
6.1420 3SUM Reductions
Lecture 11 Date: October 10, 2024

1 3SUM Versions

Recall the 3SUM problem: given a set S on n integers, do there exist a, b, c ∈ S with a + b + c = 0? Also,
the 3SUM’ problem: given sets A,B,C of n integers each, are there a ∈ A, b ∈ B, c ∈ C with a+ b+ c = 0?

In the homework you (hopefully) showed that these two problems are equivalent, so we will be using
these interchangeably. We will introduce one more version: 3SUM∗: The input here is a set S of integers
and one needs to decide whether there are a, b, c ∈ S such that a+ b = c.

Theorem 1.1. There is an O(n) time reduction from 3SUM’ on n numbers to 3SUM∗ on n numbers.

Proof. Let A, B, C be an instance of 3SUM’ with n numbers. Suppose that the numbers are in the interval
{−W, . . . ,W}. Let M = W + 1, so that the numbers are in {−M + 1, . . . ,M − 1}.

Let A′ = {a− 5M | a ∈ A}, B′ = {b+ 13M | b ∈ B} and C ′ = {8M − c | c ∈ C}. Let S = A′ ∪B′ ∪C ′.
Notice that the range of A′ is {−6M +1, . . . ,−4M − 1}, the range of B′ is {12M +1, . . . , 14M − 1}, and

the range of C ′ is {7M + 1, . . . , 9M − 1}.
If a ∈ A, b ∈ B, c ∈ C, with a+ b+ c = 0, then (a− 5M) + (b+ 13M) = (−c+ 8M), and so if there is a

3SUM’ solution, then there is a 3SUM∗ solution.
Suppose now that there is a 3SUM∗ solution s1 + s2 = s3 with s1, s2, s3 ∈ S. WLOG, s1 ≤ s2.
Suppose that s1 /∈ A′. Then s1, s2 > 7M and so s1+ s2 > 14M which exceeds the range of all A′, B′ and

C ′. Hence s1 ∈ A′.
If s2 /∈ B′, s2 < 9M and since s1 ∈ A′, s1 < −4M . Thus s1 + s2 < 5M , and this only intersects the

range of A′, but not that of B′ or C ′. Thus s1 + s2 = s3 ∈ A′. This also means that s2 ∈ A′, as otherwise
s2 > 7M , and s1 + s2 > 3M which contradicts the previous assertion that s1 + s2 ∈ A′. But on the other
hand, if s2 ∈ A′, we have s1, s2 < −4M and so s1 + s2 < −8M which is a contradiction since all numbers
in A′ are > −6M . Thus we must have s1 ∈ A′ and s2 ∈ B′. But then s1 + s2 > −6M + 12M = 6M , and
s1 + s2 < −4M + 14M = 10M . Hence s3 = s1 + s2 ∈ C ′. Thus we have a ∈ A, b ∈ B, c ∈ C such that
(a− 5M) + (b+ 13M) = (−c+ 8M) so that a+ b+ c = 0. □

One can also reduce 3SUM∗ to 3SUM’, so that 3SUM∗ is yet another equivalent version to 3SUM.

Exercise: How can you reduce 3SUM∗ back to 3SUM’?

2 Two 3SUM-Hard problems in Computational Geometry

Let us consider two problems. The first is Geombase in which we are given n points in the plane
(x1, y1), . . . , (xn, yn) with integer coordinates xi and with yi ∈ {0, 1, 2} for all i. The question is, is there a
non-horizontal line that passes through 3 of the points?

Theorem 2.1. Geombase is equivalent to 3SUM.

Proof. Geombase is equivalent to the problem whether there exist points (xi, 0), (xj , 1), (xk, 2) ∈ S so that
xi + xk = 2xj , i.e. (xj , 1) is in the middle between (xi, 0) and (xk, 2).

1

Exercise: Using the above fact, show how you can reduce Geombase to 3SUM’, so that given an
instance S of Geombase on n points you can create A,B,C on at most n integers each so that the
Geombase instance has a solution if and only if there are a ∈ A, b ∈ B, c ∈ C with a+ b+ c = 0.

Now we show the reverse direction. Given a 3SUM’ instance A, B, C, we create a Geombase instance S
that contains for every a ∈ A, a point (2a, 0), for every b ∈ B, a point (2b, 2) and for every c ∈ C, a point
(−c, 1). A Geombase solution corresponds to (2a, 0), (2b, 2), (−c, 1) with 2a+ 2b = −2c, i.e. a+ b+ c = 0, a
3SUM’ solution. □

The second problem we’ll look at is 3-Points-on-a-Line: Given n points in the plane, (x1, y1), . . . , (xn, yn)
with integer coordinates xi and yi, are there three points that lie on the same line?

Theorem 2.2. 3SUM reduces to 3-Points-on-a-Line, so that under the 3SUM Hypothesis, 3-Points-on-a-
Line requires n2−o(1) time.

Proof. Given a 3SUM instance S, create an instance of 3-Points-on-a-Line by adding for every s ∈ S, the
point (s, s3).

(a, a3), (b, b3), (c, c3) are collinear if and only if (c− a)/(b− a) = (c3 − a3)/(b3 − a3). Since a ̸= c, b ̸= a,
this is equivalent to (b2 + ab + a2) = (c2 + ac + a2), which is the same as (b2 − c2) + a(b − c) = 0. This is
equivalent to (b − c)(a + b + c) = 0. Since b ̸= c, this is the same as a + b + c = 0. I.e. (a, b, c) is a 3SUM
solution if and only if (a, a3), (b, b3), (c, c3) is a 3-Points-on-a-Line solution. □

3 3SUM-Convolution

The 3SUM-Convolution problem is, given an integer array A of length n, are there i, j, i ̸= j so that
A[i] +A[j] = A[i+ j]?

This problem has a trivial O(n2) time algorithm: just try all pairs i, j. This is much more trivial than
the O(n2) time algorithm for 3SUM.

Let’s first show that 3SUM-Convolution can be reduced to 3SUM∗. Given an instance A of length n of
3SUM-Convolution, let S = {(2n+ 1)A[i] + i | i ∈ [n]} be an instance of 3SUM∗.

Exercise: Show that there exist i and j s.t. A[i]+A[j] = A[i+ j] if and only if there are s, s′, s′′ ∈ S
with s+ s′ = s′′.

Now, let us reduce 3SUM∗ to 3SUM-Convolution.
Say S is the 3SUM∗ instance. Suppose that we have some 1 to 1 function f that maps S to [t], where

t = O(n) and such that f(i) + f(j) = f(i+ j). Then, we can create an array A of length t, and set for each
s ∈ S, set A[f(s)] = s. Then, i + j = k if and only if A[f(i)] + A[f(j)] = A[f(i) + f(j)] = A[f(k)]. This
would be a very efficient reduction to 3SUM-Convolution.

However, we don’t know how to create such a function. We will however not abandon the approach.

Simple hash functions. Suppose that our 3SUM∗ instance S is over the integers in [±U] = {−U, . . . , U}
for some U . These can be represented using d = Θ(logU) bits.

Let B be a parameter chosen later with B << dn and let m = dn/B be an integer.
Let p be a random prime in [m/2,m). Define

hp(x) = x mod p.

For every s ∈ S, compute hp(s).

2

Claim 1. For any fixed x, y ∈ S with x ̸= y

Prp[hp(x) = hp(y)] ≤ O(log(U) log(m)/m).

Proof. Since x ̸= y, we have that (x− y) ̸= 0 and z = |x− y| ≤ 2U . Thus there are at most log(2U) primes
that divide z. By the prime number theorem, there are Θ(m/ logm) primes in [m/2,m). So the probability
that one of the primes in [m/2,m) divides z is at most O((log(U) logm)/m) and

Prp[hp(x) = hp(y)] = Pr[p divides z] ≤ O(log(U) log(m)/m).

□

As we chose d = Θ(logU) we get that Prp[hp(x) = hp(y)] ≤ O(d log(m)/m).
As an immediate corollary we get:

Corollary 3.1. For any fixed x ∈ S

Ep[|{y | y ̸= x, hp(x) = hp(y)}|] ≤ O(nd log(m)/m).

For a fixed x ∈ S, let’s call Bp(x) = {y | y ̸= x, hp(x) = hp(y)} the bucket of x. The above statement
says that for every x ∈ S, the expected value of |Bp(x)| is O(nd log(m)/m). By Markov’s inequality we also
get:

Corollary 3.2. For any fixed x ∈ S

Prp[|Bp(x)| > t] ≤ O(nd log(m)/(mt)) = O(B log(m)/t).

Thus also
Ep[{x | |Bp(x)| > t}] ≤ O(nB log(m)/t).

Let’s call a bucket Bp(x) “bad” if |Bp(x)| > t. From above we get that the expected number of elements
in bad buckets is O(nB log(m)/t). Again by Markov’s inequality, we get

Corollary 3.3.
Prp[|{x | |Bp(x)| > t}| > Q] ≤ O(nB log(m)/(tQ)).

Thus with constant probability, the number of elements x ∈ S that are in bad buckets is Õ(nB/t).
In particular, this means that there exists a prime p ∈ [m/2,m) such that the number of elements

x ∈ S in bad buckets for p is Õ(nB/t).
We can find this p quickly as follows:
Try all O(m/ log(m)) primes p in the interval and repeat:

1. Compute hp(s) = s mod p for each s ∈ S in Õ(n) time per prime, so Õ(mn) = Õ(dn2/B) time overall.

2. Sort the elements by hash value, again in Õ(mn) = Õ(dn2/B) time overall.

3. Scan the sorted list and count for every ℓ ∈ {0, . . . , p − 1} the number of elements hashing to ℓ and
the number of elements s ∈ S that hash to values with > t elements hashed to them (the elements in
“bad” buckets). If that number is Õ(nB/t), stop and return p.

By our argument above, after Õ(dn2/B) time we will have found a good prime p and a list L of Õ(nB/t)
elements of S that hash to bad buckets.

Handle the elements in bad buckets. Take the list L of Õ(nB/t) elements of S that hash to bad
buckets. For every s ∈ L and every s′ ∈ S, s ̸= s′, check whether s + s′ ∈ S or s − s′ ∈ S or s′ − s ∈ S
(i.e. whether s, s′ are part of a 3SUM* solution. For each s, s′ we can perform this check in O(log n) time,
provided S is already sorted, via binary searching.

Thus, in total Õ(n2B/t) time we can check whether any of the elements in L are part of a 3SUM*
solution. If any of them are, we return YES. Otherwise, remove all of L from S.

3

Reducing the rest to colorful 3SUM-Convolution. Now, the remaining set S has the property that
for every s ∈ S, |Bp(s)| ≤ t.

We will reduce the remaining 3SUM* problem first to Colorful 3SUM Convolution: given arrays a, b, c,
determine whether there exist y, z such that ay+bz = cy+z. Then we will reduce Colorful 3SUM Convolution
to 3SUM Convolution.

Via the linearity of hp(x), we get that if a+ b = c, then hp(a) + hp(b) = hp(c).
Let’s define for y ∈ {0, . . . , p − 1}, C(y) = {s ∈ S | hp(s) = y}. Notice that by our construction, for all

y, |C(y)| ≤ t.
It suffices to check whether there exist y, z ∈ {0, 1, . . . , p− 1} and a ∈ C(y), b ∈ C(z), c ∈ C(y + z) with

a+ b = c.
Let’s define for y ∈ {0, . . . , p − 1}, i ∈ [t], C(y)i to be the ith element in C(y). If |C(y)| < t, then let

C(y)i = C(y)1 for all i > |C(y)|.
Now, for all t3 choices of i, j, k ∈ [t], create three arrays of length p:

� Array ai with ai[y] = C(y)i for y ∈ {0, . . . , p− 1},

� Array bj with bj [z] = C(z)j for z ∈ {0, . . . , p− 1},

� Array ck with ck[w] = C(w)k for w ∈ {0, . . . , p− 1}.

The Colorful 3SUM Convolution of ai, bj , ck gives us whether there exist y, z ∈ {0, . . . , p− 1} s.t. ai[y] +
bj [z] = ck[y + z], or equivalently, C(y)i + C(z)j = C(y + z)k.

Technically, we have reduced the problem to whether there is some y, z such that ai[y] + bj [z] = ck[y+ z
mod p], however, we can make ck twice the length where we put two copies of ck next to each other. Now, if
y+ z ≥ p, then in the new ck, at index y+ z we actually have C(y+ z mod p)k. Let’s assume we have done
this from now on and we will ignore this issue. In particular in the below, ai, bj , ck have the same length
(you can think of doubling ai and bj as well, or adding some ∞ entries that do not participate in any 3SUM*
solutions).

Thus, if there is some choice of (i, j, k) such that C(y)i + C(z)j = C(y + z)k, then there is some
a ∈ C(y), b ∈ C(z), c ∈ C(y + z) such that a + b = c. I.e. we have reduced 3SUM* to t3 instances of
Colorful 3SUM Convolution on O(m) = O(dn/B) length arrays. The reduction time is within polylogs

n2B/t+ dn2/B.

If Colorful 3SUM Convolution on N length arrays is in O(N2−ε) time for some ε > 0, via the reduction
we can solve 3SUM in time, within polylogs,

n2B/t+ dn2/B + t3(dn/B)2−ε.

As d = O(logU), we will omit the dependence on d for now and then multiply the final running time by
logU , for simplicity. (One can also minimize the dependence on logU but it gets messier.)

To minimize the running time, set n2B/t = n2/B, i.e. B =
√
t, and n2

√
t/t = t3(n/(

√
t))2−ε. This latter

equality is:

nε = t3.5−1+ε/2

so that we set (by squaring the above)
t5+ε = n2ε,

t = n2ε/(5+ε).

Plugging into the running time we get a running time, within polylogs

n2/
√
t = n2/

√
n2ε/(5+ε) = n2−ε/(5+ε).

The running time is thus Õ(n2−ε′ log(U)) for ε′ = ε/(5 + ε) > 0.

4

Reducing Colorful 3SUM Convolution to 3SUM Convolution. Suppose we are given three arrays
a, b, c of length m where we want to know if there are y, z ∈ {0, . . . ,m− 1} s.t. ay + bz = cy+z.

We will create a new single array A of length 8m and embed a, b, c into A as follows.
For each y ∈ {0, . . . ,m − 1}, set A[8y + 1] = ay, set A[8y + 3] = by, A[8y + 4] = cy. Set all remaining

elements of A to ∞ (or some sufficiently large element that cannot participate in a 3SUM∗ solution).
Suppose that ay+bz = cy+z. Then A[8y+1]+A[8z+3] = A[8(y+z)+4], a 3SUM-Convolution solution.

On the other hand, suppose that A[8y + s1] +A[8z + s2] = A[8w + s3] and 8y + s1 + 8z + s2 = 8w + s3, for
some s1, s2, s3 ∈ {1, 3, 4} (as all positions of the array A(t) with t mod 8 /∈ {1, 3, 4} do not participate in a
3SUM).

Now, s1 + s2 = s3 mod 8 has a unique solution s1 = 1, s2 = 3, s3 = 4, and in fact then s1 + s2 = s3
mod 8 is equivalent to s1 + s2 = s3. Thus also 8y + 1 + 8z + 3 = 8w + 4 implies y + z = w.

Exercise: Convince yourself of the above statement.

We get, A[8y + 1] +A[8z + 3] = A[8(y + z) + 4] and hence ay + bz = cy+z, a 3SUM∗ solution.
Thus if 3SUM Convolution can be solved in O(m2−ε) time on an O(m) length array, then Colorful 3SUM

Convolution can also be solved in O(m2−ε) time on O(m) length arrays.

5

