6.1420/6.S974 Fixed-Parameter and Fine-Grained Complexity MIT
Lecture 10: Algorithms for k-SUM October 8, 2024
Virginia Vassilevska Williams and Ryan Williams

Today we will discuss algorithms for the £-SUM problem. In the following, let £ > 2 be an integer.

Problem: k-SUM
Input: n integers (positive and negative)
Decide: Are there k (distinct) numbers in the input which sum to zero?

Sometimes people study k-SUM over the real numbers, in the Real RAM model. This is a more suitable model for
computational geometry. For now, we’ll look at the integer case; the real-valued case will come later.

We’ll generally assume that our numbers are small enough that additions, comparisions, and subtractions of them take
O(1) time. (For example, if our computational model is the Word RAM, we could say that each number fits into one
word.) We will use the notation £-SUM,, to denote £-SUM instances with n numbers.

1 From k-SUM to (k-1)-SUM

Let’s start with some a simple (folklore) reduction from k-SUM to (k — 1)-SUM.!
Theorem 1.1 There is an O(n?) time reduction from k-SUM,, to n instances of (k — 1)-SUM,, _,.

Proof. Assume we have an oracle for solving (k — 1)-SUM, , we design an algorithm for k-SUM. Given an instance
S ={ay,...,a,} of k-SUM,,, we do the following:

For all numbers z in S, make a new set .S, which does not contain x, and contains (k — 1) - a; + « for all
a; # xin S. Call (k — 1)-SUM on S,. If some call returns “yes” then stop and return “yes”. Otherwise,
if no S, has a (k — 1)-SUM, return “no’.

Note the total overhead of the algorithm (not counting the cost of solving (k — 1)-SUM) is at most O(n?) time,
assuming constant time additions: for each of the n numbers z, it takes O(n) time to create the set S, by adding and
subtracting. (We could multiply each number in S by (k — 1) at the beginning, so that the only cost per number z is
O(n) additions and subtractions.)

Why does this algorithm work? First, for every © € S, since the set of a;s are distinct integers, the set S, of
(k — 1) - a; + x consists of distinct integers and is thus a valid instance of (k — 1)-SUM. We claim that there is a
(k—1)-SUM solution in S, if and only if z is in a k-SUM solution of S. Suppose WLOG that z = a1 and the k-SUM
solution is a1, ..., ax, so ., a; = 0. Then we have

Sz = {(k* 1)(124’0,1,...,(]{}7 1)an+a1}.
The subset of k¥ — 1 numbers (k — 1)ag + ay, ..., (k — 1)ag + a; has total sum

k k

Z((k’— Da; +a1) = (k— 1)Zai =0.

=2 i=1

'In math, a folklore result is something that was known by multiple parties and the reference is hard to track down. There might still be a
reference, though.

In the other direction, suppose S, has a (kK — 1)-SUM solution. This solution must be of the form (k — 1)a;, +
z,...,(k = 1)a;_, + x, where all a;, # x. Summing them up yields (k — 1)(z + a;, + --- 4+ a;,_,) = 0, so
T, Q- ., _, is a k-SUM solution in .S. O

We note two things about the reduction:

1. If S is sorted, then for every z, S, is also sorted. Thus by pre-sorting S in O(nlogn) time, we get an O(n?)
time reduction from k-SUM to n instances of (k — 1)-SUM whose inputs are sorted.

2. If 2SUM can be solved in O(n) time for sorted inputs, then 3SUM is in O(n?) time via the reduction.

2 Fast 2-SUM and quadratic 3-SUM

In lecture 2 we considered the Subset Sum problem and effectively reduced it to 2-SUM. We then showed that 2-SUM
on 7 numbers can be solved in O(nlogn) time by sorting and scanning the sorted list.

Let’s recap a claim:

Claim 2.1 Given two sorted lists of numbers of length n, L, L’ (in nondecreasing order) we can determine in O(n)
time whether there are i, j with L[i] = L'[j].

There are various ways to prove the above claim. One way is to merge the lists in O(n) time (via the same merge
procedure as in Merge-Sort) and then scan the list linearly for two adjacent equal entries, one from L and one from L.

Another (basically equivalent) way is as follows: maintain two pointers pi, p2 which both start at 1. Repeat until
p1 > norpy > n. If Lip1] = L'[ps], return (L[p1], L'[ps]). Else if L|pi] > L’[ps], then increment ps by 1. Else
(if L[p1] < L'[pz)), increment p; by 1. This takes O(n) time. The correctness argument is by induction: Assume
that for p < p; there are are no ¢ with L[p] = L’[g] and similarly for ¢ < ps there are no p with L[p] = L’[q].
Then if L[p1] > L'[p2], then for all p > p; we have L[p] > L'[ps] by the sortedness of L. Thus there are no p with
Llp] = L'[ps] and hence no p with L[p] = L'[¢] for ¢ < p,. So incrementing po maintains the induction hypothesis.
Similarly, if L]p1] < L’[ps], then also for all ¢ > ps, L[p1] < L'[g] and thus there is no ¢ for which L[p;] = L’[¢] and
so for all p < p; and all ¢, L[p] # L’[g], and incrementing p; maintains the induction hypothesis.

The claim means that once we have sorted the list of numbers, 2SUM is in O(n) time: Given a sorted list L of n
numbers, make a new list L' = {—a; | a; € L} where L' is formed in the reverse order of L. Observe that there is a
2-SUM solution in L if and only if L N L' # ().

From this we immediately get a theorem about 3SUM:
Theorem 2.1 3SUM is in O(n?) time (deterministically).

In the literature, one often sees the following alternative O(nQ) time 3SUM algorithm:

Sort L in O(nlogn) time.
Foreacha in L,
Make two pointers on the sorted list L: p; at the beginning of L, and p, at the end.
Repeat until the pointers reach each other:
Let b be the current number at p; and ¢ be the number at ps.
If a = b, move p; to the right (we want a distinct triple of numbers)
If a = ¢, move ps to the left (same reason)
If a + b+ ¢ = 0 then return (a, b, ¢).
If a + b+ ¢ > 0, then move ps to the left (to get a smaller 3-sum, we have to decrease c)
If a + b + ¢ < 0, then move p; to the right (to get a larger 3-sum, we have to increase b)
Return “no solution”.

Exercise: Why is this algorithm correct? (Intuitively, if a is in a 3-SUM, then b is the smaller number and ¢ will
be the larger number such that @ + b 4+ ¢ = 0.) Think about how this search compares to the two-pointer 2SUM
algorithm from before!

For every a in L, observe that the repeat loop takes O(n) time to find the (b, ¢) pair, if it exists. (For a fixed a, the total
number of times that a pointer moves is at most n, since we quit if the two pointers reach each other.) Therefore the
algorithm runs in O(n?) time.

Back to 2-SUM. We showed that 2-SUM can be solved in O(n) time if the list of numbers is sorted. What if it is
not sorted? How fast can we sort in the word-RAM model? It turns out [HT02] that n integers in [U] can be sorted in
the word-RAM in O(n+/loglog n) expected time, or in O(nlog logn) deterministically, and so by the above 2SUM is
in O(n+/loglog n) expected time, and in O(nloglogn) deterministically.

Here we show that we can solve 2-SUM even faster, under some hashing assumptions. (As far as we know, this is also
folklore.)

Theorem 2.2 2-SUM is in O(n) time by a randomized algorithm (under a few assumptions).

Proof. Given a list L of n numbers, make a new list L' = {—a; | a; € L}. As before, observe that there is a 2-SUM
solution in L if and only if L N L' # ().

The aforementioned sorting-based running time for checking that L. N L’ # () can be improved to O(n) with random-
ization, by using hash functions and word tricks, under some assumptions. In particular, if:

» The word size is big enough so that each number fits in a word and, moreover, hashing an m bit number down
to t = O(logn) bits by multiplying by a ¢ x m matrix can be done in O(1) time. Word size Q(mlogn) is
sufficient.

* we can initialize an O(n?) size hash table in O(n) time, the initial entries can be arbitrary except that a special
character $ is never used, and

 we can randomly access any entry of the table in O(1) time,

then we can get an O(n)-time randomized algorithm.

Here are more details. Suppose all numbers in our lists L and L' have m-bit representations, so we can think of each
number as a bit vector of length m, where the first bit is the sign of the integer.> Then, we want to find a vector in
u € L and a vector v € L' that are equal.

Our hash functions will be constructed from ¢ x m matrices M € {0, 1}*™, for t = 10+ 2log(n). In particular, pick
a uniform random such M, and define

h(z) :== (M - x) mod 2.
Here h hashes an m-bit vector « down to a ¢-bit vector.

From our assumption above, multiplying M - x takes O(1) time per x.

Exercise: Prove that for all m-bit vectors z # y, Pr[M -z = M -y mod 2] < 1/2¢.

2 Alternatively, we can make two instances (L1, L)), (L2, LY) of the problem where all integers are positive: for every original z, if z > 0,
place x in Ly and ' Lo and if < 0, place —x in L and in Lo. Clearly, x and —x are both in L iff either L1 N L} # 0, or Lo N LY, # 0.

Now suppose there’s a 2-SUM solution ay, as in L. Then we have a; € L and —as = a1 € L’. Then we know that
h(a1) = h(—as). Conversely, if there’s no 2-SUM solution in L, then there is no « € L N L’ and by the Exercise and
the Union Bound,

Pr[(3a; € L,as € L) h(ay) = h(ag)] < n?/2! < 1/2%.

Thus, to get an algorithm with high success probability, it suffices for us to determine if there are a; € L,a, € L'
such that h(a;) = h(az). To this end, we make lists L; and Lo of vectors from {0, 1}*, where

Ly ={h(a;) | a; € L} and Ly = {h(a;) | a; € L'},

and we want to determine if L; N Lo is empty or not. Consider a hash table 7" of 2¢ < O(n?) size, indexed by vectors
{0, 1}*. This table can be initialized in O(n) time to not include a special character $ by our assumption. Go through
each v € Lo, and mark T'[v] with § (we could also use another hash function to choose this character, randomly).
Finally, we output “yes” if and only if there is some u € L; such that T'[u] contains the special character $. Assuming
we can access any entry of 7" in O(1) time, this algorithm runs in O(n) time.

]

3 k-SUM Algorithms

In general, the k-SUM problem can be reduced to 2-SUM, in very much the same way as we reduced Subset Sum to
2SUM in Lecture 2.

Theorem 3.1 Let k > 2. There is an O(n'*/?1)-time reduction from k-SUM on n numbers to 2-SUM on O(n!*/?1)
numbers.

Proof. WLOG, we may assume that the instance of k-SUM has k parts, where we want to pick exactly one number
from each part such that the & numbers sum to zero. (The setting of £ = 3 was called “Colorful 3-SUM” on your
problem set.) We enumerate all O(n!*/2]) choices of |k/2] numbers, one number from each of the first | k/2] parts
of the instance, forming a list

L= {Zai|aiisinparti,foralli:1,...,Lk/?]}.

7

Similarly, for all O(n!*/21) choices from the last [k/2] parts of the instance, form a list

L= {Zai | a; isin part |k/2] + 4, foralli =1,..., Hq/ﬂ} .

Now there is a k-SUM in the original instance if and only if there is a number in L and a number in L’ which sum to
zero; the latter is equivalent to 2-SUM. ([

By combining the above reduction with the O(N') expected time randomized algorithm for 2SUM on N numbers we
get:

Corollary 3.1 4-SUM is in O(n?) (randomized) time, and k-SUM is in O(n'*/?1) (randomized) time.

A popular conjecture in fine-grained complexity is that this running time for k-SUM cannot be improved:

k-SUM Conjecture: For every k > 2 and £ > 0, k-SUM cannot be solved in O(n”“/ 2] ~¢) (randomized) time.

Note this implies that for odd values of k, k-SUM and (k + 1)-SUM have essentially the same time complexity.
On the one hand, the conjecture seems rather strong. You can use it to prove strong lower bounds for many other
problems (some examples are [AL13, ALW14, ABHS19]; see [VW15, Vas18] for a bunch of references on the 3-
SUM Conjecture itself). We will see some of these consequences over the next few lectures! On the other hand,
we don’t really know good algorithmic improvements to solving k-SUM, beyond small log factors, so maybe the
conjecture is reasonable...

4 A Faster Algorithm for 3-SUM

In the last part of the lecture, we’ll show one way to get an algorithm for 3-SUM running in o(n?) time. Unlike
OV and APSP, the current best known algorithms for 3-SUM only get polylogarithmic improvements over the “easy”
running time. (We don’t know how to apply the polynomial method to solve 3-SUM faster!) Baran, Demaine, and
Patrascu [BDP08] gave a 3-SUM algorithm running in n2 - poly(log log) / (log® n) time, which is essentially the best
known running time for 3-SUM over the integers. (For the real-valued version of 3-SUM, there are other references
with similar log-speedups but very different techniques, the current best is [Cha20] which gets the same sort of log? n
speed-up.)

Below is an alternative (unpublished) algorithm for 3-SUM, applying some work of Andrea Lincoln, Joshua Wang,
and your two instructors [LVWW16]. (That paper shows there is a deterministic algorithm for 3-SUM running in
O(n?(loglogn)/logn) time and O(y/n) space.) Assuming we can do O(1)-time lookups into tables, the algorithm
we give below runs in O(n? - (loglogn)?/log® n) randomized time, matching the best known bounds.

There are roughly three parts to our algorithm:

1. A self-reduction for 3-SUM. Roughly speaking, for an integer parameter s, we can reduce 3-SUM on n num-
bers to O(n?/s?) instances of 3-SUM on at most 3s numbers. This statement is very similar in spirit to the
self-reduction we gave for OV, which was used in the OV algorithm. (However, the actual reduction is very
different from the OV one.)

2. A randomized reduction for 3-SUM. Given that we can reduce the instances to be “small”, of size O(s), a
randomized reduction will let us reduce the sizes of the numbers in the small instances, by working modulo a
random prime.

3. Fast look-up table. Once the instances are small and the numbers are small, we can store the answers to all
small instances on small numbers in a look-up table, to solve them quickly.

We have deliberately taken this route to obtaining a 3-SUM algorithm, so that it can be compared and contrasted with
the OV algorithm. In the OV algorithm, we also ran a self-reduction reducing OV on n vectors to O(n?/s?) instances
of OV on 2s vectors, but then we used probabilistic polynomials and matrix multiplication to show how to solve all
those OV instances simultaneously in O(n2 /s%) time, for decent sized s (when the dimensionality was O(logn), we
could set s = n® for a tiny € > 0). In the case of 3-SUM, we don’t know how to get a good-enough polynomial to
solve all the O(n?/s?) instances quickly, so instead we choose s to be much smaller, like poly(logn): small enough
that we can store all possible instances we might need to solve into a poly(n)-sized look-up table.

Let’s now go through the three parts in turn.

4.1 Self-Reduction

Lincoln et al [LVWW 16] give a deterministic O(nlogn + n?/s?)-time reduction from 3-SUM on n numbers to
O(n?/s?) instances of 3-SUM on 3s numbers. Such a reduction was quite easy to do for OV, but is highly nontrivial
to do for 3-SUM! This self-reduction works in the Real RAM as well (where registers can hold real numbers, which
we can do additions and comparisons on, in unit time).

Here we just sketch how the reduction goes, and why it works. Start by sorting the n numbers in O(nlogn) time.
Then, partition the sorted order into (n/s) contiguous “chunks” of s numbers each. There are (n3/s®) triples of
chunks (each corresponding to a set of at most 3s numbers), but one can prove that there are at most O(n?/s?)
triples of chunks that could possibly contain a 3-SUM solution. (This is subtle, and applies Dilworth’s theorem in an
interesting way. See the paper if you’re interested!) Moreover, we can calculate which triples could possibly contain
a 3-SUM solution in O(n?/s?) time.

4.2 Randomized Reduction

We want to show that there is a randomized reduction from the 3-SUM problem on s numbers to the 3-SUM problem
on s numbers modulo a “small” prime. The following theorem shows how to hash any set .S of m-bit integers into
O(log|S| + logloglog m)-bit integers modulo a prime, in a way that preserves 3-SUM solutions in .S with high
probability.

In the following, we’ll use the notation [+n] = {—n,—n +1,...,0,1,...,n}.

Theorem 4.1 For all positive integers m, suppose we choose a random prime p in the interval {2, ...,s” - m}. Then
for every set S of 3s numbers in [£2™],

* If S has a 3-SUM, then Pr,[S has a 3-SUM solution modulo p] = 1.
e If S doesn’t have a 3-SUM, then Prp[S has a 3-SUM solution modulo p] < O(logm + log s)/s™.

Proof. Let p be a randomly chosen prime from (2, 2], for a parameter ¢ := 7log(s) + log(m). For every triple
(a,b, c) of numbers from [+2™]3, we have:

e Ifa+b+c=0thena+ b+ c=0mod p.

e Ifa+b+c#0,thena+ b+ c < 3-2™ has at most O(m) prime factors. The prime number theorem tells us
that there are at least (2! /t) primes in the interval [2, 2!]. Putting these two facts together,

Prla + b+ ¢ = 0mod p] < O(mt/2").
P

Fix any set S of 3s numbers. As there are O(s?) triples of numbers from S, the Union Bound says

Pr[(3a,b,c € S)a+b+c#0buta+b+c=0mod p] < O(mts®/2").
J2

This is the probability that S has a 3-SUM solution modulo p, but S doesn’t have a 3-SUM solution. Finally, when
t = Tlog(s) + log(m), note that the error is at most O(logm + log s)/s*. O

Note that if we had real-valued inputs (and worked over the real RAM) then our randomized reduction wouldn’t work
at all!

By building on our reduction, we can essentially show that, WLOG, we can assume the 3-SUM problem on n integers
contains only numbers in {—n®M) ... n®W}: there is a randomized reduction from 3-SUM on n numbers of m-
bits to n numbers in {—n°® f(m),...,n%W f(m)} where f(m) is an extremely slow-growing function of m. In
Theorem 4.1, we started with 3-SUM over integers and ended with 3-SUM modulo a prime number. But the “modulo
prime” case can actually be reduced back to the small integer case. The idea is that we think of every number in Z,,
as an integer in {0, 1,...,p — 1}, and check if there are three numbers summing to p, if there are three summing to
2p, or if there are three summing to 0. The total sum of any triple is less than 3p, so these three checks cover all the
possible cases over the integers! After having reduced the case of m-bit numbers to O(log s + log m)-bit numbers, we
can apply the reduction again, yielding O(log s + log log m)-bit numbers, and we can keep repeating the reduction as
necessary to reduce the dependence on m.

From here on, we will assume that the random prime p chosen above in Theorem 4.1 is at most p < s* for
some constant k. Since in Theorem 4.1 we actually need p < s7 - m, this means we are assuming that the
number of bits m used to encode each number in our original 3-SUM instance is at most poly(s). As we will
eventually set s < O(logn/loglogn), we are effectively assuming that our original » numbers are in the interval
[—2poly(logn) gpoly(logn)] By the previous paragraph, this is (basically) without loss of generality.

We presented a randomized weight reduction. A deterministic reduction is also known.

Theorem 4.2 ([FKP24]) If 3SUM over [4n3] can be solved in O(n*~¢) time for € > 0 by a deterministic algorithm,
then 3SUM over [£U] can be solved in O(n*~¢ log®(U)) time for some &' > 0 and constant C.

In the above theorem, ¢’ = ¢/32 and C' = 1/¢’.

For the rest of the lecture we will use our randomized reduction which given some n numbers in [+2'°%°] for some
constant ¢ reduces 3SUM to 3 instances on n numbers in [+n7 log® n]. (We focus on the randomized reduction since
the deterministic reduction stated above is about truly subquadratic time algorithms, whereas here we care about
shaving logs.)

4.3 Fast Lookup Table

Let us cite the lookup table fact that we’ll need; it’s very simple.

Fact 4.1 For any prime p < s, there is a data structure of size s°*)

numbers, modulo p.

that can answer any 3-SUM instance on s

Proof. There are at most s°(*) sequences of s numbers in {0, 1,...,p — 1}. Write down all their yes/no answers for

3-SUM modulo p, one by one, and store the answers in a table of s9(%) bits. O

4.4 The Final Algorithm

We are now ready to give our final 3-SUM algorithm.

Let L be a given list of n numbers. We’ll assume that the numbers are on m = O(log®n) bits for some c¢. Let
s € {1,...,n} be a parameter; we will pick s = £logn/loglogn.

This gives us that s°) = n°) and also s”m = O(log®"" n) and (logm + log s)/s* = O(log s/s*) < O(1/s°).

The algorithm works as follows.

3-SUM Algorithm:

0. Pick a random prime p < s*. and construct an s©()

as in Fact 4.1.

-size lookup table for 3-SUM on s numbers modulo p,

1. Compute all n numbers in L modulo p, mapping them to the domain {0,1,...,p — 1}.
(Note that by Theorem 4.1, for every subset S of 3s numbers, there is probability less than O(1/s%) that
the reduction modulo p created an erroneous 3-SUM solution in S.)

2. Run the 3-SUM self-reduction. For each of the O(n?/s?) calls to 3-SUM on 3s numbers, consult the look-
up table for the answer.
(Note for each call to the self-reduction, the lookup table returns the correct yes/no answer with probability

at least 1 — O(1/53). So we expect at most a O(1/s3)-fraction of the answers to our O(n?/s?) calls to be
incorrect. Let’s say that the expectation is cn’/s°.)

3. If more than 100 - cn?/s5 of the lookup table calls report “yes”, then return “yes”.
(If we were given a “no” instance, we would expect at most cn? /s calls to say “yes”.)

4. Otherwise, less than 100 - cn?/s® calls report “yes”. In this case, we can directly check all of the yes
calls for a 3-SUM solution: for all of the O(n?/s®) “yes” calls, search all of the relevant subsets of O(s)
numbers directly for a 3-SUM. This takes in O(s? - n?/s%) < O(n?/s?) time. Return “no” if no 3-sum
solution is found, and “‘yes” otherwise.

Exercise: Prove that this algorithm outputs a correct yes or no answer with probability greater than 2/3. The
parenthetical remarks in the pseudocode should help!

Assume that the cost of lookup in a table of size T" takes time L(T'). Typically, either L(T") < O(logT), or L(T) <
O(1). The total running time of the above algorithm can be calculated as follows:

« Step 0 needs s°(*) time, to set up the lookup table.

« Step 1 needs O(n) time.

Step 2 takes O(n?/s?) time, to generate O(n?/s?) calls to a lookup table. Each lookup costs L(s°(*)) time.
 Step 3 is negligible, we just need a counter for that.

* As mentioned above, Step 4 takes O(n?/s?) time.
In order for the algorithm to run in subquadratic time, we need s°(*) < n?/(log®n). Setting

s :=e(logn)/(loglogn)

for small enough € > 0, we will accomplish that. The total running time is then upper-bounded by step 2, which
becomes
n?(loglogn)?
(logn)?
Now, the running time improvement depends on how fast we can look up stuff in our table. If L(T') < O(logT), we
have L(n®®)) < O(elogn), so the running time is O(n?(loglogn)?/logn). If L(T) < O(1), we save a (logn)?
factor.

(n®@).

S Open Problem

The following seems to still be open: Is there an o(n?)-time algorithm for 4-SUM? The problem with the above
algorithm is that 3-SUM self-reduction above does not generalize nicely to 4-SUM: for 4-SUM, there will be O(n3/s3)
4-tuples of chunks in the self-reduction.

References

[ABHS19]

[AL13]

[ALW14]

[BDPO§]

[Cha20]

[FKP24]

[HTO02]

[LVWW16]

[Vas18]

[VWI5]

Amir Abboud, Karl Bringmann, Danny Hermelin, and Dvir Shabtay. SETH-based lower bounds for
subset sum and bicriteria path. In Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 41-57. SIAM, 2019.

Amir Abboud and Kevin Lewi. Exact weight subgraphs and the k-Sum conjecture. In Automata, Lan-
guages, and Programming - 40th International Collogquium, ICALP 2013, Riga, Latvia, July 8-12, 2013,
Proceedings, Part I, volume 7965 of Lecture Notes in Computer Science, pages 1-12. Springer, 2013.

Amir Abboud, Kevin Lewi, and Ryan Williams. Losing weight by gaining edges. In Algorithms - ESA
2014 - 22th Annual European Symposium, Wroclaw, Poland, September 8-10, 2014. Proceedings, volume
8737 of Lecture Notes in Computer Science, pages 1-12. Springer, 2014.

Ilya Baran, Erik D. Demaine, and Mihai Patrascu. Subquadratic algorithms for 3sum. Algorithmica,
50(4):584-596, 2008.

Timothy M. Chan. More logarithmic-factor speedups for 3sum, (median, +)-convolution, and some
geometric 3sum-hard problems. ACM Trans. Algorithms, 16(1):7:1-7:23, 2020.

Nick Fischer, Piotr Kaliciak, and Adam Polak. Deterministic 3sum-hardness. In Venkatesan Guruswami,
editor, 15th Innovations in Theoretical Computer Science Conference, ITCS 2024, January 30 to Febru-
ary 2, 2024, Berkeley, CA, USA, volume 287 of LIPIcs, pages 49:1-49:24. Schloss Dagstuhl - Leibniz-
Zentrum fiir Informatik, 2024.

Yijie Han and Mikkel Thorup. Integer sorting in O(n sqrt (log log n)) expected time and linear space. In
43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19 November 2002, Vancouver,
BC, Canada, Proceedings, pages 135—144. IEEE Computer Society, 2002.

Andrea Lincoln, Virginia Vassilevska Williams, Joshua R. Wang, and R. Ryan Williams. Deterministic
time-space trade-offs for k-SUM. In 43rd International Colloquium on Automata, Languages, and Pro-
gramming, ICALP 2016, July 11-15, 2016, Rome, Italy, volume 55 of LIPIcs, pages 58:1-58:14. Schloss
Dagstuhl - Leibniz-Zentrum fiir Informatik, 2016.

Virginia Vassilevska Williams. On some fine-grained questions in algorithms and complexity. In Pro-
ceedings of the International Congress of Mathematicians (ICM), pages 3447-3487, 2018.

Virginia Vassilevska Williams. Hardness of easy problems: Basing hardness on popular conjectures
such as the strong exponential time hypothesis (invited talk). In /0th International Symposium on Pa-
rameterized and Exact Computation (IPEC 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
2015.

	From k-SUM to (k-1)-SUM
	Fast 2-SUM and quadratic 3-SUM
	k-SUM Algorithms
	A Faster Algorithm for 3-SUM
	Self-Reduction
	Randomized Reduction
	Fast Lookup Table
	The Final Algorithm

	Open Problem

