
6.1420/6.S974 Fixed-Parameter and Fine-Grained Complexity MIT
Lecture 5: OV Hypothesis implies hardness for string problems September 15, 2024
Virginia Vassilevska Williams and Ryan Williams (notes by V)

Today: We defined the Orthogonal Vectors problem (OV) in previous lectures, showing that SETH implies that OV
on n vectors of dimension ω(log n) requires n2−o1) time. We also saw a simple reduction from OV to the Diameter
problem in sparse graphs. Today we will develop reductions from OV to two sequence similarity problems: Longest
Common Substring with Don’t Cares (LC*) and Longest Common Subsequence (LCS). Such reductions have been
designed for many other string problems: Frechet Distance, Edit Distance, Dynamic Time Warping and so on. The
reductions have various similarities but are all different due to the different gadgets that are employed.

1 Some structure of OV and string similarity problems

Given an instance S = {0, 1}d of OV with |S| = n, S = {s1, . . . , sn} the problem asks to compute:∨
i,j∈[n]

∧
c∈[d]

(¬si[c] ∨ ¬sj [c]) .

Meanwhile, in string similarity problems, one is given two N length strings a and b and one considers all possible
alignments of a and b and needs to compute the best such alignment according to some quality measure which is
typically computed symbol by symbol in the alignment.

Let’s differentiate between substrings and subsequences of a string a = a1a2 . . . an where each ai ∈ Σ is a letter.

A substring of a is aiai+1 . . . aj for some j ≥ i, i.e. it is a consecutive list of characters in a.

A subsequence of a is some ai1ai2 . . . aik for some choice of i1 < i2 < . . . < ik. That is, a substring is a subsequence
where ij = i1 + (j − 1). A more general subsequence of a is a string of not necessarily consecutive characters of a,
as long as they appear in the same order as in a.

What is an alignment of two strings a and b? For problems that involve substrings, an alignment is a just a way to put
the symbols of a on top of the symbols of b, shifted by some amount. E.g. if b is shifted i− 1 places to the right, the
alignment may look like this:

a1 a2 . . . ai ai+1 . . . aN

. . . b1 b2 . . . bN−i+1 . . .

For most sequence similarity problems, a more general alignment allows gaps between symbols in addition to shifts,
aligning symbols of one string with symbols or gaps in the other string (in the same order). E.g. if signifies a gap,
the following is an alignment of xmatch with meanny. This more general alignment can be viewed as a walk on
sequences, or sometimes as a subsequence problem.

x m a t c h

m e a n n y

1

A typical sequence similarity problem defines a cost/gain of matching symbols/gaps in an alignment, and the goal is
to find an alignment that minimizes/maximizes the total cost.

Suppose that we want to reduce OV to a maximization problem (minimization is analogous): A natural attempt would
be as follows:

• Create two gadgets f and g that map {0, 1} to symbols from an alphabet Σ so that matching f(1) and g(1)
would give small/zero quality, whereas matching f(x) and g(y) for any (x, y) ̸= (1, 1) would give large quality.

This step implements the inner ∨ in the definition of OV: ¬si[c] ∨ ¬sj [c].

• Create gadgets F and G that map binary strings of length d to strings over Σ so that the max alignment of
F (s) and G(t) has large quality if s and t are orthogonal and small quality otherwise. These gadgets typically
look like this: for F (s), string f(s[1]), f(s[2]), . . . , f(s[d]) one after the other (i.e. using the symbol gadgets
on each bit of s), sometimes adding some extra strings around each f(s[i]). Then, the quality of aligning F (s)
completely with G(t) is proportional to the number of coordinates i for which (s[i], t[i]) ̸= (1, 1). Thus when s
and t are orthogonal, the quality is maximized.

This step implements the
∧

in the definition of OV:
∧

c∈[d](. . .).

• Finally, figure out a way to glue the gadgets F (s1), F (s2), . . . , F (sn) next to each other with various symbols
inbetween, and similarly G(t1), G(t2), . . . , G(tn). This creates the final strings a and b. The goal of this step
is that the only good alignments are those that align some F (si) exactly on top of some G(tj) and where the
quality of the alignment is completely determined by the quality of the alignment of F (si) and G(tj) which
then means that the best alignment will allow us to determine if there exist si, tj that are orthogonal.

This step implements the outer
∨

in the definition of OV:
∨

i,j∈[n](. . .).

Finally one wants the reduction to produce strings of length N = n(d)o(1) so that an O(N2−ε) time algorithm for the
string problem implies an O(n2−δ) time algorithm for OV (for small d).

2 Longest Common Substring with Don’t Cares

In the Longest Common Substring with Don’t Cares (LS*) problem, one is given two n-length strings a, b where a is
over a finite alphabet Σ and b is over Σ ∪ {∗}. The question is: what is the longest string c that appears both in a and
b as a substring (consecutive letters)?

In b, ∗ can represent any letter of Σ. So the question is, what is the longest substring of a that matches a substring of
b? (Think about how this can be thought of as an alignment problem.)

For instance, the LS* of abceaaad and ∗rbc ∗ ∗ak is bceaaa of length 6.

There is known algorithm for LS* that runs in O(n2−ε) time for any ε > 0, although a quadratic time algorithm is
very easy to obtain, e.g. via dynamic programming (try it!).

The related Longest Common Substring problem is similar, but b is also over Σ (there are no ∗). This problem can be
solved in O(n) time! Another simpler variant allows for b to have ∗s but instead of looking for a substring of a and b,
it asks whether b itself matches a substring of a. This problem also has a fast algorithm: O(n log n) time.

We will show that OV reduces to LS* so that any truly subquadratic algorithm for LS* implies a truly subquadratic
time algorithm for OV. In fact, our reduction can be modified to also work for Σ = {0, 1}.

We will follow the gadget approach outlined above. Define bit gadgets: for every b ∈ {0, 1}:

f(b) = b and g(b) = 0 if b = 1 and ∗ if b = 0.

By design we get that f(b) matches g(b′) as long as (b, b′) ̸= (1, 1).

2

Now let’s define vector gadgets that take any vector s ∈ {0, 1}d to a length d sequence:

F [s] = f(s[1])f(s[2]) . . . f(s[d]) = s ∈ {0, 1}d,

G[s] = g(s[1])g(s[2]) . . . g[s[d]) ∈ {1, ∗}d.

By design, G[sj] exactly matches F [si] if and only if for every c ∈ [d], (si[c], sj [c]) ̸= (1, 1) which is if and only if
si · sj = 0. In other words, if si · sj = 0, the LS* of G[sj] and F [si] is = d, and if si · sj ̸= 0 then the LS* of G[sj]
and F [si] is < d.

Now we want to form the final strings a, b. Let X and Y be new letters in our alphabet. Y will not appear anywhere
in a.

Let
a = F [s1]XF [s2]X . . .XF [sn]

and
b = G[s1]Y G[s2]Y . . . Y G[sn].

Because Y does not match any symbol in a, the LS* of a in b is the largest out of the LS*s of a and G[sj] over all j.

Consider
a = F [s1]XF [s2]X . . .XF [sn]

and
G[sj] ∈ {1, ∗}d.

Some ∗ of G[sj] could potentially be matched with some X of a. E.g. you could align . . . 010X01 . . . from a with
010 ∗ 01 from G[sj] and this does not correspond to an alignment of F [si] with G[sj]!

Fortunately, this issue is easy to fix. We redefine the gadgets F and G as follows. Let Z and W be brand new symbols.

For any any vector s ∈ {0, 1}d form a length 3d sequence:

F [s] = Zf(s[1])WZf(s[2])W . . . Zf(s[d])W ∈ {0, 1, Z,W}3d,

G[s] = Zg(s[1])WZg(s[2])W . . . Zg[s[d])W ∈ {1, ∗, Z,W}3d.

We get that the LS* length of F [si] and G[sj] is 3d if si · sj = 0 and < 3d otherwise.

a and b remain the same:
a = F [s1]XF [s2]X . . .XF [sn]

and
b = G[s1]Y G[s2]Y . . . Y G[sn].

Their length is now n−1+3dn. As before, since Y does not appear in a, the LS* of a and b is the same as the longest
over all j ∈ [n] of the LS*s of a and G[sj].

As X does not appear in G[sj] for any j, either the LS* is the longest substring of F [si] and G[sj] for some i and j,
or some ∗ of some G[sj] is aligned with some X of a.

Suppose that the latter thing happens. If the LS* length is more than 1, then either the symbol to the left of ∗ is aligned
with the symbol to the left of X or the symbol to the right of ∗ is aligned with the symbol to the right of X .

The symbol to the left of ∗ by design is Z and the one to the left of X is W and these are distinct. Similarly, the
symbol to the right of ∗ by design is W and the one to the right of X is Z and these are distinct. Hence the maximum
LS* length one can get by aligning ∗ from some G[sj] to some X in a is 1. This is not useful since one can always
align some Xf(si[c])Z in a with X ∗ Z from G[sℓ] where sℓ is not the all 1s vector to get a substring of length 3;
wlog we can assume that S contains such an sℓ.

3

Hence, the LS* of a and G[sj] is the LS* of F [si] and G[sj] for some i and the reduction is finished: The length of
the LS* of a and b is 3d if there is a pair of orthogonal vectors and it’s < 3d otherwise.

Since a and b both have length O(dn), any truly subquadratic algorithm computing their longest common substring
would determine whether the LS* length is 3d or < 3d and would solve OV on the given vectors s1, . . . , sn.

The alphabet that we used was Σ = {0, 1, X, Y, Z,W}. Two get a reduction for Σ = {0, 1}, replace X by 000, Y by
111, Z and W by 01.

Exercise 2.1 Show that substring of a and b that matches any of the 0s of some X to 0 or ∗s in b can have length
at most 5. Similarly, show that any substring of a and b matching any of the 1s of some Y to 1s of a can have
length at most 5.

Once you solve the above exercise, we get that any substring of a and b of length > 5 cannot use any symbols of X
or Y and thus must be a substring of F [si] and G[sj] for some i, j ∈ [n]. We easily get that the longest common
substring of F [si] and G[sj] (which both have length 5d) is of length 5d if si · sj = 0 and it’s < 5d otherwise. This
completes the reduction for the binary alphabet case as well.

3 Longest Common Subsequence

In the Longest Common Subsequence (LCS) problem one is given two n length strings a and b over some finite
alphabet Σ and one wants to find the longest string s that appears as a subsequence of both a and b. A subsequence
doesn’t need to have consecutive letters: the letters of s only need to appear in the same order in a and b but they need
not be consecutive.

For instance the LCS of abracadabra and baaxxaac is baaaa.

The fastest known algorithm for LCS runs in O(n2/ log2 n) time. On the slides we will give a reduction from OV to
LCS with some intuition on the proof, without all the details. The reduction is similar in spirit to the one for LS* but
it becomes more complicated because subsequences are more complicated than substrings.

4

	Some structure of OV and string similarity problems
	Longest Common Substring with Don't Cares
	Longest Common Subsequence

