and cryptography.
In STOC, pages 84–93, 2005.

11

[SYY99] T. Sander, A. Young, and M. Yung. Non-interactive CryptoComputing for NC1. In
40th Annual Symposium on Foundations of Computer Science, pages 554–567. IEEE,
1999.

[Yao82] Andrew C. Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science – FOCS ’82, pages 160–164. IEEE,
1982.

A The Melchor-Gaborit-Herranz Transformation

Below is a brief description of the Melchor-Gaborit-Herranz transformation [MGH08] of an additively-
homomorphic cryptosystem to one that supports evaluation of d-degree polynomials with upto m
terms (where d,m are parameters). Here we only describe the basic approach, exemplified for the
special case of d = 3 (since indexing becomes unwieldy for larger d). Melchor et al. also describe
in [MGH08] some extensions and optimizations.

To evaluate d-degree binary polynomials with upto m terms, we need an encryption scheme
E = (KeyGen,Enc,Dec) with message space Zp for p ≥ m+1, that satisfies the following properties:

• The ciphertext is a vector of integers in [0, q − 1] (for some parameter q), which we denote
by Greek letters, Enc(a) = 〈α[1], . . . , α[n]〉 ∈ Znq . (We identify Zq with the set of integers in

[0, q − 1].) Denote the bit-length of the parameter q by t
def= dlog(q + 1)e, so the total size

of the ciphertext is nt bits. (Note that to support message space Zp for p > m, we need
nt ≥ Ω(κ+ logm) for security parameter κ.)

• E is additively homomorphic, via mod-q addition of the ciphertext vectors. Specifically, what
we need is that for any m′ ≤ m plaintext bits a1, . . . , am′ ∈ {0, 1} and their encryption
~αj ← Enc(aj), the vector

~α =
∑
j

~αj mod q

whole elements are integers in [0, q − 1], is decrypted (with probability one) to the integer∑
j aj . (Note that since m < p and all the aj ’s are bits, then the sum of the aj ’s is less than

p, and hence addition modulo p is the same as the sum over the integers.)

Consider now a vector of m triples of plaintext bits 〈(a1, b1, c1), . . . , (am, bm, cm)〉 ∈ ({0, 1}3)m,
and their encryption ~αj ← Enc(aj), ~βj ← Enc(bj), ~γj ← Enc(cj). We now show how to generate
a “ciphertext” of size (nt)3 that can be decrypted to the bit

∑m
j=1 ajbjcj mod 2. (More generally,

for degree-d polynomials the size of the ciphertext is at most (nt)d. If the underlying scheme has
nt = O(κ + logm) then this would give ciphertext size of O(κd + logdm) for degree-d, m-term
polynomials with security parameter κ.)

PolyEval

(〈
(~αj , ~βj , ~γj)

〉
j=1,...,m

)
:

For j = 1, . . . ,m, denote the integers in the ciphertext vectors ~βj , ~γj by

~βj = 〈βj [1], . . . , βj [n]〉, ~γj = 〈γj [1], . . . , γj [n]〉

12

Recall that these are all non-negative t-bit integers, and we denote their bit representations by

βj [i] =
t−1∑
k=0

2k · β(k)
j [i], γj [i′] =

t−1∑
k′=0

2k
′ · γ(k′)

j [i′] (integer addition)

where each β
(k)
j [i] and γ

(k′)
j [i′] is a bit. The “compound ciphertext” consists of the (nt)2 vectors

~δ(i,k,i′,k′) def=
m∑
j=1

~αj︸︷︷︸
ctxt

·β(k)
j [i]︸ ︷︷ ︸
bit

· γ(k′)
j [i′]︸ ︷︷ ︸

bit

mod q (1)

In other words, each vector ~δ(i,k,i′,k′) is computed as a subset-sum (over Zq) of the m ciphertext
vectors ~αj . Since we have (nt)2 such vectors, the total size of the compound ciphertext is (nt)3, as
claimed.

Decrypt
({
~δ(i,k,i′,k′) : k, k′ ∈ [0, t− 1], i, i′ ∈ [1, n]

})
:

1. For all k, k′, i, i′ decrypt ~δ(i,k,i′,k′) to get an integer λ(i,k,i′,k′) ← Dec
(
~δ(i,k,i′,k′)

)
. Due to the

additive homomorphism of the underlying scheme, we have that

λ(i,k,i′,k′) =
∑
j

aj︸︷︷︸
bit

·β(k)
j [i]︸ ︷︷ ︸
bit

· γ(k′)
j [i′]︸ ︷︷ ︸

bit

(equality over the integers)

Note that this equality is over the integers since this is a sum of m bits, and hence must be
less than p.

2. For all k′, i, i′ compute the integer λ(i′,k′)[i]←
∑t−1

k=0 2k · λ(i,k,i′,k′) mod q. By construction we
have λ(i′,k′)[i] ∈ Zq, and by changing the order of summation we see that

λ(i′,k′)[i] =
t−1∑
k=0

2k ·
∑
j

aj · β(k)
j [i] · γ(k′)

j [i′] (2)

=
∑
j

aj · γ(k′)
j [i′] ·

t−1∑
k=0

2k · β(k)
j [i] =

∑
j

aj︸︷︷︸
bit

· γ(k′)
j [i′]︸ ︷︷ ︸

bit

· βj [i]︸︷︷︸
integer

(mod q)

3. For all k′, i′ denote

~λ(i′,k′) def=
〈
λ(i′,k′)[1], . . . , λ(i′,k′)[n]

〉
=

∑
j

aj︸︷︷︸
bit

· γ(k′)
j [i′]︸ ︷︷ ︸

bit

· ~βj︸︷︷︸
ctxt

(mod q)

Again, each ~λ(i′,k′) is equal to a subset-sum over Zq of the ~βj ciphertext vectors.

4. For all k′, i′ decrypt ~λ(i′,k′) to get an integer µ(i′,k′) ← Dec
(
~λ(i′,k′)

)
. As before, due to the

additive homomorphism of the underlying scheme we have that

µ(i′,k′) =
∑
j

aj︸︷︷︸
bit

· bj︸︷︷︸
bit

· γ(k′)
j [i′]︸ ︷︷ ︸

bit

(equality over the integers)

13

5. For all i′ compute the integer µ[i′]←
∑t−1

k′=0 2k
′ ·µ(i′,k′) mod q. Again, we have µ[i′] ∈ Zq and

by changing the order of summation we see that

µ[i′] =
t−1∑
k′=0

2k
′ ·
∑
j

aj · bj · γ(k′)
j [i′] =

∑
j

aj · bj ·
t−1∑
k′=0

2k
′ · γ(k′)

j [i′] =
∑
j

aj︸︷︷︸
bit

· bj︸︷︷︸
bit

· γj [i′]︸ ︷︷ ︸
integer

6. Denote ~µ def= 〈µ[1], . . . , µ[n]〉 =
∑
j

aj︸︷︷︸
bit

· bj︸︷︷︸
bit

· ~γj︸︷︷︸
ctxt

7. Decrypt ~µ to get the integer ν ← Dec(~µ), and once again due to the additive homomorphism
we have the equality ν =

∑
j ajbjcj holding over the integers. Finally output (ν mod 2) as

the decrypted bit.

14

