6.1420/6.S974 Fixed-Parameter and Fine-Grained Complexity MIT
Lecture 5: OV Hypothesis implies hardness for string problems September 15, 2024
Virginia Vassilevska Williams and Ryan Williams (notes by V)

Today: We defined the Orthogonal Vectors problem (OV) in previous lectures, showing that SETH implies that OV
on n vectors of dimension w(logn) requires n?—°Y) time. We also saw a simple reduction from OV to the Diameter
problem in sparse graphs. Today we will develop reductions from OV to two sequence similarity problems: Longest
Common Substring with Don’t Cares (LC*) and Longest Common Subsequence (LCS). Such reductions have been
designed for many other string problems: Frechet Distance, Edit Distance, Dynamic Time Warping and so on. The
reductions have various similarities but are all different due to the different gadgets that are employed.

1 Some structure of OV and string similarity problems

Given an instance S = {0,1}% of OV with |S| = n, S = {s1,..., s, } the problem asks to compute:

VN Gsildv-sld).

i,j€[n] c€[d]

Meanwhile, in string similarity problems, one is given two N length strings a and b and one considers all possible
alignments of a and b and needs to compute the best such alignment according to some quality measure which is
typically computed symbol by symbol in the alignment.

Let’s differentiate between substrings and subsequences of a string a = ajas . .. a, where each a; € X is a letter.
A substring of a is a;a;11 ... a; for some j > 4, i.e. it is a consecutive list of characters in a.

A subsequence of a is some a;, a;, . .. a;, for some choice of 77 < 49 < ... < 4. Thatis, a substring is a subsequence
where i; = i1 + (j — 1). A more general subsequence of a is a string of not necessarily consecutive characters of a,
as long as they appear in the same order as in a.

What is an alignment of two strings a and b? For problems that involve substrings, an alignment is a just a way to put
the symbols of a on top of the symbols of b, shifted by some amount. E.g. if b is shifted ¢ — 1 places to the right, the
alignment may look like this:

a az ... Q; Q41 ... anN

. b1 b2 beile

For most sequence similarity problems, a more general alignment allows gaps between symbols in addition to shifts,
aligning symbols of one string with symbols or gaps in the other string (in the same order). E.g. if _ signifies a gap,
the following is an alignment of xmatch with meanny. This more general alignment can be viewed as a walk on
sequences, or sometimes as a subsequence problem.

xm _a tch

mean_ny

A typical sequence similarity problem defines a cost/gain of matching symbols/gaps in an alignment, and the goal is
to find an alignment that minimizes/maximizes the total cost.

Suppose that we want to reduce OV to a maximization problem (minimization is analogous): A natural attempt would
be as follows:

* Create two gadgets f and g that map {0, 1} to symbols from an alphabet 3 so that matching f(1) and g(1)
would give small/zero quality, whereas matching f(x) and g(y) for any (z,y) # (1, 1) would give large quality.

This step implements the inner V in the definition of OV: —s;[c] V —s;]c].

* Create gadgets F' and G that map binary strings of length d to strings over X so that the max alignment of
F(s) and G(t) has large quality if s and ¢ are orthogonal and small quality otherwise. These gadgets typically
look like this: for F'(s), string f(s[1]), f(s[2]),. .., f(s[d]) one after the other (i.e. using the symbol gadgets
on each bit of s), sometimes adding some extra strings around each f(s[é]). Then, the quality of aligning F'(s)
completely with G(t) is proportional to the number of coordinates ¢ for which (s[i], t[{]) # (1, 1). Thus when s
and t are orthogonal, the quality is maximized.

This step implements the A in the definition of OV: A\ ¢4 (. -).

* Finally, figure out a way to glue the gadgets F'(s1), F(s2),..., F(s,) next to each other with various symbols
inbetween, and similarly G(¢1), G(t2),...,G(t,). This creates the final strings a and b. The goal of this step
is that the only good alignments are those that align some F'(s;) exactly on top of some G(¢;) and where the

quality of the alignment is completely determined by the quality of the alignment of F'(s;) and G(t;) which
then means that the best alignment will allow us to determine if there exist s;,¢; that are orthogonal.

This step implements the outer \/ in the definition of OV: V/, ;¢ (- -).

Finally one wants the reduction to produce strings of length N = n(d)°(!) so that an O(N?~¢) time algorithm for the
string problem implies an O(n2~%) time algorithm for OV (for small d).

2 Longest Common Substring with Don’t Cares

In the Longest Common Substring with Don’t Cares (LS*) problem, one is given two n-length strings a, b where a is
over a finite alphabet X and b is over X U {x}. The question is: what is the longest string ¢ that appears both in a and
b as a substring (consecutive letters)?

In b, * can represent any letter of 3. So the question is, what is the longest substring of a that matches a substring of
b? (Think about how this can be thought of as an alignment problem.)

For instance, the LS* of abceaaad and *rbc * xak is bceaaa of length 6.

There is known algorithm for LS* that runs in O(n?~¢) time for any € > 0, although a quadratic time algorithm is
very easy to obtain, e.g. via dynamic programming (try it!).

The related Longest Common Substring problem is similar, but b is also over 3 (there are no). This problem can be
solved in O(n) time! Another simpler variant allows for b to have s but instead of looking for a substring of a and b,
it asks whether b itself matches a substring of a. This problem also has a fast algorithm: O(nlogn) time.

We will show that OV reduces to LS* so that any truly subquadratic algorithm for LS* implies a truly subquadratic
time algorithm for OV. In fact, our reduction can be modified to also work for ¥ = {0, 1}.

We will follow the gadget approach outlined above. Define bit gadgets: for every b € {0,1}:

f(b) =band g(b) =0ifb=1and * if b = 0.

By design we get that f(b) matches g(b') as long as (b,0’) # (1,1).

Now let’s define vector gadgets that take any vector s € {0, 1} to a length d sequence:
Fls] = f(s[)f(s[2)) ... f(sld]) = s € {0,1}7,
G[s] = g(s[1])g(s[2]) ... glsld]) € {1,+}*.

By design, G[s;] exactly matches F[s;] if and only if for every ¢ € [d], (s;[c], sj[c]) # (1,1) which is if and only if
s; - 85 = 0. In other words, if s; - s; = 0, the LS* of G[s;] and F[s;] is = d, and if s; - s; # O then the LS* of G[s;]
and F'[s;] is < d.

Now we want to form the final strings a,b. Let X and Y be new letters in our alphabet. Y will not appear anywhere
in a.
Let

a= F[s1]XF[s$2]X ... X F[sy]
and

b= G[Sl]YG[SQ]Y cee YG[S.,L].
Because Y does not match any symbol in a, the LS* of @ in b is the largest out of the LS*s of a and G/[s;] over all j.
Consider

a= F[s1]XF[s$2]X ... X F[sy]
and

G[s;] € {1,%}".

Some * of G[s;] could potentially be matched with some X of a. E.g. you could align ...010X01... from a with
010 * 01 from G[s;] and this does not correspond to an alignment of F[s;] with Gs;]!
Fortunately, this issue is easy to fix. We redefine the gadgets " and G as follows. Let Z and W be brand new symbols.

For any any vector s € {0, 1}¢ form a length 3d sequence:
Fls| = Zf(s))WZf(s[2)W ... Zf(s[d])W € {0,1, 2, W }3¢,
Gls| = Zg(s[\))W Zg(s[2))W ... Zg[s[d)W € {1, %, Z, W},

We get that the LS* length of F'[s;] and G[s,] is 3d if s; - s; = 0 and < 3d otherwise.

a and b remain the same:
a = F[s1]XF[s2]X ... X F[sy]

and
b= G[s1]YG[s2]Y ... Y G[sy].

Their length is now n — 1 4 3dn. As before, since Y does not appear in a, the LS* of a and b is the same as the longest
over all j € [n] of the LS*s of @ and G[s,].

As X does not appear in G[s;] for any j, either the LS* is the longest substring of F[s;] and G[s;] for some 4 and j,
or some * of some G[s;] is aligned with some X of a.

Suppose that the latter thing happens. If the LS* length is more than 1, then either the symbol to the left of x* is aligned
with the symbol to the left of X or the symbol to the right of * is aligned with the symbol to the right of X.

The symbol to the left of * by design is Z and the one to the left of X is W and these are distinct. Similarly, the
symbol to the right of * by design is W and the one to the right of X is Z and these are distinct. Hence the maximum
LS* length one can get by aligning * from some G[s;] to some X in a is 1. This is not useful since one can always
align some X f(s;[c])Z in a with X * Z from G[s;] where s, is not the all 1s vector to get a substring of length 3;
wlog we can assume that S contains such an s;.

Hence, the LS* of a and G[s;] is the LS* of F'[s;] and G[s;] for some i and the reduction is finished: The length of
the LS* of a and b is 3d if there is a pair of orthogonal vectors and it’s < 3d otherwise.

Since a and b both have length O(dn), any truly subquadratic algorithm computing their longest common substring
would determine whether the LS* length is 3d or < 3d and would solve OV on the given vectors sq, ..., S,.

The alphabet that we used was ¥ = {0,1, X, Y, Z, W}. Two get a reduction for ¥ = {0, 1}, replace X by 000, Y by
111, Z and W by 01.

Exercise 2.1 Show that substring of a and b that matches any of the Os of some X to 0 or xs in b can have length
at most 5. Similarly, show that any substring of a and b matching any of the 1s of some Y to 1s of a can have
length at most b.

Once you solve the above exercise, we get that any substring of @ and b of length > 5 cannot use any symbols of X
or Y and thus must be a substring of F'[s;] and G[s;] for some i,j € [n]. We easily get that the longest common
substring of F'[s;] and G[s;] (which both have length 5d) is of length 5d if s, - s; = 0 and it’s < 5d otherwise. This
completes the reduction for the binary alphabet case as well.

3 Longest Common Subsequence

In the Longest Common Subsequence (LCS) problem one is given two n length strings a and b over some finite
alphabet 3 and one wants to find the longest string s that appears as a subsequence of both a and b. A subsequence
doesn’t need to have consecutive letters: the letters of s only need to appear in the same order in a and b but they need
not be consecutive.

For instance the LCS of abracadabra and baazxxaac is baaaa.

The fastest known algorithm for LCS runs in O(n?/log® n) time. On the slides we will give a reduction from OV to
LCS with some intuition on the proof, without all the details. The reduction is similar in spirit to the one for LS* but
it becomes more complicated because subsequences are more complicated than substrings.

	Some structure of OV and string similarity problems
	Longest Common Substring with Don't Cares
	Longest Common Subsequence

