10/3/24, 10:57 PM StackEdit

6.1420, 10/3/2024: Static Data Structures
and FGC

[Note: You can read this like a normal text file, but it will look much better if you view it with a

Markdown (.md) reader!]

(“Static” as opposed to dynamic. We only do preprocessing and queries in our data

structures today)

Today, our “computational problems” have the following form:
— a “database” x € D = {0,1}"

— set of possible queries S C {0,1}™, wherem < n
[Think of S as huge, exponentially many possible queries]

— query function Q : D x S — {0, 1}.

Now we describe our model of computation, the Bit-Probe Model. There are two measures
involved:

s(n): space needed to store the database

p(n): probes needed to answer queries

More precisely, there are two phases in the data structure model:

Preprocessing: Given n-bit x, find a representation R(z) € {0, 1}* such that |R(x)| <
s(n).

Query phase: Given y € S, want to determine Q(z, y).

We can access R(x) as an oracle, but want to probe only p(n) bits of R(x).

[this is the rough analogue of “query time” in a data structure]

More generally: the cell probe model allows us to store R(z) in w-bit words/cells, and
during queries we are charged for the number of words we have to read/probe in order to

determine the query Q(z, y).

Note: This is a non-uniform computational model: computation is free(e).

We can take unbounded time to determine which p(n) bits to probe given a query y, and
which representation R(:c) to choose. But we have an “information bottleneck”: our query
algorithm wants Q(z, y) but does not know x. To determine Q(x, y) given only y, we

have to query some info about x, which we can get from probing bits of R(a:)

https://stackedit.io/app# 1/6

10/3/24, 10:57 PM StackEdit
[If you've seen communication complexity before, the setup is analogous to a communication
complexity setting, where Alice wants to compute some function Q(:L‘, y) but she doesn’t know
x, and Bob holds x but doesn’t know y. So they communicate bits to determine Q(x, y).
Roughly speaking, our query algorithm plays the role of Alice, and the space plays the role of
Bob.]

First, we should note there are some very simple solutions to any data structure problem in
the bit-probe model. We can get away with 1 probe if we store everything, and we can get
away with n probes and compute anything.

Prop: For all z, there is an R(x) of |.S| bits so that every query Q(x, y) can be answered
with 1 probe.

Proof: In R(z), store the entire table of query answers {Q(x,y) | y € S}. Given y, look
up the answer in the table. []

Prop: For all z, there is an R(z) of m bits so that every query Q(z, y) can be answered
with 1 probes.
Proof: Let R(x) = x and query all the bits. []

So we can always achieve 1 probe with huge space, and n probes with n space. We are
interested in data structures where the space is reasonably low and the number of probes

is much smaller than n.

The bit-probe model can be very useful for proving lower bounds! If you can prove that
your problem always needs either large p(n) or large s(n) in this model, then it will also

require large preprocessing time or large query time in a uniform algorithmic model!

Example: Equality Testing

Given:z € {0,1}", Q(z,y) =1z =y
“given y’s, want to test if they’re equal to x”

We could use 2" space and 1 probe, or O(n) space and 1 probes. Can we do better?

https://stackedit.io/app# 2/6

10/3/24, 10:57 PM StackEdit

We can break the string x into k parts 1, . . ., T, of length n/k each, where k is a
parameter.
Fort = 1,...,k, we make a 27/k size table T; with exactly one 1 (and the rest of the

table is all zeroes), indicating which n/k-bit string ; is. (T} [z;] = 1, rest are zeroes). Then
given y, with only k probes into this data structure (probing each T;; once), we can

determine if z = y.
Thm: For all k, there is a data structure for EQ Testing with space k - 2"/% and k probes.
This is essentially the best tradeoff we can hope for!

Thm: For all A, B, any data structure for EQ Testing with 28 pits of space and A probes,
must have A - B + A > n. (As a corollary, EQ Testing with k probes must have k - B +
k> n,soB >n/k —1,and 28 > Q(27/F))

Proof: Suppose there is a D.S. using 2B space and A probes. We'll give a communication
protocol for the Equality function: Alice given y, Bob given x, they want to test if z = y.
We know this requires Alice and Bob to communicate at least n bits. *[I can show you the
proof later, if you're interested!] *

Bob is given x, he will preprocess a data structure using 28 bits. Given 1y, Alice will query
Bob about A bits in his data structure; she has to send A - B bits, to indicate to Bob which
bits she wants. Bob sends A bits back, and together they determine equality. In total, they
use A - B + A bits, and this must be at least 1 by the communication lower bound. []

A Negative Example Related to FGC:

OV with Preprocessing: Preprocess a set S of n vectors in {0, l}d so that, given any other
v € {0, 1}, determine if there is u € S such that (u,v) = 0.

Note: If we could solve OVP with n2~¢ . 20(d) space/time preprocessing, so that queries
take 1 ¢ time for some £ > 0, then the Orthogonal Vectors Conjecture would be false!

[Just set up the data structure and query each vector]

Alas, we cannot:

https://stackedit.io/app# 3/6

10/3/24, 10:57 PM StackEdit
Theorem [Patrascu 2011] For every € > 0, there is an o > 0 so that any bit-probe data
structure for “OV with Preprocessing” needs either space > 2% or probes > n!~¢,

Therefore, there is NO data structure approach to refuting the OVC! To refute OVC, we

would need to handle dimensions d = clog(n) for arbitrarily large ¢, and get a query time

0.999 . 9o(d)

ofn . The lower bound even holds for randomized data structures!

Indeed, Patrascu proves his result by going through communication complexity.
Interestingly, he uses a communication lower bound for what he calls the “Lopsided Set
Disjointness” problem, where Alice holds a “small” set, Bob holds a “large” set, and they

want to determine if they're disjoint.

A Positive Example Related to FGC:

Recall:
OMV: Given an n X n 0-1 matrix A, and vectors v, . . ., v, given adaptively, compute
A - v; (as Boolean matrix-vector multiplication) for all 2 = 1, ..., n. Most importantly, we

have to compute A - v; before we see v;. 1, so we cannot use matrix multiplication here.
OMV Conjecture: OMYV cannot be solved in n®~¢ time, for some € > 0.

We can show [Larsen and Williams '17] that OMV is false in the bit-probe model. In fact, it
is false even in a worst-case sense: Boolean matrix-vector multiplication can be done in
subquadratic probes! Therefore, any algorithmic lower bound on OMV has to be
“computational”: it can’t reason about the “lack of information” about vectors we haven't

seen yet.

Main Theorem: There is a bit probe data structure that given a 0-1 n by n matrix A4,
preprocesses A in O(nz) space, such that for any pair of query vectors u, v € {0, 1}”,

we can compute u® Av in worst case O(n3/2) probes.

In other words, Online Triangle Detection (from two lectures ago) can be done with O(n2)

space and O(n3/2) probes. In fact the data structure itself stores A plus only O(n3/2)

https://stackedit.io/app# 4/6

10/3/24, 10:57 PM StackEdit
extra bits. Using the reduction from OMYV to Online Triangle Detection from two lectures

ago:
Thm: If OTD is in n2~¢ time, then OMV is in n%~¢/2 time.
This translates into bit probes as well. Setting e = 1/2, we get:

Corollary: In the bit probe model, OMV can be done in O(n1'75) probes per vector, with an
O(n?) space data structure.

Proof of Main Theorem: First we describe the preprocessing stage.

Preprocessing: Given A, we will construct a list L of pairs $(u,v) where u, v € {0,1}",
such that ul Av = 0, that is, the submatrix of A specified by rows in u and cols in v is all-
zero. Think of these u, v as describing “rectangles” in A. Letting |u/|, |v| be the number of

ones in u, v respectively, the rectangle (u, v) covers |u| - |v| entries of A.

Given a pair u, v, define S(u,v) = {(¢, j)|u; = v; = 1}. The set S(u, v) specifies all

the entries in the rectangle that is covered by (u, ’U). Our preprocessing does the following.

Intially, we have L = & [a list of (u, v) pairs] and P = O [the list of entries “covered” by
the pairs]

The idea of our preprocessing step will be to cover as many zeroes of A as possible using a
small number of rectangles. Let & > 0 be a parameter we'll optimize later. We run the

following loop:

While there is a pair u, v € {0, 1}" such that u’ Av = 0 and |S(v/,v") — P| > n?,
add (u, v) to L and add the set S(u, v) to P.

That is, as long as there is a rectangle (u, v) of all-zero entries that covers at least n® new
entries, not already covered by the pairs in the list L, add (u, 'v) to the list L.

[remember: computation is free, so we don’t worry about how long it might take to find such u,v

]

We're looking at all the possible rectangles, and trying to find a small number of rectangles
that cover many zero entries. So that all other rectangles that give a 0-answer will only have
a small number of entries that aren’t already covered. Let’s analyze the preprocessing

phase.

https://stackedit.io/app# 5/6

10/3/24, 10:57 PM StackEdit

2= jterations.

Claim: The loop terminates within O(n
Proof: Every time we add a pair, it covers at least n® new zero entries, but there are at

most n? zero entries in A. So the loop terminates after at most n?~® jterations. [J
Corollary: |L| < O(n?™%).

At the end of the preprocessing, we have: P = {(3, j) | 3(u,v) € L [u; = v; = 1]}
Roughly speaking, these are all the entries of A that are “covered” by the list L. Note that

by construction, for all (4, j) € P, we have A[i, j] = 0, so P is a big collection of zero-
entries of A.

Each pair (u, v) can be described in O(n) bits, so storing the list L takes only O(n -
n?~%) = O(n®>) bits.

Query answering: Given u, v, we want to determine if u? Av = 0 or not. First, we read the

entire list L, in O(n3~) bit probes. Then we “compute” the set of pairs

Q = S(u,v) — P.

[Again, remember that computation is free in the cell-probe model, so we don’t worry about how
long it might take to compute Q!]

If |Q| > n?, then we can immediately return 1 as the answer. Otherwise, if ul Av = 0,
then S(u, v) would have been added to the list L during preprocessing, but it was not!
The other case is that || < n®. Recall that all (2, j) € P have Ali, j] = 0. So if there is
a(i,7) € S(u,v) such that Afi, j] = 1, then (¢,5) € Q ((2, j) cannot be in P).
Therefore we can just check all (¢,) € @, to seeif A[i, j| = 1.1f we find a 1, we return
1, otherwise we return 0.

Finally, if we set @ = 1/2, we optimize the number of probes, and get O(n3/2) probes.

This completes the proof of the main theorem. []

With many extra modifications, we can solve OMV using the OV algorithm we mentioned
last time. After reading about ¢ — 2(log n)** vectors, we can compute OMV in '/7,3/2V logn

randomized time, over the remaining n — ¢ vectors.

https://stackedit.io/app# 6/6

