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Last time, we defined linear decision trees (LDTs), showed that APSP can be solved with LDTs in Õ(n2.5) depth, and
showed how to get an algorithm for APSP on the Real RAM. Today we’ll show how to also get a low-depth LDT for
3-SUM, and show how to get a 3-SUM algorithm on the Real RAM using this LDT. We’ll also (optionally) talk about
an interesting 3-SUM data structure that was recently developed, refuting a conjecture about the hardness of 3-SUM.

Recall the real-numbered version of k-SUM we want to work with:

Problem: k-SUM
Input: n real numbers r1, . . . , rn
Output: Indices (i1, . . . , ik) ∈ [n]k such that

∑
j rij = 0.

In particular, the output of k-SUM is an O(k log n)-bit string. Recall the k-SUM conjecture is:

k-SUM Conjecture: For every k ≥ 2 and ε > 0, k-SUM cannot be solved in O(n⌈k/2⌉−ε) (randomized) time.

We will show this conjecture is false when we replace “time” with “linear decision tree depth”.

1 Recalling Linear Decision Trees

Let’s quickly recall the definition of LDTs and how they compute.

Definition 1.1 For fixed integers m and m′, a linear decision tree (LDT) of width ℓ with m inputs and m′ bits of
output is a binary tree T where each inner node of T is associated with some inequality

[αi1xi1 + ...+ αiℓxiℓ ≥ t]

where t ∈ R, the xij are variables from the set {x1, . . . , xm} for some fixed m, and each αij ∈ {−1, 0, 1}. Each leaf
of T is labeled by a string from {0, 1}m′

.

Tm computes on an x⃗ = (x1, . . . , xm) ∈ Rm as follows:

• Start at the root of T .

• If the inequality at the current node of T is true of x⃗, then move to the left child of the current node, else
move to the right child.

• Once a leaf is reached, output its string.

Given a function f : Rn → {0, 1}m, the “linear decision complexity” of f is the minimum depth of an LDT that
computes f . As before, we will use the following fact:

Fact 1.1 SORT has an LDT of width 2 and depth O(n log n).
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2 Low-Depth LDT for 3-SUM

The LDT for APSP (that we saw last time) was from the 1970s. In more recent times, researchers have discovered
low-depth linear decision trees for 3-SUM as well, starting with:

Theorem 2.1 ([GP14]) 3-SUM has an LDT of width 4 and depth Õ(n1.5). In general, k-SUM has a LDT of width
(2k − 2) and depth Õ(nk/2).

The most amazing aspect of this theorem is that it took nearly 40 years to prove it, after Fredman’s results for APSP!
Once you see it, you’ll know what I mean. (It builds on our O(n2)-time algorithm for 3-SUM with the two pointers.)
Probably the only reason this LDT was not found earlier, was simply because people believed it didn’t exist.1 There
was a lower bound:

Theorem 2.2 ([Eri99]) Every LDT of width 3 for 3-SUM has depth at least Ω(n2).

Somehow, when you allow width 4 instead of width 3, all of a sudden 3-SUM gets easier for linear decision trees.
Now, since 3-SUM is comparing triples of numbers anyway, people didn’t figure that considering width larger than 3
would help much. Erickson’s work [Eri99] also shows that k-SUM needs Ω(n⌈k/2⌉) depth for width-k LDTs.

For k-SUM, the state-of-the-art in low-depth LDTs is the following result of Kane, Lovett, and Moran:

Theorem 2.3 ([KLM19]) k-SUM has a width-2k LDT of depth O(kn log2 n).

Therefore, 3-SUM has a width-6 LDT of depth only O(n log2 n). In fact, one can determine if there is a subset of at
most k numbers that sum to zero, using their LDT construction. Therefore this result also implies that even Subset-
Sum (the infamous NP-complete problem) has a LDT of depth Õ(n2), by setting k = n. The fact that Subset-Sum
has a poly(n)-depth LDT has actually been known for a long time, thanks to work of Meyer auf der Heide [Mey84]
and Meiser [Mei93].

2.1 The LDT

We will use the 3-SUM⋆ variant of 3-SUM (which is equivalent, as seen in Lecture 10):

3-SUM⋆: Given a set A ⊂ R, are there ai, aj , ak ∈ A such that ai = aj + ak?

Without loss of generality, let’s assume all numbers in A are distinct. (We can check if a 3-SUM instance contains a
3sum solution with two repeats of the same number, in Õ(n) time.)

Recall the O(n2) time algorithm we gave for 3-SUM:

1. Sort A in O(n log n) time.
2. For each a in A,

Make two pointers on the A: p1 at the beginning of L, and p2 at the end.
3. Repeat until the pointers reach each other:

Let b be the current number at p1 and c be the number at p2.
If a = b, move p1 to the right (we want a distinct triple of numbers)
If a = c, move p2 to the left (same reason)
If a+ b+ c = 0 then return (a, b, c).
If a+ b+ c > 0, then move p2 to the left (to get a smaller 3-sum, we have to decrease c)
If a+ b+ c < 0, then move p1 to the right (to get a larger 3-sum, we have to increase b)

4. Return “no solution”.

1This is an important point to reflect on, especially given all these fine-grained hypotheses and conjectures we’ve seen!
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For each a ∈ A, step 3 takes O(n) time to find the other two numbers in the 3sum solution.

Exercise: Argue that the above algorithm can be implemented by a width-3 LDT of depth O(n2).

We want to speed-up the loop in step 3. The starting idea is to partition the sorted A into consecutive groups of
numbers A1, . . . , An/d, with O(d) numbers in each group. For two groups Aj and Ak, we want to quickly check if
there are b ∈ Aj and c ∈ Ak such that a = b + c. If we can do that in time (well, depth) t, then we’d only have to
repeat the loop in step 3 for n/d times, and get O(t · n/d) time. We will show how to do some sorting tricks to get
that depth t down to O(log d).

Here is our new proposed algorithm. It is underspecified; we have to fill in more details to complete it!

1. Sort A in O(n log n) time. Partition A into groups A1, . . . , An/d with O(d) numbers in each group.
1.1 For all i ∈ [n/d],2 define the list Di := {aj − ak | aj , ak ∈ Ai}.

Sort each Di in Õ(d2) time/depth. Merge all Di lists into a single sorted list L in Õ(nd) time/depth.
1.2 For all j, k ∈ [n/d], define the list Sj,k := {aj + ak | aj ∈ Aj , ak ∈ Ak}.
2. For each ai ∈ A,

Make two pointers on the groups of A: p1 at A1, p2 at An/d.
3. Repeat until the pointers reach each other:

Let Aj be the group that p1 points to, and Ak be the group p2 points to.
If (ai ∈ Sj,k) then return (i, j, k) as a solution.
Otherwise, ai ̸= aj + ak, for all aj ∈ Aj and ak ∈ Ak.
Set aj,max to be the largest number in Aj , and ak,min to be the smallest in Ak.
If (ai < ak,min+aj,max), then move p2 to the left (to get a smaller 3-sum, decrease the “larger” group)
else move p1 to the right. (to get a larger 3-sum, we have to increase the smaller group)

4. Return “no solution”.

Observe that the sorting in step 1.1 takes Õ(n/d · d2) ≤ Õ(nd) depth with a width-4 LDT (by Fact 1.1), and the
number of iterations in step 3 is at most n/d.

Exercise: Convince yourself that the above algorithm correctly solves 3-SUM⋆!

However, step 1.2 looks suspect! There are n2/d2 lists Sj,k, and each of these lists is Θ(d2) long, if all of the sums
aj +ak are distinct. How do we prepare the lists Sj,k in ≪ n2 depth, and how do we implement the bold-faced check
of (ai ∈ Sj,k) efficiently? Well, we did define these lists Di which don’t seem to be doing anything...

The key insight to answering these questions is the following.

Key Insight: Any two elements of any Sj,k can be compared using the sorted order on L.

Take any aj , a
′
j ∈ Aj and ak, a

′
k ∈ Ak, so that aj + ak, a′j + a′k are from Sj,k. Recall Fredman’s trick from the last

lecture:
aj + ak ≤ a′j + a′k ⇐⇒ aj − a′j ≤ a′k − ak.

Note that aj − a′j ∈ Dj and a′k − ak ∈ Dk. Therefore, both of these differences appear in the list L, which we sorted
in step 1.1. Thus any two elements of Sj,k can be compared using L. Therefore, after step 1.1, we can already infer
the sorted order of every Sj,k.

2Remember [K] := {1, . . . ,K}.
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Using this insight, we claim:

Claim: Each run of step 3 can be implemented using only O((n/d) · log d) depth. In particular, the check (ai ∈ Sj,k)
can be done in only O(log d) depth.

Since it takes Õ(nd) depth to implement steps 1 and 1.1, and we run step 3 for up to n times, the claim would imply
that the total depth is (omitting O-tilde factors)

nd+ (n2/d) · log(d).

Setting d = n1/2, we would therefore obtain an LDT of depth Õ(n1.5).

Let’s see how to prove the claim. Note for each j, k, the size of Sj,k is |Sj,k| ≤ O(d2).

Exercise: Show that, assuming we know the sorted order of each Sj,k, we can determine (ai ∈ Sj,k) for any
i, j, k, with a width-3 LDT of depth only O(log d).

Assuming the exercise, the whole of step 3 only needs O(n/d · log d) additional depth: we have to do only O(n/d)
iterations of the loop, and one extra comparison in each loop to move the pointers.

Getting a Real RAM Algorithm. You can use the LDT above to get a 3-SUM algorithm on the Real RAM that runs
in O(n2/ logc n) time for some c > 0. The idea is very similar to the APSP algorithm: we reduce the problem on n
numbers to very small sub-instances of a numbers, for some a = logb n where b > 0, and store in memory an LDT
for 3-SUM on a numbers so that we can save a bit over the trivial O(a2) time algorithm. The best known algorithm in
this line of work runs in O(n2poly(log log n)/(log n)2) time, by Chan [Cha20].

3 An Interesting “Static” Data Structure for 3-SUM (Optional)

Over the next few lectures, we will discuss data structure lower bounds in fine-grained complexity. So this is a good
place to give a recently-found data structure for 3-SUM, which refuted a conjecture in the area. The data structure was
inspired by ideas from cryptography. We consider the data structure problem, 3-SUMINDEXING:

Problem: 3-SUM INDEXING
Input: A list L of n integers.
Task: Preprocess L so that, given any integer a, we can quickly determine a pair (b, c) ∈ L2 such that a = b+ c,
if one exists.

In such a problem, there are two phases. In the preprocessing phase, an algorithm is run directly on the list L, and
some data structure of size S(n) is prepared.3 In the query phase, we receive “queries” which are integers a, and for
each query we want to answer in some T (n) time if there are b, c ∈ L such that a = b+ c. Our data structure should
work quickly no matter what integer a is given to us. We would like both phases to be as efficient as possible: both
space S(n) used in the preprocessing phase, and the time T (n) used in the query phase. These data structures are often
called static in that the initial input does not change, to contrast with dynamic data structures where the underlying
input can be modified over time.

There are two simple ways to solve 3-SUM INDEXING. The first way would be to simply store all O(n2) possible
pairs (b, c) ∈ L2 along with their sum. Then on any query, we can lookup the answer in O(log n) time. This solution
has a horrible space usage for preprocessing, but fast query time. Another way would be to store nothing but L, and

3We generally don’t care much about the running time of the preprocessing phase, but ideally it should be small, like polynomial time. The point
is that the preprocessing would be run only once.
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solve the resulting 2-SUM instance (using the two-pointer algorithm) in O(n log n) time. This has no preprocessing
at all, but linear query time. Can we get sub-linear query time T (n) with sub-quadratic space S(n) for preprocessing?
It was conjectured that the answer is no:

Conjecture 3.1 ([GKLP17]) For all δ > 0, every data structure for 3-SUM INDEXING with O(n1−δ) query time
must take at least Ω(n2) space for preprocessing.

Assuming this conjecture, some other lower bounds were proved. This conjecture was recently refuted:

Theorem 3.1 ([GGH+20]) There is a data structure for 3-SUM INDEXING that can be prepared in Õ(n2) time with
O(n1.9) space for preprocessing and O(n0.3) query time.

That is, we can store only n1.9 bits of information about all O(n2) possible pairwise sums from a set of size n, and
still be able to determine if there is a pair that sums to a given target in only O(n0.3) time!

In general, for every k ≥ 3 and every δ ∈ (0, k−2), the k-SUM INDEXING problem (which asks for a (k−1)-tuple of
numbers that sum up to a given target b) can be solved with O(nk−1−δ) preprocessing space and Õ(n3δ) query time.

To illustrate the key points in this theorem, we will make one simplification: we will assume that all numbers in
our 3-SUM INDEXING instance are distinct integers drawn from {1, . . . , n2}. This is actually not such a “huge”
simplification, since we could hash the numbers modulo O(log n) random primes p that are close to n2 (as we did in
our 3-SUM algorithm in Lecture 9) and preserve the correct answer with good probability. But it is a simplification.

Next, we reduce our indexing problem to a classic cryptography problem: function inversion. Let L = {a1, . . . , an}
be a given list of n (distinct) integers in {1, . . . , n2}.

Let ρ : [n2] → [n]2 be a bijection that takes every integer in [n2] to a unique pair (i, j) ∈ [n]2, and let ρ1, ρ2 : [n2] →
[n] be such that (ρ1(x), ρ2(x)) = ρ(x). Define a function f : [n2] → [n2] as follows:

f(x) := Parse x into i = ρ1(x), j = ρ2(x), and output ai + aj .4

Observe that the 3-SUM INDEXING problem is precisely the problem of building a data structure for inverting the
function f ! A query consists of a number b, and we want to find (i, j) such that ai + aj = b, if they exist: this is
exactly the problem “given a b, find an x such that f(x) = b”. Function inversion is the one of most basic problems in
cryptography, and it has been studied for decades.

It turns out that non-trivial (interesting) data structures for function inversion exist! The following very generic theorem
shows how to do it:

Theorem 3.2 ([FN00]) For any integer X ≥ 1, any f : [X] → [X], and any S and T such that S3T ≥ X3, there is
a data structure using space Õ(S) which can invert f at any desired point b ∈ X , which uses at most Õ(T ) time and
Õ(T ) evaluations of f .

Assuming Theorem 3.2, we can solve 3-SUM INDEXING by preparing a data structure for the f defined above, with
X = n2 and S = n1.9. Solving for T , we see that T can be n6/n5.7 ≤ n0.3, and we are done!

That leaves the question of how to prove Theorem 3.2. The full proof of Theorem 3.2 would be too much to cover
(even optionally) so we will illustrate a simple case.

By far the nicest case is when f : [X] → [X] is a bijection. In this case, we can show that there is a data structure
using Õ(S) space that can invert f in Õ(T ) time, for all S · T ≤ X .

Define a graph Gf with nodes 1, . . . , X and the X directed edges (x, f(x)) for all x ∈ [X]. Since f is a bijection,
every node has indegree 1 and outdegree 1, so Gf is a collection of disjoint cycles. For every cycle of length at least
X/S, conceptually break it up into disjoint paths such that all but possibly one of the paths is of length X/S. From
these, we form a list of disjoint paths P1, . . . , Pk. Note there are at most O(S) such paths in total, so k ≤ O(S). For

4Technically, to keep the co-domain [n2], we should only output ai + aj if ai + aj ≤ n2, and otherwise output a “non-answer” such as 1.
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each path Pi, suppose it starts at a node si and ends at a node ti. Our data structure stores the numbers at nodes si and
ti, and a new “back edge” (ti, si); this takes O(S logX) bits of space. Note that Gf augmented with the edges (ti, si)
now has the property that every node is in a cycle of length at most O(X/S).

Now suppose we are given a y ∈ [X], and want to know the unique x such that f(x) = y (remember, f is a bijection).
This is equivalent to finding the node x in Gf such that (x, y) is an edge. To do this, we go forwards in the graph,
rather than backwards: imagine we have a pointer to a node v in Gf ; initially, v := y. We evaluate f on v, conceptually
taking the edge (v, f(v)). If f(v) = ti for some i = 1, . . . , k, we set v := si (taking the edge (ti, si)). We repeat this,
until we take the edge (v, y), in which case we output v as the x such that f(x) = y.

Why does this work? Recall that Gf is a collection of disjoint cycles; by repeatedly computing f on the current value,
we are traveling along a cycle and will eventually reach the node we started from. Moreover, in the above procedure,
we will not visit more than O(X/S) nodes, because if our input y happens to be on a Pi of length X/S, after at most
O(X/S) nodes we will take the “back edge” (ti, si), and end up at x such that (x, y) is an edge after O(X/S) steps.
(If y was not on a path of length X/S, then it must be in a cycle of length less than X/S, so we will reach x in O(X/S)
evaluations of f .)

To sum up, the above procedure uses T ≤ O(X/S) time and evaluations of f , and inverts f on all inputs.

Note that our data structure described above crucially requires that f is a bijection; otherwise the graph Gf could have
lots of other weird structure in it. This makes the full proof of Theorem 3.2 quite complicated.

4 Open Problems

The following is one of the major open problems in data structures: find a static data structure task which has poly(n)
possible queries on n-bit instances, and where every data structure using at most n1+ε space to preprocess the queries
will require at least (log n)1+ε time to answer the queries, for some ε > 0. (Really, the open problem is to find any
problem that needs both super-linear space and super-logarithmic query time.)

A less ambitious open problem would be to study other weaker forms of the 3-SUM INDEXING Conjecture mentioned
that haven’t yet been refuted, and try to prove more interesting consequences of them (or refute them!). Two other
weaker conjectures are mentioned in [GGH+20].
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