6.1420 3SUM Reductions
Lecture 11 Date: October 10, 2024

1 3SUM Versions

Recall the 3SUM problem: given a set S on n integers, do there exist a,b,c € S with a + b+ ¢ = 07 Also,
the 3SUM’ problem: given sets A,B,C of n integers each, are there a € A,b € B,c € C with a4+ b+ ¢ =07

In the homework you (hopefully) showed that these two problems are equivalent, so we will be using
these interchangeably. We will introduce one more version: 3SUM*: The input here is a set S of integers
and one needs to decide whether there are a,b,c € S such that a + b = c.

Theorem 1.1. There is an O(n) time reduction from 3SUM’ on n numbers to 3SUM* on n numbers.

Proof. Let A, B, C be an instance of 3SUM’ with n numbers. Suppose that the numbers are in the interval
{-W,...,W}. Let M =W + 1, so that the numbers are in {—M +1,..., M — 1}.

Let A ={a—5M |ac A}, BB ={b+13M |be Byand C'={8M —c|ce C}. Let S=A"UB' UC".

Notice that the range of A’ is {—6M +1,...,—4M — 1}, the range of B' is {12M +1,...,14M — 1}, and
the range of C' is {TM +1,...,9M — 1}.

Ifae Ajbe B,ce C, witha+b+c=0, then (a —5M) + (b4 13M) = (—c+ 8M), and so if there is a
3SUM’ solution, then there is a 3SUM™* solution.

Suppose now that there is a 3SSUM* solution s; + s3 = s3 with s, 83,53 € S. WLOG, s1 < s5.

Suppose that s1 ¢ A’. Then s1,s5 > 7TM and so s1 + s2 > 14M which exceeds the range of all A’, B’ and
C'. Hence s; € A'.

If 55 ¢ B’, s5 < 9M and since s;7 € A', 517 < —4M. Thus $; + s < 5M, and this only intersects the
range of A’, but not that of B’ or C’. Thus s; + so = s3 € A’. This also means that so € A’, as otherwise
s9 > TM, and s; + s > 3M which contradicts the previous assertion that s; + so € A’. But on the other
hand, if s5 € A’, we have s1,s5 < —4M and so s + sy < —8M which is a contradiction since all numbers
in A" are > —6M. Thus we must have s; € A’ and s, € B’. But then s1 + so > —6M + 12M = 6M, and
$1 + 89 < —4M + 14M = 10M. Hence s3 = s1 + so € C’. Thus we have a € A,b € B,c € C such that
(a—=5M)+ (b+13M) = (—c+8M) so that a + b+ ¢ = 0. O

One can also reduce 3SUM* to 3SUM’, so that 3SUM* is yet another equivalent version to 3SUM.

Exercise: How can you reduce 3SUM* back to 3SUM’?

2 Two 3SUM-Hard problems in Computational Geometry

Let us consider two problems. The first is Geombase in which we are given n points in the plane
(1,91),- -+, (Tn,yn) with integer coordinates z; and with y; € {0,1,2} for all i. The question is, is there a
non-horizontal line that passes through 3 of the points?

Theorem 2.1. Geombase is equivalent to 3SUM.

Proof. Geombase is equivalent to the problem whether there exist points (x;,0), (;,1), (x%,2) € S so that
x; + xp = 225, i.e. (z;,1) is in the middle between (x;,0) and (z, 2).

Exercise: Using the above fact, show how you can reduce Geombase to 3SUM’, so that given an
instance S of Geombase on n points you can create A,B,C' on at most n integers each so that the
Geombase instance has a solution if and only if there are a € A,b € B,c € C with a+ b+ ¢c=0.

Now we show the reverse direction. Given a 3SUM’ instance A, B, C, we create a Geombase instance S
that contains for every a € A, a point (2a,0), for every b € B, a point (2b,2) and for every ¢ € C, a point
(—¢,1). A Geombase solution corresponds to (2a,0), (2b,2), (—¢,1) with 2a 4+ 2b = —2¢, i.e. a+b+c¢=0, a
3SUM’ solution. a

The second problem we’ll look at is 3-Points-on-a-Line: Given n points in the plane, (z1,y1), ..., (Zn,Yn)
with integer coordinates x; and y;, are there three points that lie on the same line?

Theorem 2.2. 3SUM reduces to 3-Points-on-a-Line, so that under the 3SUM Hypothesis, 3-Points-on-a-
Line requires n?>~°M) time.

Proof. Given a 3SUM instance S, create an instance of 3-Points-on-a-Line by adding for every s € S, the
point (s, s?).

(a,a®), (b,b3), (c,c?) are collinear if and only if (¢ —a)/(b—a) = (3 — a®)/(b® — a®). Since a # ¢, b # a,
this is equivalent to (b + ab + a?) = (¢* + ac + a?), which is the same as (b — ¢?) + a(b — ¢) = 0. This is
equivalent to (b —¢)(a+ b+ ¢) = 0. Since b # ¢, this is the same as a + b+ ¢ = 0. Le. (a,b,c) is a 3SUM
solution if and only if (a, a®), (b,b%), (¢, ¢?) is a 3-Points-on-a-Line solution. O

3 3SUM-Convolution

The 3SUM-Convolution problem is, given an integer array A of length n, are there 4,5, i # j so that
All) + A[j] = Afi + 4]?

This problem has a trivial O(n?) time algorithm: just try all pairs 4,j. This is much more trivial than
the O(n?) time algorithm for 3SUM.

Let’s first show that 3SUM-Convolution can be reduced to 3SUM*. Given an instance A of length n of
3SUM-Convolution, let S = {(2n + 1)A[i] + i | i € [n]} be an instance of 3SUM*.

Exercise: Show that there exist ¢ and j s.t. A[i]+ A[j] = A[i+j] if and only if there are s, ', 8" € S
with s + ¢ = s".

Now, let us reduce 3SUM* to 3SUM-Convolution.

Say S is the 3SUM* instance. Suppose that we have some 1 to 1 function f that maps S to [t], where
t = O(n) and such that f(:) + f(j) = f(¢ + 7). Then, we can create an array A of length ¢, and set for each
s € S, set A[f(s)] = s. Then, i+ j = k if and only if A[f(¢)] + A[f(4)] = A[f(@) + f(4)] = A[f(k)]. This
would be a very efficient reduction to 3SUM-Convolution.

However, we don’t know how to create such a function. We will however not abandon the approach.

Simple hash functions. Suppose that our 3SUM* instance S is over the integers in [+U] = {-U,..., U}
for some U. These can be represented using d = O(log U) bits.

Let B be a parameter chosen later with B << dn and let m = dn/B be an integer.

Let p be a random prime in [m/2, m). Define

hp(z) = 2 mod p.

For every s € S, compute hy(s).

Claim 1. For any fized x,y € S with x # y

Prylhp(z) = hy(y)] < O(log(U) log(m)/m).

Proof. Since x # y, we have that (x —y) # 0 and z = |x — y| < 2U. Thus there are at most log(2U) primes
that divide z. By the prime number theorem, there are ©(m/logm) primes in [m/2,m). So the probability
that one of the primes in [m/2,m) divides z is at most O((log(U) logm)/m) and

Prylhp(x) = hy(y)] = Prp divides z] < O(log(U) log(m)/m).

As we chose d = O(logU) we get that Prp[h,(z) = hy(y)] < O(dlog(m)/m).
As an immediate corollary we get:

Corollary 3.1. For any fized x € S

Epl{y | y # @, hp(2) = hp(y)}[] < O(ndlog(m)/m).

For a fixed x € S, let’s call By(z) = {y | y # x, hp(z) = hyp(y)} the bucket of . The above statement
says that for every x € S, the expected value of |Bp(ac)| O(ndlog(m)/m). By Markov’s inequality we also
get:

Corollary 3.2. For any fized x € S
Pry|By(x)| > t] < O(ndlog(m)/(mt)) = O(Blog(m)/t).

Thus also
Ep[{z | |Bp(x)| > t}] < O(nBlog(m)/1).

Let’s call a bucket By, (x) “bad” if | B,(x)| > t. From above we get that the expected number of elements
in bad buckets is O(nBlog(m)/t). Again by Markov’s inequality, we get

Corollary 3.3.
Prp[{z | [By(z)| > t}| > Q] < O(nBlog(m)/(tQ)).

Thus with constant probability, the number of elements z € S that are in bad buckets is O(nB /t).

In particular, this means that there exists a prime p € [m/2,m) such that the number of elements
z € S in bad buckets for p is O(nB/t).

We can find this p quickly as follows:

Try all O(m/log(m)) primes p in the interval and repeat:

1. Compute h,(s) = s mod p for each s € S in O(n) time per prime, so O(mn) = O(dn?/B) time overall.
2. Sort the elements by hash value, again in O(mn) = O(dn?/B) time overall.

3. Scan the sorted list and count for every ¢ € {0,...,p — 1} the number of elements hashing to ¢ and
the number of elements s € S that hash to values with >t elements hashed to them (the elements in
“bad” buckets). If that number is O(nB/t), stop and return p.

By our argument above, after O(dn?/B) time we will have found a good prime p and a list L of O(nB/t)
elements of S that hash to bad buckets.

Handle the elements in bad buckets. Take the list L of O(nB/t) elements of S that hash to bad
buckets. For every s € L and every s’ € S,s # s’, check whether s +s € Sors—s" € Sors’ —se S
(i.e. whether s,s’ are part of a 3SUM* solution. For each s,s” we can perform this check in O(logn) time,
provided S is already sorted, via binary searching.

Thus, in total O(n?B/t) time we can check whether any of the elements in L are part of a 3SUM*
solution. If any of them are, we return YES. Otherwise, remove all of L from S.

Reducing the rest to colorful 3SUM-Convolution. Now, the remaining set S has the property that
for every s € S, |Bp(s)| < t.

We will reduce the remaining 3SUM* problem first to Colorful 3SUM Convolution: given arrays a, b, c,
determine whether there exist y, z such that a,+b, = ¢,.. Then we will reduce Colorful 3SUM Convolution
to 3SUM Convolution.

Via the linearity of hy(z), we get that if a + b = ¢, then hy(a) + hy(b) = hy(c).

Let’s define for y € {0,...,p— 1}, C(y) = {s € S | hp(s) = y}. Notice that by our construction, for all
y, ICy)| < t.

It suffices to check whether there exist y,z € {0,1,...,p — 1} and a € C(y),b € C(z),c € C(y + z) with
a+b=c.

Let’s define for y € {0,...,p — 1}, i € [t], C(y); to be the ith element in C(y). If |C(y)| < t, then let
C(y)i = C(y)1 for all i > [C(y)].

Now, for all #3 choices of i, j, k € [t], create three arrays of length p:

e Array a' with a'[y] = C(y); for y € {0,...,p — 1},
o Array bV with ¥/[2] = C(z); for z € {0,...,p — 1},
e Array c* with c*[w] = C(w) for w € {0,...,p —1}.

The Colorful 3SUM Convolution of a’,b’, c* gives us whether there exist y,z € {0,...,p— 1} s.t. a’[y] +
V2] = c*y + 2], or equivalently, C(y); + C(2); = C(y + 2)-

Technically, we have reduced the problem to whether there is some y, z such that a’[y] + b [z] = c*[y + 2
mod p], however, we can make c* twice the length where we put two copies of ¢* next to each other. Now, if
y+ 2z > p, then in the new c¥, at index y + z we actually have C(y+ 2z mod p)i. Let’s assume we have done
this from now on and we will ignore this issue. In particular in the below, a*, b/, c* have the same length
(you can think of doubling a’ and b’ as well, or adding some co entries that do not participate in any 3SUM*
solutions).

Thus, if there is some choice of (7,7, k) such that C(y); + C(z); = C(y + 2)k, then there is some
a € C(y),b € C(z),c € C(y + 2) such that a + b = c¢. Le. we have reduced 3SUM* to t3 instances of
Colorful 3SUM Convolution on O(m) = O(dn/B) length arrays. The reduction time is within polylogs

n*B/t + dn?/B.

If Colorful 3SUM Convolution on N length arrays is in O(N2~¢) time for some € > 0, via the reduction
we can solve 3SUM in time, within polylogs,

n?B/t 4 dn*/B + t3(dn/B)*"¢.

As d = O(logU), we will omit the dependence on d for now and then multiply the final running time by
log U, for simplicity. (One can also minimize the dependence on log U but it gets messier.)

To minimize the running time, set n>B/t = n?/B, i.e. B = \/t, and n?/t/t = t3(n/(v/t))>~¢. This latter
equality is:

ne — ¢3-5-14¢/2

so that we set (by squaring the above)
t5+6 —_ n2s

)

t = TLZE/(5+6).

Plugging into the running time we get a running time, within polylogs

n2JVE = n2/\/n2el(54e) = p2=e/(5+9),

The running time is thus O(n2=< log(U)) for &’ = ¢/(5+¢) > 0.

Reducing Colorful 3SUM Convolution to 3SUM Convolution. Suppose we are given three arrays
a,b, c of length m where we want to know if there are y,z € {0,...,m — 1} s.t. ay + b, = ¢yy..

We will create a new single array A of length 8m and embed a, b, ¢ into A as follows.

For each y € {0,...,m — 1}, set A8y + 1] = a,, set A8y + 3] = b,, A8y + 4] = ¢,. Set all remaining
elements of A to oo (or some sufficiently large element that cannot participate in a 3SUM* solution).

Suppose that a, +b, = ¢y4.. Then A[8y+ 1]+ A[82+ 3] = A[8(y+z)+4], a 3SUM-Convolution solution.
On the other hand, suppose that A[8y + s1] + A[8z + s3] = A[8w + s3] and 8y + s1 + 8z + s2 = 8w + s3, for
some $1, 2,83 € {1,3,4} (as all positions of the array A(t) with ¢ mod 8 ¢ {1,3,4} do not participate in a
3SUM).

Now, s1 + s3 = s3 mod 8 has a unique solution s; = 1,89 = 3,s3 = 4, and in fact then s; + s5 = s3
mod 8 is equivalent to s; + so = s3. Thus also 8y + 1 + 8z + 3 = 8w + 4 implies y + z = w.

Exercise: Convince yourself of the above statement.

We get, A8y + 1] + A[8z+ 3] = A[8(y + z) + 4] and hence a, + b, = ¢y4», a 3SUM* solution.
Thus if 3SUM Convolution can be solved in O(m?~¢) time on an O(m) length array, then Colorful 3SUM
Convolution can also be solved in O(m?~¢) time on O(m) length arrays.

