
6.1420 Subcubic time for structured Min-Plus product; Exact Triangle and Counting Exact Triangles are
equivalent
Lecture 15 (notes by V) Date: October 29, 2024

Our goal today is twofold:

1. Show that for some structured matrices, their Min-Plus product can be computed in truly subcubic
time

2. Use similar techniques to show that Exact Triangle is equivalent to its counting version.

1 Faster Min-Plus for some matrices

We will use fast matrix multiplication to show that in some natural cases the Min-Plus product of two n×n
matrices can be computed in truly subcubic time.

Recall that the Min-Plus product of two n × n matrices A and B is the n × n matrix C with C[i, j] =
mink A[i, k] +B[k, j].

The (normal) matrix product of two matrices A and B, on the other hand, is the matrix C with C[i, j] =∑
k(A[i, k] +B[k, j]).
We define ω to be the smallest real number such that n × n matrices can be multiplied (in the normal

(+, ·) way) in time O(nω+ε) for all ε > 0.
Determining the value of ω is an active research area. The current record (as of 2024) is ω < 2.37134 [1].
The actual definition of ω so far ignores the sizes of the matrix entries. We will actually need to consider

their bit complexity however. Thus, we will say that two integer matrices with entries in {−M, . . .M} can
be multiplied in time O((logM) · nω+ε) for all ε > 0. Slightly abusing notation, we will from now on say:

Any two n× n matrices with entries in {−M, . . .M} can be multiplied in O((logM) · nω) time.

In the above, you should always think of ω really being ω + ε, for all ε > 0. We omit the ε so we don’t
have to keep writing it.

We will use the fact that ω < 3 to solve Min-Plus product faster in some integer matrices.
The first case is when both input matrices have bounded entries. Then we will relax this to when only

one has bounded entries and the second can be arbitrary.

1.1 Min-Plus product of two matrices with bounded entries

Suppose that we are given A and B with entries in {−M, . . . ,M} ∪ {∞} and we want to compute their
Min-Plus product. Here M is some small integer, M << n.

The first notice that we can replace ∞ by 3M + 1, forming new matrices A′ and B′ with entries in
{−M . . . , 3M + 1}. This is because if either A[i, k] = ∞ or B[k, j] = ∞, then A′[i, k] + B′[k, j] ≥ (3M +
1) − M = 2M + 1, whereas if both A[i, k] < ∞, B[k, j] < ∞, we have that A′[i, k] + B′[k, j] ≤ 2M , so no
previously infinite entries could mess up the Min-Plus product computation and

(A′ ⋆ B′)[i, j] = (A ⋆ B)[i, j] ≤ 2M whenever (A ⋆ B)[i, j] < ∞,
and (A′ ⋆ B′)[i, j] ≥ 2M + 1 whenever (A ⋆ B)[i, j] = ∞.

Now, let’s negate all entries of A′ and B′ obtaining A′′ = −A,B′′ = −B. We now want to compute the
Max-Plus product C ′′ of A′′, B′′ defined as

C ′′[i, j] = max
k

A′′[i, k] +B′′[k, j].

1

Notice that A′′ and B′′ have entries in {−3M − 1, . . . ,M}. If we add 3M +1 to all entries of A′′ and B′′

we will get matrices X and Y with entries in {0, . . . ,W} for W = 4M +1. If we can compute the Max-Plus
product Z of X and Y quickly, then with only an O(n2) overhead we can obtain from Z the Max-Plus
product of A′′ and B′′ by subtracting 2(3M + 1) from every entry of Z. Then with an additional O(n2)
overhead we can obtain the Min-Plus product of A and B.

We give a faster algorithm for this problem:

Claim 1. The Max-Product of two n× n matrices with entries in {0, . . . ,W} can be computed in Õ(Wnω)
time.

If the claim is true, we get as a corollary:

Corollary 1.1. The Min-Plus product of two n × n matrices with entries in {−M, . . . ,M} ∪ {∞} can be
computed in Õ(Mnω).

Let’s prove the claim. Given two n × n matrices X and Y with entries in {0, . . . ,W}, let’s form new
matrices X ′ and Y ′ with X ′[i, k] = (n+ 1)X[i,k] and Y ′[k, j] = (n+ 1)Y [k,j].

Consider the (normal) matrix product Z ′ of X ′ and Y ′:

Z ′[i, j] =
∑
k

(n+ 1)X[i,k]+Y [k,j].

Suppose that Z is the Max-Plus product of X and Y so that Z[i, j] = maxk X[i, k] + Y [k, j].
Then:

1. As the sum is at least as large as any individual summand,

Z ′[i, j] =
∑
k

(n+ 1)X[i,k]+Y [k,j] ≥ (n+ 1)Z[i,j].

2. Clearly, for all k, Z[i, j] ≥ X[i, k] + Y [k, j]. Thus,

Z ′[i, j] =
∑
k

(n+ 1)X[i,k]+Y [k,j] ≤ n · (n+ 1)Z[i,j] < (n+ 1)Z[i,j]+1.

Hence, if we have Z ′, we can compute Z in only O(n2) additional time as follows. For every i, j, find the
unique integer T for which Z ′[i, j] ∈ [(n+ 1)T , (n+ 1)T+1).

How fast can we compute Z ′ from X ′ and Y ′? The entries of X ′ and Y ′ are bounded above by (n+1)W .
Thus, we can compute Z ′ in time O(Wnω log n).

Thus, the total time to compute the Max-Plus product is O(Wnω log n).

1.2 Min-Plus product of two matrices where only one has bounded entries

Now let’s consider the case when B is an arbitrary integer matrix and A has bounded entries. Since we
want to be able to read the input in truly subcubic time, we will assume that the entries of B have at most

n1−δ bits for some δ > 0, but otherwise they are arbitrary integers in [2n
1−δ

]. (Here technically we want
1− δ ≤ (ω − 1)/2 since we are aiming for a running time of O(n(3+ω)/2) and the input size would be n3−δ.)

We will consider two cases for A. The first case is when all entries are in {−M, . . .M}. In the second
case we will also allow infinite entries (which could signify the absence of an edge, for instance, if A is a
generalized adjacency matrix).

2

A has entries in {−M, . . . ,M}. We want to compute the Min-Plus product C of A and B. Let’s fix some
output index pair i, j. Suppose that k is a witness for the Min-Plus product entry C[i, j], i.e. A[i, k]+B[k, j] =
C[i, j].

Then, for all ℓ, A[i, k] +B[k, j] ≤ A[i, ℓ] +B[ℓ, j]. We get that

B[k, j] ≤ (A[i, ℓ]−A[i, k]) +B[ℓ, j].

Since A[i, k], A[i, ℓ] ∈ {−M, . . . ,M}, we obtain that for the witness k we have that for all ℓ:

B[k, j] ≤ 2M +B[ℓ, j].

Let’s sort all columns of B in O(n2 log n) time. Now, consider the jth column in light of the above. Let
B[sj , j] be the minimum entry in the jth column of B. From our discussion above, we get:

For any i ∈ [n] and k which is a witness of the i, j Min-Plus product entry, B[k, j] ≤ 2M +B[sj , j].

Now, form the matrix B′ as follows:

B′[ℓ, j] =

{
B[ℓ, j]−B[sj , j], if B[ℓ, j]−B[sj , j] ≤ 2M

∞, otherwise.

The claim is that A ⋆B′ = A ⋆B. This is because, for every i, j if (A ⋆B)[i, j] = A[i, k] +B[k, j], by our
discussion above, B[k, j] ≤ 2M +B[sj , j]. Thus, B[k, j]−B[sj , j] ≤ 2M and B′[k, j] = B[k, j]−B[sj , j].

Let Sj be the indices ℓ for which B[ℓ, j] − B[sj , j] ≤ 2M . We have shown that the witness k for the
Min-Plus product entry C[i, j] is in Sj . Since for all ℓ ∈ Sj , A[i, ℓ] +B[ℓ, j] ≥ A[i, k] +B[k, j] = C[i, j]:

(A⋆B′)[i, j] = min
ℓ

A[i, ℓ]+B′[ℓ, j] = min
ℓ∈Sj

A[i, ℓ]+B[ℓ, j]−B[sj , j] = A[i, k]+B[k, j]−B[sj , j] = C[i, j]−B[sj , j].

We can compute A ⋆ B′ in Õ(Mnω) time because A has entries in {−M, . . . ,M} as given and B′ has
entries that are either ∞ or are in {0, . . . , 2M}. This is because we subtracted the smallest entry of column
j from the other entries, thus obtaining nonnegative numbers, and then we set to ∞ every entry that was
bigger than 2M .

After we compute A ⋆ B′ in Õ(Mnω) time, we can obtain C by simply adding B[sj , j] to every entry in
the jth column of A ⋆ B′.

The total running time is Õ(Mnω).

A has entries in {−M, . . . ,M} ∪ {∞}. In the above discussion we crucially used the fact that all entries
of A are in {−M, . . . ,M}. We now want to allow ∞ entries in A as well.

As before, let’s consider some i, j ∈ [n] and let k be a witness of the Min-Plus product entry C[i, j] so
that C[i, j] = A[i, k] +B[k, j].

For any ℓ for which A[i, ℓ] is finite, we can proceed as before to obtain:

If k is a witness for C[i, j], then for any ℓ for which A[i, ℓ] is finite, B[k, j] ≤ 2M +B[ℓ, j].

Think about why the infinite entries no longer allow us to subtract the smallest entry in a column of B
from every other entry in the column: A[i, ℓ] might be finite but for some i′ ̸= i, A[i′, ℓ] might not be. We
need to change our approach.

Ok, let’s sort the columns of B in O(n2 log n) time.
Let Lj be the sorted list of entries of the jth column of B. Let d be a parameter. Split Lj in the sorted

order into n/d buckets of size roughly d. Let Ljb be the bth bucket for column j. Let Sjb and Mjb be the
smallest and largest elements in bucket b, respectively.

3

Since the buckets are in sorted order of the elements, we necessarily have that if b < b′ then Mjb ≤ Sjb′ .
We will deal with “small” and “large” buckets separately. A bucket b for column j is small if Mjb−Sjb ≤

2M . It is large otherwise.
Let’s deal with the small buckets first. We will form n/d matrices, one for each choice of b ∈ [n/d].

Define

Bb[k, j] =

{
B[k, j]− Sjb, if Ljb is a small bucket for j and B[k, j] ∈ Ljb,

∞, otherwise.

Notice that for every b, Bb has entries in {0, . . . , 2M}.
Compute the Min-Plus product of A and Bb, for each choice of b and set

C ′[i, j] = min
b

(Sj,b + (A ⋆ Bb)[i, j]) .

The running time is Õ(Mnω+1/d).
For every i, j if the witness k for C[i, j] has B[k, j] in a small bucket Ljb for column j, then C[i, j] = C ′[i, j].
Thus, what remains to do is to deal with the large buckets.
First, we will compute for every i, j, b whether there is some k such that A[i, k] < ∞ and B[k, j] ∈ Ljb,

i.e. is there a potential witness k that is in the bth bucket for column j of B.
We do this as follows. Create A′ and B′

b:

A′[i, k] =

{
1, if A[i, k] < ∞,

0, otherwise.

B′
b[k, j] =

{
1, if B[k, j] ∈ Ljb,

0, otherwise.

We multiply A′ ·B′
b for every b, in total time O(nω+1/d).

Note that A′ ·B′
b[i, j] > 0 if and only if there is some k with A[i, k] < ∞ and B[k, j] ∈ Ljb.

What do we want to do? For every i, j and b for which there is some k with A[i, k] < ∞ and B[k, j] ∈ Ljb,
we want to check if one of these k is a witness for C[i, j]. We could brute force and look at all B[k, j] ∈ Ljb

(where Ljb is a large bucket), compute A[i, k] + B[k, j] and take the minimum. There are O(d) entries in
Ljb. However, we cannot afford to look at all n/d buckets for each i, j as this would cost O(n3) time.

We will show that it suffices to look at only two large buckets!
Fix i, j. Consider three large buckets Ljb1 , Lj,b2 , Lj,b3 , for b1 < b2 < b3 such that we have determined

that

� there is some k1 with A[i, k1] < ∞ and B[k1, j] ∈ Lj,b1 ,

� there is some k2 with A[i, k2] < ∞ and B[k2, j] ∈ Lj,b2 ,

� there is some k3 with A[i, k3] < ∞ and B[k3, j] ∈ Lj,b3 .

We have the following:
A[i, k1] +B[k1, j] ≤ M +Mjb1 ≤ M + Sjb2 .

The first inequality is because A[i, k1] is finite and because B[k1, j] ∈ Ljb1 and Mjb1 is the largest entry
in Ljb1 . The second inequality is because b1 < b2 and because the buckets are in sorted order so that
Mjb1 ≤ Sjb2 .

We also have:
A[i, k3] +B[k3, j] ≥ −M + Sjb3 ≥ −M +Mjb2 .

The first inequality is because A[i, k3] is finite and because B[k3, j] ∈ Ljb3 and Sjb3 is the smallest entry
in Ljb3 . The second inequality is because b2 < b3 and because the buckets are in sorted order so that
Mjb2 ≤ Sjb3 .

4

Finally, since Ljb2 is a large bucket, Mjb2 − Sjb2 > 2M . We get:

A[i, k3] +B[k3, j] ≥ −M +Mjb2 > M + Sjb2 ≥ A[i, k1] +B[k1, j].

Thus, k3 cannot be a witness for the Min-Plus product entry C[i, j], and so it suffices to look at the first
two large buckets Ljb1 and Ljb2 (in the sorted order)!

For fixed i, j and each of the smallest two large buckets Ljb1 and Ljb2 for j such that A′B′
b1
[i, j] >

0, A′B′
b2
[i, j] > 0 (i.e. there are k1, k2 with A[i, k1] < ∞, A[i, k2] < ∞, B[k1, j] ∈ Ljb1 , B[k2, j] ∈ Ljb2), go

through all O(d) choices of B[k, j] ∈ Ljb1 ∪ Ljb2 and take the min over all the O(d) corresponding values
A[i, k] +B[k, j]. Let this be C ′′[i, j].

If the ij witness is in a large bucket, then C ′′[i, j] = C[i, j].
Set the Min-Plus product entry C[i, j] to be the min of C ′[i, j] and C ′′[i, j].
The total running time is within polylogs,

Mn3+ω/d+ n2d.

We set d =
√
Mn(3−ω)/2 to obtain the running time O(

√
Mn(3+ω)/2).

We have obtained the following Theorem by [3].

Theorem 1.1. The Min-Plus product of an n × n matrix A with entries in {−M, . . . ,M} ∪ {∞} with an
n× n matrix B with polylog(n) bit integer entries can be computed in Õ(

√
Mn(3+ω)/2) time.

Improving this running time is an open problem, even when M = 0.

2 Equality Product (optional)

We now take a short detour to another type of matrix product called the Equality Product.
Given two n× n integer matrices A and B their equality product is the n× n matrix E given by

E[i, j] = |{k | A[i, k] = B[k, j]}|.

This product is a generalization of the (normal) product of two binary matrices. In the latter we are just
computing the number of k for which A[i, k] and B[k, j] are both zero. Since it is not hard to show that
multiplying matrices with b-bit entries can be reduced to Õ(b) instances of binary matrix multiplication, the
equality product is a true generalization of matrix multiplication, and it hence must require at least nω−o(1)

time. It is actually believed to be much harder, in that there is no O(n2.5−ε) time algorithms for it.
Here we present an O(n(3+ω)/2) time algorithm for it. The original running time is essentially due to

Matoušek [4] who gave this running time for the dominance product problem which is known to be equivalent
to equality product.

(On the problem set you gave an algorithm with a different truly subcubic running time via a different
approach.)

Theorem 2.1. Equality product of n× n matrices is in O(n(3+ω)/2) time.

Proof. Let A and B be the two given n× n matrices. For every fixed k, sort the set {A[i, k]}i ∪ {B[k, j]}j ,
obtaining a list Lk of 2n numbers.

The total running time so far is O(n2 log n).
For each value w that appears in the matrices A,B, let Lkw be the set of A[i, k] and B[k, j] that are

equal to w.
Set C to be the all 0s matrix to begin with. We will fill it out and in the end it will be the equality

product of A and B.
Let d be a parameter. We will deal with all Lkw that are small, i.e. for which 0 ≤ |Lkw| < d.
For every i, k ∈ [n], if A[i, k] is in Lkw and |Lkw| < d (here w = A[i, k]), then go over all the at most d

B[k, j] ∈ Lkw and increment C[i, j].

5

The running time so far is O(n2d).
The remaining Lkw that have not been handled are those for which |Lkw| ≥ d. For each fixed k, the

number of such buckets is ≤ n/d since they are disjoint.
For each k, let the large buckets be Lkw1

, . . . , Lkwn/d
. We will deal with them using matrix multiplication.

For each b ∈ [n/d], let’s create matrices Ab, Bb:

Ab[i, k] =

{
1, if A[i, k] ∈ Lkwb

,

0, otherwise.

Bb[k, j] =

{
1, if B[k, j] ∈ Lkwb

,

0, otherwise.

We then multiply AbBb and add the result to C.
Since AbBb[i, j] = {k | A[i, k] = B[k, j] ∈ Lkwb

}, we get that the result is correct.
The total running time is

O(n2d+ nω+1/d),

and setting d = n(ω−1)/2 we get the running time O(n(3+ω)/2). □

3 Exact Triangle and Exact Triangle Count (optional)

In this section we will use the following fact a lot:

Fact 3.1. For x > 1, (1− 1/x)x ≤ 1/e ≤ (1− 1/x)x−1.

Recall the Exact Triangle problem: Given a tripartite graph G = (V,E) with node parts A,B,C of
size n each and edge weights in [±U] where U has poly(log n) bits, are there a ∈ A, b ∈ B, c ∈ C so that
w(a, b) + w(b, c) + w(a, c) = 0?

Let’s define the following AE Exact Triangle Count problem: Given a tripartite graph G = (V,E)
with node parts A,B,C of size n each and edge weights in [±U] where U has poly(log n) bits, for every
a ∈ A, b ∈ B, compute the number of c ∈ C so that w(a, b) + w(b, c) + w(a, c) = 0.

It’s easy to see that AE Exact Triangle Count is at least as hard as Exact Triangle. We will show that
they are actually subcubically equivalent.

Theorem 3.1 ([2]). AE Exact Triangle Count is (n3, n3)-fine-grained equivalent to Exact Triangle.

Since AE Exact Triangle Count is at least as hard as Exact Triangle, we only need to show that we can
reduce AE Exact Triangle Count to Exact Triangle.

A few lectures ago we showed that Exact Triangle is (n3, n3)-fine-grained equivalent to the AE Exact
Triangle problem: Given a tripartite graph G = (V,E) with node parts A,B,C of size n each and edge
weights in [±U] where U has poly(log n) bits, for every a ∈ A, b ∈ B, return some c ∈ C so that w(a, b) +
w(b, c) + w(a, c) = 0, or determine that no such c exists.

In fact we showed that:

(From lecture 6): If Exact Triangle can be solved in O(n3−ε) time for ε > 0, the AE Exact Triangle
can be solved in O(n3−ε/3) time.

6

We will thus strive to reduce AE Exact Triangle Count to AE Exact Triangle.
Let G = (A ∪B ∪ C,E,w) be an instance of AE Exact Triangle Count.
For every a ∈ A, b ∈ B, let’s consider the set Wa,b of witnesses c ∈ C, i.e. those c such that w(a, c) +

w(b, c) = −w(a, b). We want to compute |Wa,b| for every a ∈ A, b ∈ B.
Let’s pick a parameter L. We will compute |Wa,b| for those a, b with |Wa,b| < L (“small count”) separately

from the |Wa,b| for the a, b with |Wa,b| ≥ L (“large count”).
We begin with a randomized reduction from small-count AE Exact Triangle Count to AE Exact Triangle.

Claim 2. If AE Exact Triangle is in O(n3−ε) time, then in Õ(Lεn3−ε) time we can list all c ∈ Wa,b for
every a, b with |Wa,b| < L, with high probability.

We begin with a probabilistic claim.

Claim 3. Assume that for some s, for a pair (a, b) ∈ A×B we have |Wa,b| = q where L/2s+1 ≤ q < L/2s.
Suppose we pick 2s(n/L) elements from C = {1, . . . , n} uniformly at random with replacement, and let
S be the set of elements picked. Then, for any fixed c ∈ Wa,b, with probability at least 2s

eL = Ω(2s/L),
Wa,b ∩ S = {c}.

Proof. Let S = {s1, . . . , s2s(n/L)} where si is the ith element drawn from C to form S. As |Wa,b| = q,

Pr(|S ∩Wa,b| = {c}) =
2s(n/L)∑

i=1

Pr(si = c) · Pr((S \ {si}) ∩Wa,b = ∅)

≥ 2s(n/L) · 1
n
·
(
1− q

n

)2s(n/L)−1

≥ 2s

L
·
(
1− L

n2s

)(2sn/L)−1

≥ 2s

eL
.

□

Now we are ready to prove Claim 2.

Proof of Claim 2. We repeat the following procedure for every integer s from 0 to logL− 1. Repeat 100 · e ·
(L/2s) lnn times:
Let S be a random subset of C of size 2s(n/L). Consider the subgraph of G induced by A ∪ B ∪ S.
Since |A| = |B| = n and |S| = 2s(n/L), we partition A and B into L/2s parts each, of size 2s(n/L),
(A1, . . . , AL/2s), (B1, . . . , BL/2s). We now create (L/2s)2 instances of AE Exact Triangle on a subgraph
(Ai, Bj , S), where |Ai| = |Bj | = |S| = 2s(n/L).

Each AE Exact Triangle call produces for some pairs (a, b) ∈ A × B an exact triangle (a, b, c). We
maintain a list La,b for every a ∈ A, b ∈ B of all c ∈ C for which we find an exact triangle. If |La,b| ≥ L, we
disregard the pair a, b since it must have |Wa,b| ≥ |La,b| ≥ L.

We claim that if Wa,b ∈ [L/2s+1, L/2s), then whp after the O((L/2s) log n) repetitions (for the choice of
s) we will get Wa,b = La,b, whp. It suffices to show that whp, for every a, b, for any fixed c ∈ Wa,b, c will be
returned as a witness for a, b by some instance of AE Exact Triangle.

Note that if c is the unique witness for a, b in some iteration, i.e. if S ∩Wa,b = {c}, then a, b, c will be
returned as an Exact Triangle by the AE Exact triangle instance (Ai, Bj , S) for which a ∈ Ai, b ∈ Bj in that
iteration.

By Claim 3, the probability that c is not returned in a fixed iteration is at most 1 − 2s

eL . Hence the
probability that (a, b, c) is never returned as an exact triangle in any of the iterations is at most(

1− 2s

eL

)100·e·(L/2s) lnn

≤ (1/e)100 lnn = 1/n100.

Hence the probability that there exists a triple a, b, c such that |Wa,b| < L and c ∈ Wa,b and a, b, c is not
returned as an exact triangle is by a union bound at most 1/n97. Thus, with probability ≥ 1 − 1/n97 all
exact triangles through edges with a small number of witnesses are listed.

7

Assuming that AE Exact Triangle is in O(N3−ε) time in N node graphs for ε > 0, the running time is,
within polylogs,

logL−1∑
s=0

(L/2s)3 · (2s(n/L))3−ε =

logL−1∑
s=0

(L/2s)εn3−ε ≤ Õ(Lεn3−ε).

□

We have shown that for any L ≤ n1−δ for δ > 0, if AE Exact Triangle is in O(n3−ε) time, then listing
all exact triangles through edges with < L witnesses can be done in truly subcubic time, O(n3−εδ).

Now we show that the exact triangles through edges with ≥ L witnesses can be done in truly subcubic
time using fast matrix multiplication, provided L ≥ n(ω−1)/2+δ for some δ > 0.

Claim 4. For every a, b with |Wa,b| > L, we can compute |Wa,b| in Õ((n/L)n(3+ω)/2) time, whp. This is
truly subcubic time as long as L ≥ n(ω−1)/2+δ for some δ > 0.

Proof. We will use random sampling to find a witness c ∈ Wa,b for every a ∈ A, b ∈ B with |Wa,b| ≥ L.
Then we will use Fredman’s trick and matrix multiplication to compute |Wa,b| with the help of the sampled
witness c.

Randomly sample to get a witness for every a, b with |Wa,b| ≥ L: Sample a uniformly random set
R ⊆ C of size 100n/L lnn. For any fixed a ∈ A, b ∈ B with |Wa,b| ≥ L, the probability that R∩Wa,b = ∅ is at
most (1−L/n)100n/L lnn ≤ 1/n100. Hence with probability at least 1− 1/n98, for every a, b with |Wa,b| ≥ L,
Wa,b ∩R ̸= ∅.

For every a, b and c ∈ R check if w(a, c) +w(c, b) = −w(a, b), i.e. whether c ∈ Wa,b. Whp, now for every
a, b with |Wa,b| ≥ L we have found a c ∈ Wa,b.

Fix a, b and c ∈ R ∩Wa,b.
We want to compute the number of c′ such that w(a, c′) +w(c′, b) +w(a, b) = w(a, c) +w(c, b) +w(a, b),

equivalently, the number of c′ such that

w(a, c′) + w(c′, b) = w(a, c) + w(c, b).

This is exactly the number of cs in Wa,b. By Fredman’s trick we want the number of c′ such that

w(a, c′)− w(a, c) = w(c, b)− w(c′, b).

Computing |Wa,b| using fast matrix multiplication. For every c ∈ R, create two matrices:

Ac[a, c
′] = w(a, c′)− w(a, c), and Bc[c

′, b] = w(c, b)− w(c′, b).

We equality-multiply Cc := Ac ·Bc for all c ∈ R. For every a ∈ A, b ∈ B and such that c ∈ R ∩Wa,b, we
have that Cc is the number of c′ such that w(a, c′) + w(c′, b) + w(a, b) = w(a, c) + w(c, b) + w(a, b) = 0.

As equality product can be computed in time O(n(3+ω)/2), the total running time is Õ((n/L)n(3+ω)/2).
□

Now we put the two pieces of our proof together:

Claim 5. If Exact Triangle is in O(n3−ε) time for some ε > 0, then AE Exact Triangle Count is in O(n3−δ)
time for some δ > 0.

8

If Exact Triangle is in O(n3−ε) time then AP Exact Triangle is in O(n3−ε/3) time via our reduction from
a few lectures ago. Let ε′ = ε/3.

Pick the parameter L = n0.7. First compute the counts for all a, b with |Wa,b| < L in Õ(Lε′n3−ε′) =

Õ(n3−0.3ε′) time. Then compute the counts for all a, b with |Wa,b| ≥ L in Õ((n/L)n(3+ω)/2) ≤ Õ(n0.3+2.68) =
O(n2.98) time.

(One can set the parameter L in terms of ω as well to get a better subcubic running time, but we omit
this analysis for simplicity.)

References

[1] Josh Alman, Ran Duan, Virginia Vassilevska Williams, Yinzhan Xu, Zixuan Xu, Renfei Zhou: More
Asymmetry Yields Faster Matrix Multiplication. In SODA 2025, to appear.

[2] Timothy M. Chan, Virginia Vassilevska Williams, Yinzhan Xu: Fredman’s Trick Meets Dominance
Product: Fine-Grained Complexity of Unweighted APSP, 3SUM Counting, and More. STOC 2023:
419-432

[3] Virginia Vassilevska Williams, Yinzhan Xu: Truly Subcubic Min-Plus Product for Less Structured
Matrices, with Applications. SODA 2020: 12-29

[4] Jiri Matousek: Computing Dominances in En. Inf. Process. Lett. 38(5): 277-278 (1991).

9

