6.1420 LECTURE 1

FINE-GRAINED ALGORITHMS AND COMPLEXITY

PERSONNEL

Profs. Ryan Williams and Virginia Vassilevska Williams

6.1420 WORKLOAD

exams!

- Three Problem sets: worth 60% of grade, will come out about 2 weeks apart
 Can work with a partner; write up your own solutions.
- 2. Class Project: worth 40% of grade

Can work individually or with 1 partner

Project proposal (1 page, 5%): due Nov 1

Progress report (2 pages, 5%): due Nov 14

(Also optional progress report due a week later, for feedback)

Final presentation (10%): during the last 1-2 weeks of class

Final report (5-10 pages, worth 20%): due Dec 10

3. Open problems session: Mondays

WEBSITE AND PIAZZA

- https://bit.ly/3QobcDG
- Sign up for Piazza: link on the website, access code: refuteSETHplz
- Announcements will be made on both piazza and the website
- Assignments will be released on piazza

PLAN FOR THE DAY

What is this class about?

TWO MAJOR TOPICS

Fine-grained complexity and algorithms

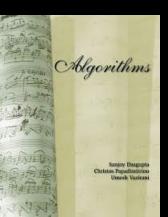
Today's lecture and first half of class

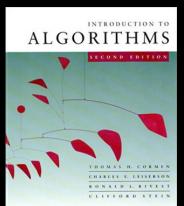
Fixed parameter complexity and algorithms

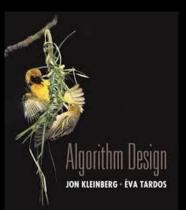
Second half of class

THE CENTRAL QUESTION OF ALGORITHMS RESEARCH

"How fast can we solve fundamental problems, in the worst case?"







etc.

HARD PROBLEMS

For many problems, the known techniques get stuck:

- Very important computational problems from diverse areas
- They have simple, often brute-force, textbook algorithms
- That are slow.
- No improvements in many decades!

A CANONICAL HARD PROBLEM

k-SAT

Input: variables $x_1, ..., x_n$ and a formula $F = C_1 \wedge C_2 \wedge ... \wedge C_m$ so that each C_i is of the form $\{y_1 \vee y_2 \vee ... \vee y_k\}$ and $\forall i$, y_i is either x_t or $\neg x_t$ for some t.

Output: A boolean assignment to $\{x_1,...,x_n\}$ that satisfies all the clauses, or NO if the formula is not satisfiable

Brute-force algorithm: try all 2^n assignments

Best known algorithm: $O(2^{n-(cn/k)}m^d)$ time for const c,d

Goes to 2ⁿ as k grows.

Example 2

ANOTHER HARD PROBLEM: LONGEST COMMON SUBSEQUENCE (LCS)

Given two strings on n letters

ATTIGGTACCTTCAGGG

Find a subsequence of both strings of maximum length.

Algorithms:

Classical O(n²) time

Best algorithm: $O(n^2 / log^2 n)$ time [MP'80]

Applications both in computational biology and in spellcheckers.



Solved daily on huge strings!

(Human genome: 3 x 10° base pairs.)

IN THEORETICAL CS, POLYNOMIAL TIME = EFFICIENT/EASY.

This is for a variety of reasons.

E.g. composing two efficient algorithms results in an efficient algorithm. Also, model-independence.

However, noone would consider an O(n¹⁰⁰) time algorithm efficient in practice.

If n is huge, then O(n²) is also inefficient.

WE ARE STUCK ON MANY PROBLEMS, EVEN JUST IN O(N²) TIME

No $N^{2-\epsilon}$ time algorithms known for:

Many string matching problems:
Edit distance, Sequence local alignment, LCS, jumbled indexing ...

General form: given two sequences of length n, how similar are they? All variants can be solved in O(n²) time by dynamic programming.

ATCGGGTTCCTTAAGGG ATTGGTACCTTCAGG

WE ARE STUCK ON MANY PROBLEMS, EVEN JUST IN O(N2) TIME

No $N^{2-\epsilon}$ time algorithms known for:

- Many string matching problems
- Many problems in computational geometry: e.g.
- Given n points in the plane, are any three collinear?
- A very important primitive!

WE ARE STUCK ON MANY PROBLEMS, EVEN JUST IN O(N²) TIME

No $N^{2-\epsilon}$ time algorithms known for:

- Many string matching problems
- Many problems in computational geometry
- Many graph problems in sparse graphs: e.g.

Given an n node, O(n) edge graph, what is its diameter? Fundamental problem. Even approximation algorithms seem hard!

WE ARE STUCK ON MANY PROBLEMS, EVEN JUST IN O(N2) TIME

No $N^{2-\epsilon}$ time algorithms known for:

- Many string matching problems
- Many problems in computational geometry
- Many graph problems in sparse graphs
- Many other problems ...

Why are we stuck?

Are we stuck because of the same reason?

PLAN FOR TODAY

Traditional hardness in complexity

A fine-grained approach

Some simple results

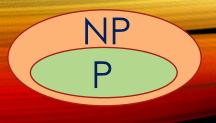
TIME HIERARCHY THEOREMS IN COMPLEXITY THEORY

For most natural computational models one can prove:

for any constant c, there exist problems solvable in $O(n^c)$ time but not in $O(n^{c-\epsilon})$ time for any $\epsilon > 0$.

It is completely unclear how to show that a particular problem in $O(n^c)$ time is not in $O(n^{c-\epsilon})$ time for any $\epsilon > 0$.

It is not even known if SAT is in linear time!



N – size of input It also does not apply to problems in P! Unless P=NP

WHY IS K-SAT HARD?

Theorem [Cook, Karp'72]: k-SAT is **NP-complete** for all $k \ge 3$.

NP-completeness addresses runtime, but it is too coarse-grained!

I.e. k-SAT is considered hard because

"fast" algorithms for it imply "fast" algorithms for many important problems.

We'll develop a *fine-grained theory of hardness* that is conditional and mimics NP-completeness.

PLAN

Traditional hardness in complexity

A fine-grained approach

• Some simple results

FINE-GRAINED HARDNESS IDEA

Idea: Mimic

NP-completeness

1. Identify key hard problems

2. Reduce these to all (?) problems believed hard

3. Hopefully form equivalence classes

CNF SAT IS CONJECTURED TO BE REALLY HARD

We will see these in detail in 2 lectures! Two popular conjectures about SAT on n variables [IP01,CIP10]: ETH (Exponential Time Hypothesis):

3-SAT requires $2^{\delta n}$ time for some constant $\delta > 0$.

SETH (Strong Exponential Time Hypothesis): For every $\varepsilon > 0$, there is a k such that k-SAT on n variables, m clauses cannot be solved in $2^{(1-\varepsilon)n}$ poly m time.

So we can use k-SAT as our hard problem and ETH or SETH as the hypothesis we base hardness on.

Strengthening of SETH [CGIMPS'16] suggests these are **not equivalent...**

Fix the model: word-RAM with O(log n) bit words

> Given a set S of n vectors there u, v 2 S with $u \phi v = 0$?

Hypothesis: Orthog. Vecs. requires n^{2-o(1)} time.

[W'05]: SETH implies this hypothesis!

in $\{0,1\}^d$, for $d = \omega(\log n)$ are

Easy O(n² d) time alg Best known [AWY' 15]: $n^2 - \Theta(1 / \log (d/\log n))$

We will see these a lot! Orthogonal vectors

Next 2 weeks

Weeks 4-5

Given a set S of n integers, are there a, b, c 2 S with a + p + c = 0

3SUM

More key problems to blame

APSP

Weeks 6-7

Hypothesis: APSP requires $n^{3-o(1)}$ time.

All pairs shortest paths: given an n-node weighted graph, find the distance between every two nodes.

Easy $O(n^2)$ time alg

[BDP'05]: \sim n² / log² n time for integers

[Chan' 18]: \sim n² / log² n time for reals

Hypothesis: 3SUM requires n²⁻⁰⁽¹⁾ time. Classical algs: O(n³) time [W'14]: n^3 / exp($\sqrt{\log n}$) time

FINE-GRAINED HARDNESS

Idea: Mimic

NP-completeness

1. Identify key hard problems

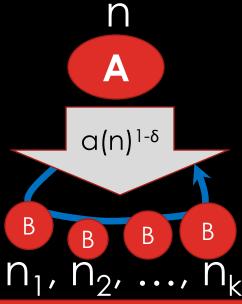
2. Reduce these to all (?) other hard problems

3. Hopefully form equivalence classes

FINE-GRAINED REDUCTIONS

Intuition: a(n),b(n) are the naive runtimes for A and B. A reducible to B implies that beating the naive runtime for B implies also beating the naive runtime for A.

- A is (a,b)-reducible to B if for every $\varepsilon>0$ \exists $\delta>0$, and an $O(a(n)^{1-\delta})$ time algorithm that adaptively transforms any A-instance of size n to B-instances of size $n_1,...,n_k$ so that $\sum_i b(n_i)^{1-\varepsilon} < a(n)^{1-\delta}$.
- If B is in $O(b(n)^{1-\epsilon})$ time, then A is in $O(a(n)^{1-\delta})$ time.
- Focus on exponents.
- We can build equivalences.



Don't worry! We will see many examples!

Using other hardness assumptions, one can unravel even more structure

N – input size n – number of variables or vertices

SOME STRUCTURE WITHIN P

Graph diameter [RV'13,BRSVW'18], eccentricities [AVW'16], local alignment, longest common substring* [AVW'14], Frechet distance [Br'14], Edit distance [BI'15], LCS, Dyn. time warping [ABV'15, BrK'15], subtree isomorphism [ABHVZ'15], Betweenness [AGV'15], Hamming Closest Pair [AW15], Reg. Expr. Matching [BI16,BGL17]...

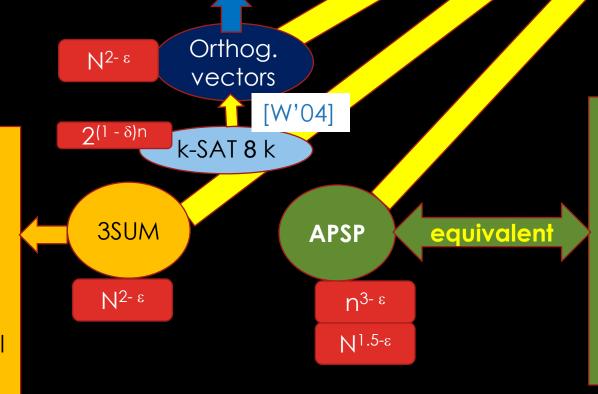
Many dynamic problems [P'10],[AV'14], [HKNS'15], [D16], [RZ'04], [AD'16],...

Ν2-ε'

Ν2-ε'

Huge literature in comp. geom. [GO'95, BHP98, ...]: Geombase, 3PointsLine, 3LinesPoint, Polygonal Containment, Planar Motion Planning, 3D Motion Planning ...

String problems: Sequence local alignment [AVW'14], jumbled indexing [ACLL'14], ...



N^{1.5- ε'}

In dense graphs:
radius, median,
betweenness
centrality [AGV'15],
negative triangle,
second shortest
path, replacement
paths, shortest
cycle [VW'10], ...

PLAN

Traditional hardness in complexity

A fine-grained approach

• First reductions: from SETH

SETH

SETH: for every $\varepsilon > 0$, there is a k such that k-SAT on n variables, m clauses cannot be solved in $2^{(1-\varepsilon)n}$ poly m time.

If there is an $2^{(1-\epsilon)n}$ poly m time algorithm for some $\epsilon > 0$ that can solve SAT on CNF Formulas (for all k) on n variables and m clauses, then SETH is false.

FAST OV IMPLIES SETH IS FALSE [W'04]

F- CNF-formula on n vars, m clauses

E.g.
$$(x_1 \lor x_2) \land (\neg x_1 \lor x_3 \lor x_4) \land (\neg x_2 \lor \neg x_4)$$

Split the vars into V_1 and V_2 on n/2 vars each

E.g.
$$V_1 = \{ x_1, x_2 \}, V_2 = \{ x_3, x_4 \}$$

OV: Given a set S of N vectors in {0, 1}d, are there u, v 2 S with **u** ¢v = **0**?

Given F, we want to create a set of vectors S in $\{0,1\}^d$ so that there is an orthogonal pair if and only if F is satisfiable and $|S| \sim 2^{n/2}$ and $d \sim m$.

For j=1,2 consider the partial assignments of V_j : there are $2^{n/2}$ of them.

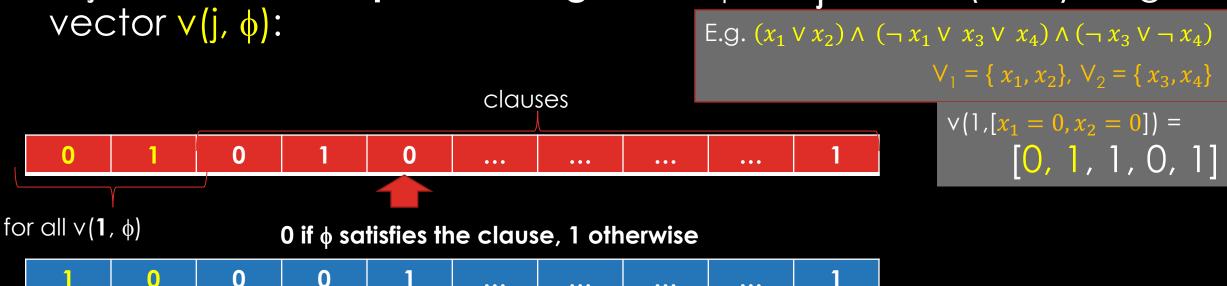
E.g. for
$$V_1$$
: { $[x_1 = 0, x_2 = 0]$, $[x_1 = 0, x_2 = 1]$, $[x_1 = 1, x_2 = 0]$, $[x_1 = 1, x_2 = 1]$ }

FAST OV IMPLIES SETH IS FALSE [W'04]

F- CNF-formula on n vars, m clauses

Split the vars into V_1 and V_2 on n/2 vars each

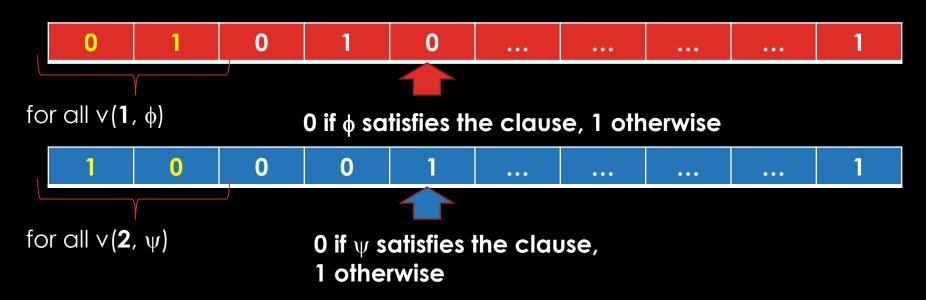
For j=1,2 and each **partial assignment** ϕ of V_j create (m+2) length



for all $\vee (2, \phi)$

0 if ϕ satisfies the clause, 1 otherwise

FAST OV IMPLIES SETH IS FALSE



Claim: $\vee (1, \phi) \not\in \vee (2, \psi) = 0$ iff $\phi \odot \psi$ is a sat assignment.

 $N = 2^{n/2}$ vectors of dimension $d = O(m) \rightarrow$ an OV instance.

So $N^{2-\delta}$ poly(d) time for OV for $\delta > 0$ implies $2^{n(1-\frac{\delta}{2})}$ poly(m) time for SAT and SETH is false.

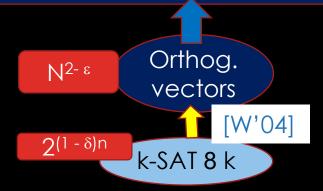
Diameter:

Given G = (V, E), determine $D = \max_{u,v \in V} d(u, v)$.

 $\frac{3}{2}$ - Approximate Diameter: output D' such that $\frac{2D}{3} \le D' \le D$.

Ν2-ε'

Graph diameter [RV'13,BRSVW'18], eccentricities [AVW'16], local alignment, longest common substring* [AVW'14], Frechet distance [Br'14], Edit distance [BI'15], LCS, Dyn. time warping [ABV'15, BrK'15], subtree isomorphism [ABHVZ'15], Betweenness [AGV'15], Hamming Closest Pair [AW15], Reg. Expr. Matching [BI16,BGL17]...



Say G has m edges, n vertices.

Using BFS: O(mn) time Diameter. Best known even in sparse graphs.

RV'13: 3/2-Approximate Diameter in $\tilde{o}(m^{\frac{3}{2}})$ time – better than mn in sparse graphs!

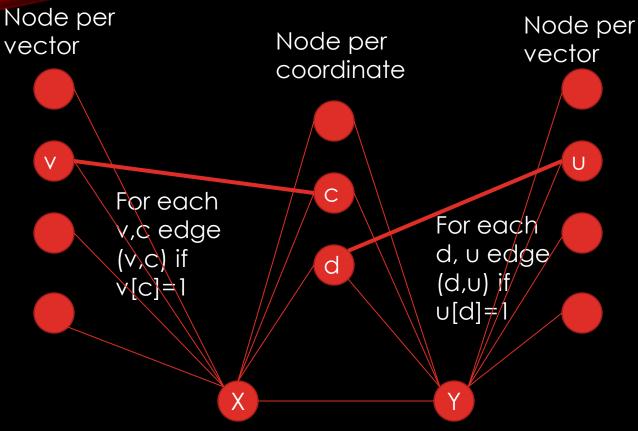
We'll show $3/2-\epsilon$ – Diameter for $\epsilon>0$ requires $mn^{1-o(1)}$ time under SETH.

Hard: distinguishing between Diameter 2 or 3 in sparse graphs.

Reduce from OV on n vectors; due to "Sparsification Lemma" can assume dimension is $d = O(\log n)...$

[RV'13]

DIAMETER 2 OR 3



Diameter is 3 if exists orthogonal pair, and is 2 otherwise.

Thm: Diameter 2 or 3 in $O(m^{2-\epsilon})$ time implies $O(n^{2-\delta})$ time for OV and hence SETH is false.

Any two vector nodes from the same side are at dist 2.

Any coordinate is at dist 2 from everyone, X and Y are at dist 2 from everyone.

Two vectors u and v from different sides are at dist 2 if exists a c with u[c]=v[c]=1, and at dist 3 otherwise.

Graph has O(n)nodes and since $d = O(\log n)$, $m = \tilde{O}(n)$ edges

SEE YOU NEXT TIME!

- Check Piazza and the website for the lecture notes.
- PS: If there's any related topic you'd like more lecture notes to read (e.g., NP-completeness) please let us know via piazza!
 - (You can also email, but it's better if other students can see your questions too, so they can upvote them!)

