1 3SUM Versions

Recall the 3SUM problem: given a set S on n integers, do there exist $a, b, c \in S$ with $a + b + c = 0$? Also, the 3SUM' problem: given sets A, B, C of n integers each, are there $a \in A, b \in B, c \in C$ with $a + b + c = 0$?

In the homework you (hopefully) showed that these two problems are equivalent, so we will be using these interchangeably. We will introduce one more version: 3SUM*: The input here is a set S of integers and one needs to decide whether there are $a, b, c \in S$ such that $a + b = c$.

Theorem 1.1. There is an $O(n)$ time reduction from 3SUM' on n numbers to 3SUM* on n numbers.

Proof. Let A, B, C be an instance of 3SUM' with n numbers. Suppose that the numbers are in the interval $\{-W, \ldots, W\}$. Let $M = W + 1$, so that the numbers are in $\{-M + 1, \ldots, M - 1\}$.

Let $A' = \{a - 5M \mid a \in A\}$, $B' = \{b + 13M \mid b \in B\}$ and $C' = \{8M - c \mid c \in C\}$. Let $S = A' \cup B' \cup C'$.

Notice that the range of A' is $(-6M + 1, \ldots, -4M - 1)$, the range of B' is $\{12M + 1, \ldots, 14M - 1\}$, and the range of C' is $\{7M + 1, \ldots, 9M - 1\}$.

If $a \in A, b \in B, c \in C$, with $a + b + c = 0$, then $(a - 5M) + (b + 13M) = (-c + 8M)$, and so if there is a 3SUM' solution, then there is a 3SUM* solution.

Suppose now that there is a 3SUM* solution $s_1 + s_2 = s_3$ with $s_1, s_2, s_3 \in S$. WLOG, $s_1 \leq s_2$.

Suppose that $s_1 \notin A'$. Then $s_1, s_2 > 7M$ and so $s_1 + s_2 > 14M$ which exceeds the range of all A', B' and C'. Hence $s_1 \in A'$.

If $s_2 \notin B'$, $s_2 < 9M$ and since $s_2 \in A'$, $s_2 < -4M$. Thus $s_1 + s_2 < 5M$, and this only intersects the range of A', but not that of B' or C'. Thus $s_1 + s_2 = s_3 \in A'$. This also means that $s_2 \in A'$, as otherwise $s_1 > 7M$, and $s_1 + s_2 > 3M$ which contradicts the previous assertion that $s_1 + s_2 \in A'$. But on the other hand, if $s_2 \in A'$, we have $s_1, s_2 < -4M$ and so $s_1 + s_2 < -8M$ which is a contradiction since all numbers in A' are $> -6M$. Thus we must have $s_1 \in A'$ and $s_2 \in B'$. But then $s_1 + s_2 > -6M + 12M = 6M$, and $s_1 + s_2 < -4M + 14M = 10M$. Hence $s_3 = s_1 + s_2 \in C'$. Thus we have $a \in A, b \in B, c \in C$ such that $(a - 5M) + (b + 13M) = (-c + 8M)$ so that $a + b + c = 0$.

One can also reduce 3SUM* to 3SUM', so that 3SUM* is yet another equivalent version to 3SUM.

Exercise: How can you reduce 3SUM* back to 3SUM'?

2 Two 3SUM-Hard problems in Computational Geometry

Let us consider two problems. The first is Geombase in which we are given n points in the plane $(x_1, y_1), \ldots, (x_n, y_n)$ with integer coordinates x_i and with $y_i \in \{0, 1, 2\}$ for all i. The question is, is there a non-horizontal line that passes through 3 of the points?

Theorem 2.1. Geombase is equivalent to 3SUM.

Proof. Geombase is equivalent to the problem whether there exist points $(x_i, 0), (x_j, 1), (x_k, 2) \in S$ so that $x_i + x_k = 2x_j$, i.e. $(x_j, 1)$ is in the middle between $(x_i, 0)$ and $(x_k, 2)$.
Exercise: Using the above fact, show how you can reduce Geombase to 3SUM’, so that given an instance S of Geombase on n points you can create A, B, C on at most n integers each so that the Geombase instance has a solution if and only if there are $a \in A, b \in B, c \in C$ with $a + b + c = 0$.

Now we show the reverse direction. Given a 3SUM’ instance A, B, C, we create a Geombase instance S that contains for every $a \in A$, a point $(2a, 0)$, for every $b \in B$, a point $(2b, 2)$ and for every $c \in C$, a point $(-c, 1)$. A Geombase solution corresponds to $(2a, 0), (2b, 2), (-c, 1)$ with $2a + 2b = -2c$, i.e. $a + b + c = 0$, a 3SUM’ solution.

The second problem we’ll look at is 3-Points-on-a-Line: Given n points in the plane, $(x_1, y_1), \ldots, (x_n, y_n)$ with integer coordinates x_i and y_i, are there three points that lie on the same line?

Theorem 2.2. 3SUM reduces to 3-Points-on-a-Line, so that under the 3SUM Hypothesis, 3-Points-on-a-Line requires $n^{2-o(1)}$ time.

Proof. Given a 3SUM instance S, create an instance of 3-Points-on-a-Line by adding for every $s \in S$, the point (s, s^3).

$(a, a^3), (b, b^3), (c, c^3)$ are collinear if and only if $(c-a)/(b-a) = (c^3-a^3)/(b^3-a^3)$. Since $a \neq c$, $b \neq a$, this is equivalent to $(b^2 + ab + a^2) = (c^3 + ac + a^2)$, which is the same as $(b^2 - c^2) + a(b-c) = 0$. This is equivalent to $(b-c)(a+b+c) = 0$. Since $b \neq c$, this is the same as $a+b+c = 0$. I.e. (a, b, c) is a 3SUM solution if and only if $(a, a^3), (b, b^3), (c, c^3)$ is a 3-Points-on-a-Line solution. □

3 3SUM-Convolution

The 3SUM-Convolution problem is, given an integer array A of length n, are there $i, j, i \neq j$ so that $A[i] + A[j] = A[i+j]$?

This problem has a trivial $O(n^2)$ time algorithm: just try all pairs i, j. This is much more trivial than the $O(n^2)$ time algorithm for 3SUM.

Let’s first show that 3SUM-Convolution can be reduced to 3SUM*. Given an instance A of length n of 3SUM-Convolution, let $S = \{(2n+1).A[i]+i \mid i \in [n]\}$ be an instance of 3SUM*.

Exercise: Show that there exist i and j s.t. $A[i] + A[j] = A[i+j]$ if and only if there are $s, s', s'' \in S$ with $s + s' = s''$.

Now, let us reduce 3SUM* to 3SUM-Convolution. Say S is the 3SUM* instance. Suppose that we have some 1 to 1 function f that maps S to $[t]$, where $t = O(n)$ and such that $f(i) + f(j) = f(i+j)$. Then, we can create an array A of length t, and set for each $s \in S$, set $A[f(s)] = s$. Then, $i + j = k$ if and only if $A[f(i)] + A[f(j)] = A[f(i+j)] = A[f(k)]$. However, we don’t know how to create such a function.

We use hash functions due to Dietzfelbinger. Suppose we have a word-RAM with w bit words. Let a be a random odd w bit integer. Let $1 \leq s < w$, and consider the following hash family parameterized by a,

$h_a : \{0, \ldots, 2^w-1\} \to \{0, \ldots, 2^s-1\}$:

$$h_a(x) := (a \cdot x \mod 2^w) >> (w-s).$$

In other words, h_a multiplies x by a and then keeps only the s top-order bits.

These hash functions have the following nice properties which we will not prove.

- **Almost Linearity:** For all $x, y \in \{0, \ldots, 2^w-1\}$, $h_a(x+y) \in h_a(x) + h_a(y) + \{0, 1\} \mod 2^s$.

- **Few False Positives:** For any $x, y, z \in \{0, \ldots, 2^w-1\}$, with $x+y \neq z$,

$$Pr[h(z) \in h(x) + h(y) + \{0, 1\} \mod 2^s] \leq O(1/2^s).$$
• **Load Balancing:** If n numbers are hashed into $R = 2^s$ buckets, then the expected number of elements mapped to buckets with more than $3n/R$ elements mapped to them is $O(R)$.

Now we are ready to prove our main theorem.

Theorem 3.1 (Patrascu’10). If 3SUM-Convolution on an n length array is in $O(n^{2-\delta})$ time for some $\delta > 0$, then there is an $\varepsilon > 0$ so that 3SUM has an $O(n^{2-\varepsilon})$ time randomized algorithm that succeeds with high probability.

Proof. Suppose that 3SUM-Convolution is in $O(n^{2-\delta})$ time for $\delta > 0$. Let $\varepsilon = \delta/(2+\delta) > 0$. Let S be an instance of 3SUM* (we want to find $a, b, c \in S$ with $a + b = c$).

Set $R = n^{1-\varepsilon}$ and hash all elements of S to $\{0, \ldots, R-1\}$ with a Dietzfelbinger hash function h. For $x \in \{0, \ldots, R-1\}$, let $B(x) = \{s \in S \mid h(s) = x\}$, i.e., these are the elements hashed to bucket x. Pick some order of the elements in $B(x)$ (e.g., lexicographic) and for that order, let $B(x)[i]$ denote the ith element in the bucket.

By the Load Balancing property, the expected number of $s \in S$ for which $|B(h(s))| > 3n/R$ is $O(R)$.

Exercise: Show that in $O(nR)$ time you can check whether there is a 3SUM* solution involving some $s \in S$ for which $|B(h(s))| > 3n/R$.

Now, we can assume that for every s, $|B(h(s))| \leq 3n/R \leq 3n^\varepsilon$.

Now, we will iterate through all $27n^{3\varepsilon}$ triples (i, j, k) where $i, j, k \in [3n^\varepsilon]$. For triple (i, j, k) we will try to figure out if there are $x, y, z \in \{0, \ldots, R-1\}$ so that $z = x + y \mod R$ or $z = x + y + 1 \mod R$ and the ith element of $B(x)$ plus the jth element of $B(y)$ equals the kth element of $B(x+y \mod R)$ or $B(x+y+1 \mod R)$, i.e.

$$B(x)[i] + B(y)[j] = B((x+y \mod R)[k] \text{ or } B(x)[i] + B(y)[j] = B((x+y+1 \mod R)[k].$$

We will now show how to do this.

Fix a triple (i, j, k) where $i, j, k \in [3n^\varepsilon]$. Let’s first show how to check if there are $x, y, z \in \{0, \ldots, R-1\}$ so that $z = x + y \mod R$ and also $z = x + y + 1 \mod R$.

Create an array A of length $8R$. For each $x \in \{0, \ldots, R-1\}$, set $A[8x+1] = B(x)[i]$, set $A[8x+3] = B(x)[j]$, $A[8x+4] = B(x)[k]$. Set all remaining elements of A to ∞ (or some sufficiently large element that cannot participate in a 3SUM* solution).

Suppose that $B(x)[i] + B(y)[j] = B(x+y)[k]$. Then $A[8x+1] + A[8y+3] = A[8(x+y) + 4]$, a 3SUM-Convolution solution. On the other hand, suppose that $A[8x+s_1] + A[8y+s_2] = A[8z+s_3]$ and $8x+s_1 + 8y+s_2 = 8z+s_3$, for some $s_1, s_2, s_3 \in \{1, 3, 4\}$ (as all positions of the array $A(t)$ with $t \mod 8 \notin \{1, 3, 4\}$ do not participate in a 3SUM).

Now, $s_1 + s_2 = s_3 \mod 8$ has a unique solution $s_1 = 1, s_2 = 3, s_3 = 4$, and in fact then $s_1 + s_2 = s_3 \mod 8$ is equivalent to $s_1 + s_2 = s_3$. Thus also $8x+1 + 8y+3 = 8z+4$ implies $x+y = z$.

Exercise: Convince yourself of the above statement.

Now that we showed how to handle the case when $x+y = z$, let’s see how to handle $x+y = z \mod R$. Since $x, y, z \in \{0, \ldots, R-1\}$, if $x+y = z \mod R$, then $z = x+y \mod R$. Hence, we can just add another copy of A after A, creating an array A'. The indices of the second copy of A in A' go from $8R+0$ to $8R+(8R-1)$, and so any $z+R$ appears as an index for $z \in \{0, \ldots, R-1\}$, and so the proof of correctness for the case of $x+y = z+R$ proceeds exactly as before.
Now we have shown how to handle \(x + y = z \mod R \). We want to show how to handle \(x + y + 1 = z \mod R \). To do this, we create a second instance of 3SUM-Convolution, again for each fixed \((i,j,k)\). Consider an array \(A \) of length \(8R \) formed similarly to \(A \) with a slight change. As before, for each \(x \in \{0,\ldots,R-1\} \), set \(A[8x + 3] = B(x)[j] \), \(A[8x + 4] = B(x)[k] \); the change is for \(i \): set \(A[8x + 1] = B(x)[i] \) (instead of \(A[8x + 1] = B(x)[i] \)). As before, set all remaining elements of \(A \) to \(\infty \) (or some sufficiently large element that cannot participate in a 3SUM* solution). Then, we create an array \(A' \) consisting of two concatenated copies of \(A \) to handle the \(\mod R \) behavior.

The proof correctness is similar to before. Suppose that \(B(x)[i] + B(y)[j] = B(x+y+1)[k] \). Then \(A'[8(x+1)+1] + A'[8y+3] = A'[8(x+y+1)+4] \), a 3SUM-Convolution solution. On the other hand, suppose that \(A'[8(x+1)+s_1] + A'[8y+s_2] = A'[8z+s_3] \) and \(8(x+1) + s_1 + 8y + s_2 = 8z + s_3 \), for some \(s_1, s_2, s_3 \in \{1, 3, 4\} \). Now, \(s_1 + s_2 = s_3 \mod 8 \) has a unique solution \(s_1 = 1, s_2 = 3, s_3 = 4 \), and in fact then \(s_1 + s_2 = s_3 \mod 8 \) is equivalent to \(s_1 + s_2 = s_3 \). Thus also \(8(x+1)+1+8y+3 = 8z+4 \) implies \(x+y+1 = z \).

We get, \(A'[8(x+1)+1] + A'[8y+3] = A'[8(x+y+1)+4] \) and hence \(B(x)[i] + B(y)[j] = B(x+y+1)[k] \), a 3SUM solution.

After \(O(n^{2-\varepsilon}) \) time of work, we get \(2 \cdot (3n^{\varepsilon})^3 \) instances of 3SUM-Convolution on arrays of size \(16n^{1-\varepsilon} \).

Now, we assumed that 3SUM-Convolution can be solved in \(O(N^{2-\delta}) \) time for \(\delta > 0 \) on sequences of length \(N \). We apply this algorithm to get a runtime of \(O(n^{2-\varepsilon} + O(n^{3\varepsilon}N^{(2-\delta)})) = O(n^{2+\varepsilon(1+\delta)-\delta}) \).

If we set \(\varepsilon = \delta/(2+\delta) > 0 \), the exponent above becomes \(2 - \varepsilon \), and the overall runtime is \(O(n^{2-\frac{\delta}{2+\delta}}) \). \(\square \)