6.1420 Lecture 7 Hardness for Dynamic Graph Problems (notes by V)
Date: September 26, 2024

1 Dynamic Graph Problems

So far we have only looked at “static” computational problems: given an input we need to compute some
function of the input. Today we will look at “dynamic graph problems” which are essentially problems about
data structures that store a graph, can make updates to the graph and can answer queries about the current
state of the graph. Often in data structure problems people care about space usage. Today we will largely
ignore the space usage. We will focus on the running times of operations.

In all dynamic graph problems, the running times of interest are: (1) the preprocessing time, (2) the
update time, (3) the query time.

Let’s look at two very similar dynamic graph problems: Dynamic Connectivity and Dynamic Reachability.
Both problems are defined as follows:

Given a graph G = (V, E), maintain a graph data structure to efficiently support the following operations:

e query(u,v) - Returns whether or not there is a path from w to v in the current graph
e insert(e) - Add edge e to F
e delete(e) - Delete edge e from FE

In the Dynamic Connectivity problem, the graph G to be maintained is undirected, and in the Dy-
namic Reachability problem, G is directed.

It is known that for Dynamic Connectivity on n node graphs, all operations (updates or queries) can be
supported in polylog(n) worst-case time (see [KKM13]) with near-linear preprocessing time. This is one of
the huge successes of the area of dynamic algorithms. The best amortized update/query time is logn, within
polyloglog factors, and this is almost optimal since there is an (logn) lower bound in the cell probe model
for the max of the update and the query time [PDO06].

For Dynamic Reachability, however, the fastest algorithms algorithms are much worse. Meanwhile the
best known cell probe lower bound for Dynamic Reachability was only recently proven to be (slightly) super-
logarithmic [LY23]: the max of the update and query time needs to be Q(log"®(n)). The algorithms for
Dynamic Reachability are of two types:

1. “Combinatorial”: i.e. not using fast matrix multiplication. For graphs with at most m edges at all
times an n nodes, one can achieve amortized update time O(m+/n) and query time O(y/n) [RZ08], or
O(m +nlogn) update time and O(n) query time [RZ16]. When m is n?, these algorithms always take
Q(n?) time.

Is there a combinatorial algorithm with O(n?~¢)

update and query time?

2. Algebraic: These are algorithms that use fast matrix multiplication; these are typically for dense
graphs, where the input is only measured in terms of n. Here, one can achieve amortized update time
O(n'%%) and query time O(n®53) [San04] (and O(n“) time preprocessing) or both update and query
time amortized O(n!-47) [vNS19]. If w = 2, the latter algorithm would have amortized time O(n°/*).
This is the running time that minimizes the max of the update and query time. The n®/* running time
is close to O(n); in fact the previous known bound (for w = 2) was n*/3. So it might happen that one
could reach O(n) update/query time. Can algebraic techniques do even better?



Is there a (potentially non-combinatorial algorithm) with O(n!~¢) update and query
time?

There is a huge discrepancy between the Dynamic Connectivity and Dynamic Reachability! We will try
to explain the difficulty of Dynamic Reachability today.

In fact, we will consider an even simpler version of Dynamic Reachability, called st—Reach. Here one is
to preprocess a graph G with two fixed vertices s,t so that edge insertions and deletions can be supported,
and every query is about whether s can reach t in the given graph.

For problems such as st-Reach there are conditional lower bounds from 3SUM ([PDO06] and later by
others; these go through a certain Triangle Listing problem we will see later on) and also from Triangle
Detection. The 3SUM-based lower bounds are typically not tight. We thus focus on the ones from Triangle
Detection.

2 Encoding Triangle Detection in st-Reach, aka Dynamic Reach-
ability

Let’s make the assumption for a particular ¢ > 2, that Triangle Detection in n node graphs requires n°=°()

time. A popular assumption is that ¢ = w; let’s call this the

Triangle Hypothesis: In the word-RAM Model, Triangle Detection requires n®~°() time.

The Triangle Hypothesis only makes sense if w > 2. If w = 2, as one needs to read the input, Triangle
Detection does need §2(n?) time in dense graphs.

The “combinatorial” Triangle Detection Hypothesis says that ¢ = 3 for “combinatorial” algorithms.

By our reduction in the previous lecture from All-Pairs Triangle Problems to Triangle Detection problems,
we get that this hypothesis is equivalent to the

BMM Hypothesis: In the word-RAM Model, no “combinatorial” algorithm can multiply two n x n
Boolean matrices in O(n3~¢) time for € > 0.

We will use these hypotheses as a basis for hardness for st-Reach.

Let’s assume that we have a data structure for st-Reach on n-node graphs that has preprocessing time
p(n), update time u(n) and query time g(n).

Suppose that we are given an instance of Triangle Detection. Wlog this is a tripartite graph G = (V, E)
with nodes partitioned into three independent sets I,J, K with n nodes each, so that the edges are in
(IxJ)U(J x K)U(I x K). We want to know whether there exist i € I,j € J, k € K that form a triangle.

We will reduce Triangle Detection to st-Reach as follows.

Take G and create a new graph G’ by “unfolding” I similar to what we did in the previous lecture. ILe.
the node set of G’ contains the node sets I, J, K and a copy I’ of I. For each ¢ € I, denote by i’ its copy
in I’. For every edge (i,j) of G with i € I,j € J add a directed edge (i,7) in G’. For every edge (j, k) for
j€ J ke K inG, add a directed edge (j,k) in G'. Finally, for every edge (i, k) for i € I,k € K in G we
add a directed edge (k,i') in G’ from k € K to the copy ¢’ of ¢ in I'.

Finally we add two new nodes s,t to G’ with no edges incident to them. G’ has 3n + 2 nodes.

We feed G’ to the preprocessing algorithm of the si-Reach data structure, which preprocesses G’ in
p(4n + 2) time.

Now we begin a phase for every vertex i € I (See Figure 1):

1. Add the directed edge (s,) to G’
2. Add the directed edge (i',t) to G’ (for the copy i’ € I’ of i)

3. Query whether s can reach t. If so, return “Triangle” and exit.
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Figure 1: In this figure we present the first simple reduction from Triangle Detection to st-Reach.

4. Remove the two added edges in steps 1 and 2.

In total the number of updates is 4n and the number of queries is n. Thus we can solve Triangle detection
in time
p(dn +2) +4n-u(dn+2) +n - q(dn + 2).
If u(N),q(N) < O(N?7¢) and also p(N) < O(N3~¢) for some € > 0 then the above running time becomes
O(n37¢).

Hence, under the BMM Hypothesis, there can be no combinatorial dynamic algorithm for st-Reach
with truly subquadratic update and query times and truly subcubic preprocessing time.

As one can always recompute the reachability from scratch using BFS/DFS in O(n?) time during each
update or query, with no preprocessing, and this is combinatorial, the above statement says that this trivial
recomputation is essentially optimal for combinatorial algorithms.

For potentially non-combinatorial algorithms, under the Triangle Hypothesis, the reduction implies that
one cannot have u(N), g(N) < O(N“~17¢) time and p(N) < O(N*~¢) time for € > 0. For the current value
of w, for instance we get that we can’t have u(N),q(N) < O(N'37) and p(N) < O(N?37).

This reduction is nice and simple but it is not satisfactory, as the conditional lower bound doesn’t say
anything about algorithms that take more than cubic preprocessing time (for combinatorial algorithms) or
more than n“ preprocessing (otherwise).

Towards removing the restriction on the preprocessing time, we begin with another very simple reduction
from Triangle Detection to st-Reach.

A different simple reduction from Triangle to st-Reach. In the previous reduction we essentially
gave the full instance of Triangle to the preprocessing algorithm. Here we will give it only part of the input.

Recall that we have a tripartite graph G = (V, E) with nodes partitioned into three independent sets
1, J, K with n nodes each, so that the edges are in (I x J)U (J x K)U (I x K). We want to know whether
there exist i € I,j € J k € K that form a triangle.

We take the subgraph G[JU K] of G consisting of J, K and the edges between them and add two vertices
s and t, forming a graph G’. We feed G’ to the p(n) time preprocessing algorithm.

Now we begin a phase for every i € I, see Figure 2.

1. For every j € J, if (i,7) € E, add a directed edge (s,7) to G'.
2. For every k € K, if (k,i) € E, add a directed edge (k,t) to G.
3. Query whether s can reach t. If so, return “Triangle” and exit.

4. Remove all edges out of s and into ¢ (i.e. those inserted in steps 1 and 2).
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Figure 2: In this figure we present the second simple reduction from Triangle Detection to st-Reach.

In this reduction, in the phase for ¢ € I, we insert the edges corresponding to edges incident to 7 and the
query again checks whether there is a triangle involving vertex ¢. The number of insertions and deletions is
O(n?) overall and the number of queries is O(n).

On the face of it, this reduction looks worse than our first reduction since it only says that there is no
dynamic algorithm with p(n) < O(n37¢),q(n) < O(n?7¢),u(n) < O(n'=¢) which is worse than the earlier
reduction since the update time dependence is worse. However, it turns out that this reduction can be
changed to get a lower bound for arbitrary polynomial preprocessing time!

A reduction that works for arbitrary polynomial preprocessing time. Suppose that p(N) = O(N¢)
for some potentially large constant ¢ > 2. The idea is to run the reduction above on multiple smaller instances.
Let’s first partition the n-node parts J and K of the Triangle Instance into n/t parts on ¢ nodes each:
J=J1U...UJn/t andK:Klu...UKn/t.
Go over all pairs a,b € [n/t] and run the reduction from before on the subgraph induced by I, J,, Kp:
Take the subgraph G[J, U K] of G induced by J, U Kp, direct all its edges from J, to Kj and add to
it two isolated vertices s,t. This instance G, is fed to the preprocessing algorithm of the st-Reach data
structure. Since the graph has O(t) nodes, the preprocessing time is O(t¢).
Now we begin a phase for every i € I (n phases overall):

1. For every j € J,, if (¢,j) € E, add a directed edge (s,7) to Gg.

2. For every k € Ky, if (k,i) € E, add a directed edge (k,t) to Ggp.

3. Query whether s can reach t. If so, return “Triangle” and exit.

4. Remove all edges out of s and into ¢ (i.e. those inserted in steps 1 and 2).

If the algorithm doesn’t return “Triangle” for any of the choices of a, b, return “No Triangle”.

It is clear that in the phase for i for G, 3, s can reach ¢ in step 3 iff there is a triangle in G' containing ¢
and some node j € J,, k € Kj. As we try all choices of a, b, the algorithm is correct.

The total preprocessing time over all a,b is O((n/t)? - t¢) < O(n*t¢~2). If we set

t = n®/((c=2)
for arbitrarily small constant § > 0, the preprocessing time would be O(n2+5), as close to n? as we want.

For a fixed choice of a,b, the number of edge insertions and deletions is O(nt) in total over all phases,
and the number of queries is O(n). Thus over all (n/t)? choices of a, b, the total number of updates is

O(n?/t)

and the total number of queries is

O(n®/t%).



Suppose that for some € > 0, u(N) < O(N'~¢) and ¢(N) < O(N?~¢) (for some combinatorial algorithm
with p(N) = O(N®)). Then, we can detect a triangle (combinatorially) in time asymptotically
n’ o o 2402 §/(c—2 24§
T-t _E—i—t—z-t e e = pBmed/(em2) 4 2t

which is truly subcubic for any €, > 0. We hence get that:

Under the BMM Hypothesis, there is no polynomial preprocessing time combinatorial dynamic
algorithm for st-Reach with truly subquadratic query time and truly sublinear update time.

We can view the reduction above as taking an algorithm that uses arbitrary polynomial preprocess-
ing and converting it to one that uses O(n2%?) time preprocessing, while keeping the property that the
update time is truly subquadratic.

3 Removing the word “combinatorial”.

Under the BMM Hypothesis we only get the highly unsatisfactory combinatorial conditional lower bounds.
We would really like to have statements about arbitrary algorithms.
Now, if we stare at our reduction above, we notice that it solves a potentially harder problem:

Online Triangle Detection (OTD): Preprocess a tripartite graph G on vertex parts I, J, K (where
I starts off empty) and support updates of the form: insert a new vertex v into I with all its incident
edges to vertices in J U K. After each insertion, output whether v participates in a triangle.

Let’s call the following assumption the Online Triangle Detection Hypothesis: There is no algorithm
for OTD with n = |J| = |K| that performs n® vertex insertions into I (and the respective query) in total
time O(n?T~¢) time for ¢ > 0.

Consider the reduction from OTD to st-Reach we just performed to remove the assumption on the
preprocessing time. Each call to st-Reach can be viewed as accessing an OTD data structure for a graph
on t nodes, and there are (n/t)? such data structures. This view of the reduction gives us a reduction from
OTD to OTD with arbitrary polynomial preprocessing time.

We get that:

The Online Triangle Detection Hypothesis implies that there is no algorithm that preprocesses an
instance of OTD in any polynomial time in n = |J| = |K| and then performs vertex insertions into I in
O(n?~¢) amortized time for € > 0.

(The first place where this was proven was in Theorem 4.2 of [VW18], the full version of the FOCS’2010
paper. The proof appears again in [HKNS15].)

Our simple reduction to st-Reach then obtains that under the Online Triangle Detection Hypothesis st-
Reach doesn’t have a dynamic algorithm with polynomial preprocessing, O(n?~¢) time query and O(n!~¢)
time updates.

OTD and OMyv. Last lecture, we gave a fine-grained reduction from All-Pairs triangle detection to
triangle detection (and in particular we used this generic reduction for “negative triangle”). All-Pairs triangle
detection (for unweighted graphs) is equivalent to Boolean Matrix Multiplication (BMM) in the same way
as All-Pairs Min triangles is equivalent to (min, +)-product.



Thus, our reduction is also a reduction from BMM to triange detection. We will now revisit our reduction
and show that a minor modification reduces “online BMM” to OTD.

The online BMM problem, also known as OMv (Online Matrix Vector), is as follows:

OMyv: Preprocess a given n X n matrix A, so that if one is given n Boolean column vectors by, ..., b,
one can output Ab; before seeing b 1.

The OMv Hypothesis asserts that there is no algorithm that solves the OMv problem in total time
O(n3~¢) for any € > 0.

In other words, the hypothesis says that there are no Strassen-like algorithms that solve BMM in truly
subcubic time if B is given column by column, and not in batch.

The fastest known algorithm for OMv runs in n?/exp(y/log n) time [LW17]. (Also, it turns out that there
can be no high cell probe lower bound since there is a cell probe algorithm that does O(n'-%) “time” per
vector [LW17, CKL18].)

We will show that the OMv Hypothesis implies the OTD Hypothesis, using the same ideas as in our
previous lecture.

Let’s assume that we have an algorithm for OTD that given a tripartite graph with |J| = |K| = N can
perform n = N¢ vertex insertions into I and their associated triangle queries in total time O(N?~¢n) for
e>0.

Let A be a given n xn Boolean matrix, and let vy, . .., v, be the Boolean vectors that are given online. We
will show how to use the OTD algorithm to compute each Av; after seeing v; so that the total computation
time will be truly subcubic.

We'll create a graph G; representing Av;: First we create a bipartite graph G4 representing A:

e for every row j of A there is a node j in partition J,

e for every column k of A there is a node k in partition K,

e for every j € J k € K such that A[k, j] = 1, there is an edge (k, j).
When vector v; comes, we add a node v with edges to G4 forming G;:
e for every k such that v;[k] = 1, we add an edge (k,v),

e for every j € J we add an edge (j,v).

This graph G; represents Av;: There is a triangle in G; using edge (j,v) for j € J if and only if Av;[j] = 1.

Computing Av; thus amounts to, given G, find all j € J that appear in a triangle together with v, i.e.
for every edge (j,v) determine whether it appears in a triangle.

We now want to reduce this all-edge triangle computation to triangle detection. We did this in the
previous lecture! The only difference is that in the previous lecture the three parts of the tripartite graph
had size n. Now, one of the parts, {v}, has size 1, and the other two have size n.

Nevertheless, we proceed in the same way, except that we do not bucket {v}. We first claim that finding
can be efficiently reduced to detection (similarly to the previous lecture):

Claim 1. Suppose we have an OTD algorithm A that on query returns whether v is in a triangle in amortized
T(n) = O(n®=¢) time for ¢ > 0. Then we also have an algorithm that can return a triangle through v (if one
exists) in amortized O(n>~¢) time.

Hint: prove this claim similarly to how you would reduce finding to detection for Triangle.

Now the reduction proceeds in the same way as last time.

The correctness should be clear. If we find a triangle by, ¢k, v, then Av;[bs] = 1. If we remove (bs,v),
it’s because we already computed Av;[b;] = 1 and the edge isn’t needed anymore.



Algorithm 1: Reducing OMv to OTD

Begin Reduction:

We are given a graph G4 = (J U K, E), bipartite graph representing A

Partition J, K into {J1, ..., Jn/0}, {K1, ., Kn/L}.

for all pairs (a,b), where a,b range from 1 to n/L do
Consider Ggp, the subgraph of G 4 induced by J, U Kp.
Initialize an OTD data structure for Ggp

On query v; to OMv:

Initialize C' to an n length vector of all zeros.

(At the end of the algorithm, C[j] = Awv;[j].)

Let G; be the graph consisting of G4 and a vertex v with edges (v, j) for every j € J and (v, k) for all k € K

st vilk] =1

for all pairs (a,b), where a,b range from 1 to n/L do

Consider the OTD data structure for Ggp

Insert a vertex v’ into Gup with the same edges as v in G;[J, U Kp).

while G, contains a triangle containing v’ (x A query x) do
Let by € J, cx € K be the nodes of the triangle with v" returned by the OTD alg.
Set C[bs] = 1.
Delete (by,v) from G; (this deletes it from all the induced subgraphs G;[J, U K3)).
Insert a vertex into Gup with the same edges as v in G;[J, U Kpl; call this node v,

r;turn C
End OMv to OTD reduction

Runtime. Consider one of the Av; computations. The runtime is dominated by the number of times a
update/query call to an OTD data structure happens (and each such call takes O(L?~¢) time by assumption).
There are two types of such calls. The first type are those that return a triangle. The total number of such
calls is no more than n because C only has n elements, and on each iteration we’re setting one of them to 1
(and removing the edge so we can’t set it to 1 again).

The second type of calls are those that do not find a triangle. The total number of such calls is exactly
one for each pair (a,b), making sure that no updates to the data structure for G, are needed. Thus the
number of such calls is (n/L)?.

The amortized running time for computing Av; is thus

O(L*%) <n + (2)2> .

To minimize the runtime, we set L = n'/2, which gives an amortized runtime of O(n?~5/2).

To solve OMv we do n such operations, one for each v; separately, getting a running time of O(ng’e/ ).

Thus under the OMv Hypothesis, OTD requires amortized time n?~°(1) even with arbitrary polynomial
preprocessing.

Thus any lower bound for a dynamic problem that is based on OTD can be based on OMv.

There are many reductions from online triangle detection to dynamic problems! Some of the first papers
that contain such reductions are [RZ04] and [P10]. The latter paper gives very nice reductions from 3SUM
to a triangle reporting problem in sparse graphs and then reduces that problem to dynamic graph problems.
Abboud and V. Williams [AV14] give many reductions from dynamic versions of triangle deteciton, including
OTD; they also initialize the study of fine-grained hardness of dynamic problems from other hypotheses such
as SETH/OV. The OMv problem was defined in [HKNS15] who also adapt the BMM to Triangle reduction
of [VWI18] to obtain the hardness of OTD from OMv. They call OTD uMv since the OTD problem is
equivalent to the problem where you are given an n x n Boolean matrix M to preprocess (corresponding to



the J x K subgraph) and then pairs of boolean vectors come in (uy,v1), (uz,v2), ... (these correspond to the
indicator vectors of the neighbors of v; in OTD in J and K respectively) and you need to output w; Mv}
after each (u;,v;) is seen.

4 A reduction from OV to a dynamic problem.

Besides from OMv and OTD, there are many reductions to dynamic problems from APSP (typically to
weighted problems such as dynamic s — ¢ shortest paths), and also many from OV (and hence from SETH).
Some dynamic problems have reductions from all three problems.

We will see a reduction from OV to a simple problem for which we do not have such strong hardness
from OMv or APSP.

The problem is Dynamic Two Strongly Connected Components (SCC2): Given a directed graph
G = (V, E), maintaing G under edge insertions and deletions to be able to answer the query, does G have
more than 2 strongly connected components (SCCs)?

(Recall that a SCC is an inclusion-maximal subgraph H that is strongly connected, i.e. for every pair of
vertices s,t in H, s can reach ¢t and ¢ can reach s.)

The SCCs of an m-edge, n-node graph can be computed from scratch in O(m + n) time. Thus one can
always recompute the SCCs after each edge update in linear time. Thus, the question is, can one get truly
sublinear update time?

We will show that under the OV Hypothesis, there is no fully dynamic algorithm for SCC2 that has
amortized update time O(m!~¢) for £ > 0.

The reduction proceeds as follows. Let S C {0,1}¢ be an instance of OV, |S| = n, where d = n°™).

We create a graph G as follows.

e Add a node u for every vector u € S.

e Add a node c for every coordinate ¢ € [d].

e For every u € S, ¢ € [d] such that u[c] = 1, add a directed edge (c,u).
e Add a node s and a directed edge (u, s) from every u € S to s.

e Add a new node ¢.

We can preprocess this graph G.
Now we begin a phase for every vector v € S:

1. For every coordinate ¢ such that v[c] = 1, add a directed edge (s, ¢) to G.

2. For every coordinate ¢’ such that v[¢'] = 0, add directed edges (¢,¢’) and (¢/,¢) to G.

3. Query whether G has more than 2 SCCs. If so, return “Orthogonal Pair” and stop. Otherwise continue.
4. Delete all edges inserted in steps 1 and 2.

Let’s first see the correctness. Consider the phase for some v € S.

Suppose that there is no vector u € S that is orthogonal to v. Then for every u € S there is a ¢ € [d]
so that u[c] = v[c] = 1, and hence there is a path from s to ¢ to u. Due to the edge (u,s) that exists for
every u, we have that s is in the same SCC as every u in S. Some of the coordinate nodes ¢ will be in that
SCC, namely those for which v[c] = 1. The coordinates ¢’ for which v[¢/] = 0 are not in this SCC since s can
never reach them: s goes to coordinates that v is 1 in and those only go to the nodes in S which go back to
v. The coordinates ¢’ for which v[¢/] = 0 are all in a single SCC together with the node ¢ since they all have
edges to and from ¢. Thus, if v is not orthogonal to any u € S, G has 2 SCCs.

Now suppose that there is some vector v € S that is orthogonal to v. Then s cannot reach u because
the only way to get to u would be through some coordinate node ¢ such that v[c] = u[c] = 1 and no such
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Figure 3: In this figure we present a reduction from OV to SCC2. The red and blue edges are the edges
inserted during the phase for a vector v. The red nodes form one SCC, the blue nodes a second SCC and
the black nodes are the additional SCCs that correspond to vectors orthogonal to v.

coordinate exists. Meanwhile, u also isn’t in the SCC that contains ¢ since it cannot reach ¢. u only has an
edge to s and s cannot reach ¢ by constrution. Thus there are at least three SCCs: one that contains s, one
that contains ¢ and one that contains u and they are distinct. (In fact, the number of SCCs is the number
of vectors orthogonal to v, plus 2.)

Let’s see the running time. Let’s ignore the preprocessing time. (It’s an exercise to show that one can
assume that no polynomial preprocessing time will help.) We perform a total of O(nd) updates and O(n)
queries. The number of vertices in the graph is O(n + d) and the number of edges is m = O(nd). If the
update and query time is O(m!'~¢) for some € > 0, then the total running time over all v € S is

O((nd)*=*),

and this refutes the OV hypothesis.
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