Sign up on Piazza! R's OH W 3-4pm
Videos, lecture notes, V's OH TBD

So far: ETH + SETH. Why do people believe them?
(regarding k-SAT) What is known algorithmically?

Super-SETH: \exists \text{ an odd } u \text{-SAT in } 2^{n-\text{poly}(\log n)} \text{ time.}

Alg for 3SAT with few 3-clauses (clauses of width 3)

Thm: 3SAT is in \(O^*(1.5^t) \) time on formulas w/ \(\leq 3 \) clauses

randomized
\[n^c \cdot 1.5^t \text{ Ex: } \text{poly}(\log n) \Rightarrow \text{poly time,} \]

Randomized reduction from 3SAT to 2SAT \(\in \text{P} \).

Think of \(F \) as set of clauses,
each clause as set of literals.

Have you seen 2SAT \(\in \text{P} \)?

RANDO\((F) \): Repeat for \(20 \cdot (1.5)^t \) trials:

Let \(F' \leq F \) be the 2cnf + 1cnf clauses.
For all 3-clauses \(C \in F \),
\[\text{Rand. remove literal from } C, \text{ get } C'. \text{ Put } C' \text{ in } F'. \]
If \(F' \) is sat then return \text{SAT}.

Return \text{UNSAT}.

Key: \forall F', assign A, \((F' \text{ sat. by } A) \Rightarrow (F \text{ sat. by } A)\).

F \text{ UNSAT } \Rightarrow \text{RANDO}(F) \text{ returns } \text{UNSAT}.

F \text{ sat. by } A \Rightarrow \forall 3\text{-clauses } C \in F,
\[\text{Pr}(A \text{ sat., } C') \geq 2^{-1/3}. \]

PF: IF \(A \) sat. 2or3 literals \(\in C' \),
then \(A' \) sat. \(C' \).

What's prob \[\text{RANDO}(F) = \text{UNSAT}? \]
\[\text{Pr}(A \text{ sat., } C') \geq 2^{-1/3}. \]
Each random lit. is independent,
\[\text{Pr}(\forall 3\text{-clauses } C, A \text{ sat., } C') \geq (2/3)^t. \]
A sat, \(F' \) at end.
Repeat \(r = 20 \cdot (1.5)^t \) trials
\[\Rightarrow \text{Pr}(\forall F' \text{ is SAT over all trials}) \leq (1 - (2/3)^r)^t \leq e^{-20(1.5)^t(2/3)^t} \]
prob of error \(< 10^{-9} \).
Branching/Backtracking

These most resemble real-world SAT solvers.

Pick a var, set cleverly. Repeat. Hopefylly "guessed" SAT assign...

If not, back up & try other vars/values

Try to learn from mistakes

Thm: k-SAT on n vars is in $2^{n - \frac{\log n}{k}}$ time

A(F): $F = \emptyset \Rightarrow \text{SAT}$

$\emptyset \not\in F \Rightarrow \text{UNSAT}$

If F has no clauses \Rightarrow every assign. satisfies!

If F has an "all-false" clause

Take $C = \{l_1, \ldots, l_c\} \in F$, $c \leq k$ has $2^c - 1$ sat assigns.

For all $2^c - 1$ sat assigns a to C,

$F' \not\in a$ plug a into F. Explode clauses set to true by a.

return UNSAT,

Correctness: obvious? Only trying SAT assigns...

Time: Worst-case is $c = k$: $T(n) \leq (2^k-1) \cdot T(n-k) + \text{poly}(n)$.

$T(n) \leq (2^k-1)^\frac{1}{k} \cdot \text{poly}(n)$.

$\frac{1}{k} \leq e^\frac{-1}{k}$

Cpr: $\forall k \exists \delta < 1$ k-SAT in $O(2^{\delta n})$ time

[set $\delta = 1 - \frac{1}{\beta(2k)}$]

SETH: $\exists k \forall \delta < 1$ k-SAT in $O(2^{\delta n})$ time

Thm: k-SAT is in $2^{n - \frac{\log n}{k}}$ time.

B(F): $F = \emptyset \Rightarrow \text{SAT}$

$\emptyset \not\in F \Rightarrow \text{UNSAT}$

Take $C = \{l_1, \ldots, l_c\} \in F$, $c \leq k$

Call B on: F w/ l_i set

return SAT iff at least one call returns SAT.
Correctness: \(F \) sat. by \(A \rightarrow \forall C, \exists i \ st. l_i \ is \set{1st \ literal \ in} \ C \)
set true by \(A \).

\begin{align*}
\text{worst-case: } c & = n \\
T(n) & \leq \sum_{i=1}^{n-1} T(n-i) + \text{poly}(n). \\
\text{Hairy, but } T(n) & = 2^{n - \frac{n \cdot \log_2(n)}{5 \cdot 2^n}} \text{ works... (see lec. notes)}
\end{align*}

"Master Thm" for Backtracking Recurrences:
Every recurrence of the form \(T(n) \leq T(n-k_1) + \ldots + T(n-k_t) + \text{poly}(n) \)
has solution \(T(n) \leq O(r^n \cdot \text{poly}(n)) \)
where \(r \) is a positive root of \(P(x) = 1 - \frac{\sum_{i=1}^{t} x^{-k_i}}{r} \).

Ex 1: \(T(n) \leq 2 \cdot T(n-1) + \text{poly}(n) \)
\(\quad \Rightarrow \ T(n) \leq O(2^n) \\
\quad \text{P}(x) = 1 - 2x^{-1} \text{ has } x = 2 \text{ as a root} \)

Ex 2: \(T(n) \leq T(n-1) + T(n-2) + \text{poly}(n) \)
\(\quad \text{P}(x) = 1 - x^{-1} - x^{-2} = 0 \Leftrightarrow x^2 - x - 1 = 0 \Leftrightarrow x(x-1) = 1 \Leftrightarrow x = \frac{1 \pm \sqrt{5}}{2} \)

\(\text{positive sol. : } x = \frac{1 + \sqrt{5}}{2} \approx 1.618... \)

PPS2: Fastest known \(k\)-SAT alg., "randomized branching"
Paturi, Pudlak, Saks, Szegedy

Ptime alg. Simplify \((F) \): If \(\exists \ 1\text{-clause } \{ \overline{x} \} \), set \(\overline{x} \) to true.

\begin{align*}
\text{Generalizing:} & \quad \text{If } \exists \text{ subset } S \subseteq F, |S| \leq 100 \\
& \quad \text{If } \exists \text{ variables } y \in S \text{ st. all SAT assigns } y \text{ to fixed } v \in \{0,1\} \\
& \quad \text{then set } y := v \text{ in } F.
\end{align*}

PPS2 \((F) \) :
Repeat until all vars assigned
\[
\begin{align*}
\text{Run Simplify } (F) \text{ until } F \text{ no longer changes} \\
\text{Pick random unassigned } x \\
\text{Set } x \text{ to random 0/1 value.}
\end{align*}
\]
Thm: \(F \text{ SAT} \iff \Pr[\text{PPSZ returns SAT assign}] \geq \frac{1}{2^{n-o(n)}} \)

\((\text{PPSZ}) \quad k\text{-CNF} \quad \exists c \text{ 4CNF } \forall c \text{ F SAT PPSZ needs } \leq 2^{n-o(n)} \text{ time.} \)

"Super-Strong ETH holds for PPSZ"

Local Search

"best" SAT solvers in the 90s used this...

Thm: \(k\text{-SAT is in } 2^{n-o(n)} \text{ time}. \) Super-SETH says "best possible"

\[\exists c \text{ 4CNF } \forall c \text{ F SAT } 2^{n-o(n)} \text{ time} \]

Thm (P'92): Randomized alg for 2-SAT in \(\text{poly}(n) \) time.

\(\text{LS}(F): \) Let \(A \in \{0,1\}^n \) be random.

\[2\text{CNF} \quad \text{Repeat for } 20n^2 \text{ times:} \]

- If \(A \text{ sat, } F \text{ return SAT.} \)
- Else pick clause \(c \in \text{F} \) that \(A \) falsifies.
- Pick \(u \in \text{C} \) at random, \(\epsilon \) prob \(\frac{1}{2} \) for both vars.
- Flip value of \(u \) in \(A \).

Return UNSAT.

\(\text{LS}(F) \text{ returns SAT } \iff F \text{ is sat.} \)

Claim: \(F \text{ is sat, } \Pr[\text{LS}(F) \text{ returns UNSAT}] < 1/10. \)

Sketch: Let \(A^* \text{ sat, } F, \text{ worst-case: } A^* \text{ is only SAT assign,} \)

Associate LS w/ random walk on a line.

<table>
<thead>
<tr>
<th>Target!</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>\ldots</th>
<th>(n)</th>
<th>node i</th>
<th>\text{set of } A \in {0,1}^n \text{ that differ in } i \text{ bits from } A^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assign</td>
<td>(A^*)</td>
<td>(n)</td>
<td>((\downarrow))</td>
<td>(\downarrow) assign</td>
<td>(= { A \mid h(A, A^*) = i })</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

LS has some \(A \) in memory, associated w/ some node \(i \).

If \(A = A^* \), at node 0, we're done.
If \(A \neq \emptyset \), \(LS \) flips the value of a \(\textbf{var} \) in a clause \(\{x, y, z\} \)

\[\text{prob } \frac{3}{2} \text{ of moving } \leftarrow \text{ node } i \rightarrow \text{ node } i-1, \]

\[\text{prob } \frac{1}{2} \text{ of moving to } i+1. \]

How long until we reach node 0?

Random walk on \((n+1)\)-node line graph.

\[\text{Pr} \left(\text{reach node } 0 \text{ after } \leq 20 \cdot n^2 \text{ steps } \right) \geq \frac{3}{4}. \]

Can use lower bounds on tail of binomial distribution, or results on cover times of random walks:

\[X_v = \# \text{ steps before every node is visited, starting at node } v \]

\[\text{Thm } E[X_v] \leq 2 \cdot n \cdot |V| \cdot |E| \leq 2n^2. \]

\[\text{Pr(\text{don't reach } 0 \text{ after } 20 \cdot n^2 \text{ steps})} \leq \text{Pr}(X_n \geq 10 \cdot E[X_v]) \leq \frac{1}{10}. \]

Markov’s inequality.

Random walk for 3SAT? Probabilities change!

Only \(\frac{1}{3} \) prob. of moving toward node 0,

\(\frac{2}{3} \) prob of moving away.

\[\text{Thm: } k\text{-SAT is in } 2^{n-o(n)} \text{ time.} \]

**Schön(F): Choose random } A \in \{0, 1\}^n\]

\[\text{Repeat } \frac{n}{k} \text{ times:} \]

- If } A \text{ sat } F \text{ return } A
- Else let } C \text{ be falsified by } A\]

\[\text{Pick random } u \in C, \text{ flip value of } u \text{ in } A \]

Return "FAIL"
Let A^x sat. F.

Claim: $Pr[\text{Schön}(F) = A^x] \geq \frac{1}{2^n \cdot e^{-n/4k^2} \cdot (n+1)}$

So we can repeat Schön for $O(2^{n-cn})$ times, and get a sat. assign. to F whp.

Pf: $E = "\text{initial } A \text{ differs from } A^x \text{ in } \leq \frac{n}{4k} \text{ bits}"

$Pr[E] = \frac{\binom{n}{n/4k}}{2^n} \leq \# \text{ strings w/ } n/4k 1's

$\implies h(A, A^x) = \frac{n}{4k}$

$Pr[\text{ L.S. for } n/4k \text{ steps finds } A^x | E] \geq \left(\frac{1}{k}\right)^{n/4k}$

for each var chosen, $1/k$ prob. that flipping gets 1 bit closer.

If we are correct $n/4k$ times in a row, we must have A^x.

$Pr[\text{Schön}(F) = A^x] \geq Pr[E] \cdot Pr[\text{ L.S. finds } A^x | E]$

Pf of Claim: Use

1. $1 - x \leq e^{-x}$

2. $\binom{n}{x} \geq \frac{(\frac{n}{x})^x \cdot (1 - \frac{x}{n})^{n-x}}{(n+1)}$

$\frac{\binom{n}{n/4k}}{2^n} \cdot \frac{1}{k^{n/4k}} \geq \frac{k^{n/4k} \cdot (1 - \frac{n}{4k})^{n-n/4k}}{2^n \cdot (n+1) \cdot (1 - \frac{n}{4k})^{n-n/4k}}$

What's happening? Instead of spending $\binom{n}{n/4k}$ time to try all assignments "within $n/4k$" of an assign., use formula to search the Hamming ball in only $\approx k^{n/4k}$ time.
Can derandomize Schön! Make only deterministic choices. See lec notes.
- derandomize choice of assignment: use covering codes of radius \(\delta \).
- derandomize var. flips: try all \(k \) choices for the flipped var.
- back track if no SAT assign. found after \(k \) flips \(\Rightarrow \Pr(k) \leq \frac{2^n}{\binom{2n}{n}} \).

Schönig's actual analysis is somewhat better:

allows for possibility of walking some fraction of steps in the "bad" direction, but walking more steps in "good" direction

\(\frac{1}{\binom{2n}{n}} \) prob of reaching \(\mathcal{A}^* \) from \(\mathcal{A} \)
can get \(\frac{1}{(\frac{n}{2n})^{\binom{2n}{n}}} \). Improves \(O(1) \) factor in exponent. See lec. notes.

An Equivalent Version of SETH

Important to know for proving hardness from SETH.

Recall: SETH \(\forall \epsilon > 0 \) \(\exists \epsilon \)-SAT not in \(2^{(1-\epsilon)n} \) time

Suppose I could refute a variant of SETH:
\(\forall \epsilon > 0 \), CNF-SAT with \(cn \) clauses in \(1.9^n \) time.

\(\approx \) doesn't care about clause width, only "density" of clauses

Claim: \(\forall \epsilon \Rightarrow \Rightarrow \text{SETH} \)

\(\forall \epsilon \), \(\exists \epsilon \)-SAT, \(\forall \epsilon \)-CNF \(F \), reduce to

\(\forall \epsilon \rightarrow \) can solve each \(F' \) in \(1.9^n \) time.

Set \(\epsilon = 0.01 \rightarrow 1.9^n \cdot 2^{0.01n} \leq 1.92^n \). \(\square \)

So SETH \(\Rightarrow \) \(\forall \epsilon \). Call this "MBSETH"

MBSETH: \(\forall \epsilon > 0 \), \(\exists \epsilon \)-CNF-SAT on \(cn \) clauses not in \(2^{(1-\epsilon)n} \) time

This: \(\text{MBSETH} \Leftrightarrow \text{SETH} \) (!)

\(\Rightarrow \): (\(\Leftarrow \)) already done

(\(\Rightarrow \)): Given \(2^\delta n \) time alg for \(k \)-SAT, \(\forall \epsilon > 0 \), \(\exists \epsilon \)-CNF-SAT \(cn \) clauses in \(2^{(1-\epsilon)n} \) time
Let \(\mu \) be a parameter.

\[\text{CNF, \(\mu \) clauses} \]

SPARSO(\(\mu \)):

1. **Base case**:
 - If \(F \) is \(\mu \)-SAT with \(n \) vars, solve in \(2^{\Delta n} \) time.
 - Take \(\text{CEF} \) s.t. \(C = (l_1 u l_2 u \ldots u l_k u k+1 u \ldots) \)
 - Call \(\text{SPARSO} \) on:
 - \(F - \{ \forall \}(l_1 u l_2 u \ldots u l_k u k+1 u \ldots) \) \(\triangleq \) replace \(C \) w/ first \(k \) literals
 - \(F \) w/ \(l_i = 0, \ldots, l_k = 0 \) \(\triangleq \) all \(k \) bits set \(\text{false} \)
 - Return \(\text{UNSAT} \) \(\triangleright \) 1) \& 2) return \(\text{UNSAT} \).

At base case, if 2 was called \(i \) times, there are \(\leq n - \mu k \) vars

\[\Rightarrow \quad n/\mu \leq \sum_{i=0}^{\mu k} \binom{n+i}{i} \cdot 2^{-\Delta i} \leq 2^{\Delta n} \cdot (n/\mu)^{\mu k} \leq (2^{-\mu k})^i \]

\[\text{(A)} \]

\[\text{Set } \kappa := 10 \log(2) \cdot \log(\mu) \]

\[\Rightarrow \quad \left(\frac{c n + n \kappa}{n \kappa} \right) < 2 \Delta n \]

\[\Rightarrow \quad \left(\frac{c (n+k)}{n \kappa} \right) < 2 \Delta n \]

\[\Rightarrow \quad \delta + \epsilon = \frac{1}{2} + \delta + \epsilon < 1, \quad \delta, \epsilon < 1 \]

\[\Rightarrow \quad \text{algorithm runs in } 2^{(\delta \pm \epsilon) n} \text{ time.} \]

For more details, see lecture notes.